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Abstract. Folding of RNA is subject to a competition between entropy, relevant
at high temperatures, and the random, or random-looking, sequence, determining
the low-temperature phase. It is known from numerical simulations that for
random as well as biological sequences, high- and low-temperature phases are
different, e.g. the exponent p describing the pairing probability between two
bases is p = % in the high-temperature phase and p =~ % in the low-temperature
(glass) phase. Here, we present, for random sequences, a field theory of the
phase transition separating high- and low-temperature phases. We establish the
existence of the latter by showing that the underlying theory is renormalizable
to all orders in perturbation theory. We test this result via an explicit two-loop
calculation, which yields p =~ 1.36 at the transition, as well as diverse other critical
exponents, including the response to an applied external force (denaturation
transition).
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1. Introduction

1.1. Random RNA

Together with DNA and proteins, RNA plays a key role in biology. As such, it is important
to understand its spatial conformations. While for protein the lowest-energy fold depends
strongly on the chemical constitution, and is only tractable numerically, the problem for
RNA is simpler, due to a clear separation in energy scales between primary structure
(the sequence), secondary structure (pairing of bases in a fold) and tertiary structure
(embedding of a fold in 3d space).

RNA molecules consist of four bases—adenine, guanine, cytosine and uracil-—which
are attached to a flexible sugar-phosphate backbone. In contrast to duplex DNA
molecules (where uracil is replaced with thymine), there does not exist an independent
complementary strand and the RNA molecule folds back on itself. Experimentally
important (see, e.g., [1]) is the observation that topologically intertwined pairings such as
knots and pseudo-knots do not seem to play a crucial role for the structure, though they are
present [2]. Therefore, for many problems and for many practical purposes, the folding
configuration may be considered as topologically planar, which graphically amounts to
the rule to draw the sequence and the pairings on the plane without self-intersection
(figure 1). This approximation makes the problem of RNA folding considerably simpler,
since it allows, for instance, a recursive calculation of the partition function of an RNA
strand in a polynomial time (as a function of the length of the strand). A lot of work has
now been invested to find the most efficient algorithm [3]-[5]. The planar approximation
is also the starting point for the study of more general configurations, by performing
expansions in terms of the topological number of the latter. Such studies may involve
beautiful mathematical tools like random-matrix theory [6].

The folding of planar configurations of RNA strands is a fascinating subject in itself,
with a lot of attention from physicists and mathematicians (besides biophysicists and
biochemists). In particular, planar folded configurations are topologically equivalent to
tree-like configurations, and the statistics and combinatorics of trees is a vast subject of
its own. The homopolymer problem (all bases identical) was already solved in 1968 by
de Gennes [7]. In this simple case the pairing probability P of two RNA bases decays
with the distance ¢ between the two bases along the backbone according to the scaling
law P(f) oc £73/2, Trrespective of the embedding in three-dimensional space, the statistics
of the configurations is that of so-called ‘generic trees’, or equivalently of the mean-field
approximation for branched polymers. For real RNA molecules, however, the optimal
fold depends on the sequence. Most studies, in particular numerical ones, focus on
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Figure 1. (a) An (open) RNA molecule. Bases are represented as discs (color-
coded for the bases); pairings are indicated with dashed black lines. (b) The
same configuration, redrawn so that bases lie on a line; allowed configurations
consist of non-intersecting rainbow configurations. (c¢) The same configuration,
redrawn in the height picture: each time a circle in (b) starts to the right, h(s) is
increased. Each time it comes from the left, h(s) is decreased. The constructed
height function h(s) of base s is the minimal number of bonds that have to be

opened in (a) to reach base s. It is also equivalent to the number of arcs over
base s in (b).

the configuration space and on the statistics and dynamics of folding for specific (and
biologically relevant) sequences [2, 8].

Since the pioneering work of Higgs and Morgan [9, 10] and Bundschuh and Hwa [11]-
[14], several authors have studied the statistical physics of RNA secondary structures
for random sequences and random bond energy models [15]-[17]. One motivation is
to understand the relative role of general sequence disorder and of specific biological
sequences in the behavior of long RNA strands, and whether some properties are generic,
irrespective of the details of the sequence. In addition the physics of random RNA
sequences is interesting in its own right as a highly non-trivial example of (seemingly 1D)
disordered systems, where ordering (due to attractive pairing interactions) and frustration
(due to the sequence disorder and the topological constraint of planarity) coexist. A key
feature of the above models is that there appears to be a continuous freezing transition
between a weak-disorder phase, at large scales indistinguishable from the homopolymer
case, and a strong-disorder or glass phase with non-trivial scaling, and of possible biological
relevance since the conformation and properties of RNA depend on the sequence disorder,
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i.e. on the primary structure. Not much is known about the transition, even from
numerical work; indeed its localization is non-trivial [16]. Better studied numerically
is the glass phase at strong disorder, or equivalently zero temperature [11]-[15], [17,18].
However, the nature of the freezing transition and of the low-temperature phase are still
poorly understood, and contradictory results are reported [18]. It is, for example, disputed
whether replica-symmetry breaking exists in the latter [19]-[21]. The glass phase appears
in the solution of [11]-[14] for the partition function for n = 2 replicas (instead of n =0
relevant for the disordered system) and in numerical simulations [11]-[15], [17,18]. One
feature which seems to be robust is the pairing probability P(£) oc {77l with pglass = 3,
independent of the disorder, be it sequence disorder or random pairing energies [15]-[17].

To better interpret the numerics, finite-size effects have to be understood. A first step
in this direction was the recent analytical solution of a simplified hierarchical model [22],
corresponding to a broad distribution of pairing energies, and with a pairing exponent
p=(V17—-3)/2=0.5615---.

Pulling a DNA molecule at both ends has become an important experimental
technique, which may one day allow us to identify the DNA sequence by its force-extension
characteristics [23]. For RNA, the problem is more complicated, since folded RNA is not
a linear strand and thus the sequence of base-pair openings is not clear in advance. There
is a rapidly increasing bibliography on the subject [24,25]. Remarkably, RNA pulling
gives one of the first direct tests [26] of Jarzynski’s equality [27,28]. Averaged quantities
can more easily be estimated and measured, either for homopolymers or numerically for
disordered sequences [15,17]. Efforts have been undertaken to include experimentally
relevant details, such as the elasticity of the free RNA strands [29, 30].

1.2. The field-theory approach

This paper is devoted to a renormalization-group study of the freezing transition and of
the force-induced denaturation transition of RNA with random pairing energies. In [31]
Léssig and Wiese (LW) pioneered a field-theoretical approach for the freezing transition for
this model. They proposed a continuum formulation for the perturbative weak-disorder
expansion of random RNA. Its starting point (the free theory) is the homopolymer model.
They analyzed the divergences of this expansion at first order in the disorder strength,
and they showed their model to be renormalizable at first order in perturbation theory.
Assuming scaling at the freezing transition, they showed that this transition can be
described by a UV-stable fixed point at finite disorder strength, and that the coupling
(disorder strength) and the length of the RNA strand (number of bases) have to be
renormalized at one-loop order. This allowed them to calculate the critical exponents (to
be described later) for the freezing transition. Using a ‘locking argument’ (see below), the
scaling exponents for random RNA in the strong-disorder phase were estimated, in good
agreement with numerics [11]-[14], [17].

It is important to understand if this approach defines a consistent theory beyond first
order (if possible to all orders), and if the estimates of [31] for the scaling exponents are
reliable. Indeed the diagrammatics in the LW model is of a new type, although it bears
similarities with the diagrammatics of the Edwards model for polymers, i.e. self-avoiding
random walks and self-avoiding polymerized membranes, with non-local interactions. It is
not at all obvious if the (now standard) field-theoretic renormalization formalism, leading
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to the renormalization-group picture, is valid for this kind of model. It is the purpose of
this paper to show this and to present applications of this field-theoretical formalism. We
shall introduce a formulation of the LW model in terms of interacting random walks in
d = 3 dimensions, and field-theory tools developed for self-avoiding membranes [32]-[46].
We show that this model is consistent and renormalizable to all orders of the weak-
disorder perturbative expansion, and deduce that the LW model is indeed renormalizable.
Our formulation is, in fact, more convenient for explicit calculations than the original
LW formulation. It allows us to derive new scaling relations between exponents, and
to calculate critical exponents at second order. A short summary of this approach and
its results at second order has already been published [47]. Our formulation allows us
also to treat the related problem of the denaturation transition of RNA strands induced
by an external pulling force. The modelization of this effect and the principle of the
renormalization-group calculation has been presented in [48] by the two authors and
Hagendorf, but the details of the second-order calculation are presented here for the first
time.

1.3. Organization of the paper

This paper is organized as follows: in section 2, we discuss basic properties of RNA
molecules and their folding, and the equivalent description of these foldings in terms
of trees, arch systems and random-height models in section 2.1. We then present the
Lassig—Wiese field theory for RNA folding, firstly for the free theory (no disorder) in
section 2.2 and secondly for the interacting theory (with disorder) in section 2.3. The
perturbative expansion of the interacting theory, its short-distance (UV) singularities and
its renormalization are briefly discussed in section 2.4.

In section 3 we introduce our representation of the model in terms of interacting
random walks. The basic idea relating random planar foldings to random walks in three-
dimensional space is recalled in section 3.1. The representation of a free folded RNA strand
(no disorder) in terms of a closed random walk and the precise concepts and notations
are given in section 3.2. We then generalize this representation to open random walks,
since this will prove convenient for renormalization. In order to take into account the
planarity of the folding, we introduce auxiliary ‘dressing fields’, before taking a large-N
limit (N is the number of components of these fields), as detailed in section 3.3. The
disordered (‘interacting’) model is introduced in section 3.4. Since the disorder in the
random pairing energies is quenched, we introduce n replicas. The average over the
disorder gives an effective non-local interaction between replicas, given by the so-called
replica-overlap operator W. Finally, one takes the n — 0 limit (‘replica trick’). The
principles of the perturbative expansion and its diagrammatics are given. The model
and its diagrammatics are easily extendible to an interacting open RW (open strand),
section 3.5, and to multiple interacting RWs (multiple strands), section 3.6. This is
required in order to extract all renormalizations without going to three-loop order.

Section 4 deals with the short-distance UV divergences and their renormalization.
Defining the model in (fictitious) d dimensions, with d = 3 relevant for RNA folding,
dimensional analysis shows that d may be used as an analytic regularization parameter
(dimensional regularization), and that the model is expected to be renormalizable for
d = 2. This is briefly explained in section 4.1. The crucial tool to analyze the
short-distance singularities is the multilocal operator product expansion (MOPE), which
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generalizes the standard Wilson OPE for local field theories. It is an extension of the
MOPE introduced in [34,35] for self-avoiding manifold models and used in [34]-[46]
for interacting tethered membranes and polymers. This MOPE and its structure for
the different relevant (local and multilocal) operators is introduced and discussed in
section 4.2. In section 4.3 we use the MOPE formalism to analyze the UV divergences
of our model for random RNA folding and show that it is indeed renormalizable (for
e =d—2—0). In section 4.4 we discuss the general structure of the counterterms and
of the renormalized action. We show that UV finiteness requires a renormalization of
the coupling constant g (as expected), a renormalization of the field ¥ (which represents
the position of the random walk in the d-dimensional fictitious space), plus an additional
renormalization for a boundary operator in the case of open RWs, which is crucial for the
consistency of the model. The definition of the renormalization-group beta functions and
of the anomalous dimensions of the operators is given in section 4.5. Two slightly different
renormalization schemes, denoted MS and MS, and based on the standard minimal
subtraction scheme (subtraction of poles in € = d —2) are introduced in section 4.6. They
will be used for the explicit calculations. In section 4.7 we discuss renormalization of the
so-called contact operator ® and show that its anomalous dimension is not independent
of the renormalization of r, thanks to a new scaling relation that we derive with the
help of the multi-strand model. Finally, in section 4.8 we apply our results to show that
the Lassig-Wiese model for random RNA folding is indeed renormalizable, and we make
precise the relation between our renormalization of g and of r and the renormalization of
the coupling constant g and of the RNA strand length L in the LW model. This was the
first initial motivation of our study.

We then compute at second order (two loops) the renormalization-group functions
of the random RNA folding model and the scaling exponents for the freezing transition.
In section 5 we give explicitly all diagrams and integrals. In section 5.1 we present the
principle of our calculation for RNA strands of fixed length. In section 5.2 we present
the calculation for another ensemble, the so-called ‘grand-canonical’ ensemble, where
the length of the RNA strand is a fluctuating variable distributed with an exponential
distribution involving a chemical potential 7. This is reminiscent of the two ensembles
present for self-avoiding polymers (fixed length), and the n = 0 field theory after de Gennes
mapping (Laplace transform) [49]. The calculations require the evaluation of diagrams to
two loops in perturbation theory. This is done in section 5.3 for one-strand configurations,
in section 5.4 for two-strand configurations and in section 5.5 for diagrams involved in the
renormalization of the contact operator ®.

In section 6 we apply our two-loop calculations to the freezing transition. In section 6.1
we sum the results of section 5 and compute the ultraviolet poles in ¢ = d — 2 for the
partition functions at two loops, for an arbitrary number of replicas n. This determines
the counterterms, the beta function and the anomalous dimensions, in the MS scheme
(section 6.2), in the MS scheme (section 6.3) and in the grand-canonical ensemble
(section 6.4). In section 6.5 we study the RG flow for ¢ > 0. We show that the two-
loop calculation confirms the existence of a UV-stable fixed point (i.e. a phase transition)
at positive coupling, for n = 0 as well as for n > 0. The n = 0 fixed point describes
the freezing transition induced by strong enough disorder in the random RNA model.
We compute the critical exponents at second order in € and check that the results are
consistent between the different schemes and the different ensembles.
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Finally, in section 7 we generalize our approach to an applied external force pulling
on the RNA strand. This problem was first studied by the two authors and Hagendorf
in [48], where it was shown that our model could be extended to describe the denaturation
transition induced by an external pulling force, and where a one-loop calculation was
performed. In section 7.1 we recall the model, and in section 7.2 its diagrammatics, while
in section 7.3 we derive its renormalizability and define the form of the renormalized
action and of the RG functions. In section 7.4 we present new results, namely the details
of the two-loop calculation of the counterterms and of the RG functions. In section 7.5
we discuss the physical meaning of our calculations for the influence of an applied force
on the freezing transition and on the nature of the denaturation transition for weak and
strong disorder.

Section 8 offers conclusions and further perspectives.

2. The Lassig—Wiese field theory

2.1. RNA folding representations

2.1.1. Pairing configurations. As explained above, RNA molecules consist of four bases,
adenine, guanine, cytosine and uracil, which are attached to a sugar-phosphate backbone.
In contrast to DNA molecules, there does not exist a complementary strand, and the
RNA molecule has to fold back onto itself. For the reasons alluded above, we consider
that an allowed RNA fold is an RNA configuration which can be drawn in the plane
without self-intersections, see figure 1(a). Equivalently, this can be redrawn as a set of
arch diagrams, given in figure 1(b), or as a height diagram with the constraint that the
height remains non-negative, is zero at both ends and changes by zero or one between
neighbors, figure 1(c). This will be explained below.

In order to describe the LW model, we need to be more precise. We consider a strand
with L bases, i.e. of length L. We label successive bases by integers ¢ = 1,..., L, and
denote the pairing between two different bases ¢ and j by the ordered pair (7, 7). A planar
pairing configuration ® is given by the collection of N pairings:

@ — {(/L.la Z'Q)v (Z'?)a Z'4)7 L (Z'QN—lu i2N)}7

such that all the 7,s are different and such that the corresponding configuration is planar,
i.e. no knot or pseudo-knot configurations are allowed. This implies that for any two
pairings in ® we have

19 < ig,

1y <1y,
i1<i3<i4<i2,
13 < 11 < g < 4.

(i1,12), (i3, 14) = either

A pairing configuration is compact if all bases are paired, that is if L = 2.

Any planar pairing configuration can be represented by an arch system. Associating
to each interval i =|i, i+ 1] the number of arches, i.e. the height h(i) above it, each planar
configuration is in one-to-one correspondence with a path i — h(i) over the non-negative
integers with increment h(i+1)—h(i) = 0, £1 for general configurations (‘Motzkin paths’)
or h(i+ 1) — h(i) = £1 for compact configurations (‘Dyck paths’).

doi:10.1088/1742-5468,/2009,/10/P10019 9
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Finally, to each pairing configuration ® we associate the pairing function ®(z, ) which
is defined by
1 if (i,7) € @, i.e. if 7 and j are paired,

Bl i) — 5
(i:7) {O otherwise. 2)

Defining by 7(, j) the pairing energy between two bases ¢ and j, the energy of a folded
configuration is

E@in) = > n(i,5) 23, 5). (3)

1<i<j<L

2.1.2.  Scaling exponents. Irrespective of the precise statistics of pairings, these
representations allow us to define two scaling exponents, ¢ and p, which play an important
role in the study of RNA folding. First, the average height (h) scales with the size L of
the RNA molecule as

(n) ~ LS. (4)
Here, we denote by (---) thermal averages and by an overbar =~ disorder averages.

The probability that bases ¢ and j are paired scales like

(@(i,)) ~ li=JI™", (5)
provided that 1 < |i — j| < L. These exponents are not independent [31]. Note that the
height at position k is the number of rainbow arches starting before and ending after k:

hk)= Y > @(i.j). (6)

0<i<k k<j<L

Summing over all k£ on both sides and taking thermal and disorder averages yields from
scaling, assuming that 1 < p< 2:

LY ~ L3P (7)
This yields the important scaling relation
ptC=2. (8)

The pairing statistics depends on the set of pairing energies (i, 7). For ‘homopolymers’,
i.e. a uniform n(i,j) = n < 0 for all 4, j, de Gennes [49] has shown that p = pg = % and
(=(= % This can be understood from the fact that the height h(s) is a random walk
in time s, constrained to remain positive (see section 2.2.1). These exponents are also
relevant for random RNA in the high-temperature phase.
We define the ‘pair-contact’ probability and the exponent 6 by
(@1, 7)) ~ i — 417" 9)
We expect that in the high-temperature phase § = 2p = 3, whereas in the low-temperature
phase this relation is not satisfied. In the glass phase, and if the partition function is
dominated by a single or a few configurations, Ogass = Pglass- Since

[(@(i,9))]7 < (®(,4))? < (D(4, 7)), (10)
it follows that in all cases
p<0<2p. (11)

We expect that, upon lowering the temperature, there will be a phase transition with
different universal exponents p* and 6*. Finally, in the low-temperature phase, there is a
third set of exponents pglass and (gass. All these exponents must satisfy relation (11).
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Figure 2. Planar (left) and non-planar (right) pairings.

2.1.8. Free energy, finite-size scaling and divergence of specific heat. General scaling analysis
yields that, close to a fixed point g* of the renormalization-group beta function (3(g),
i.e. close to a phase transition

lg—g7| ~ &7, (12)

where £ is the correlation length. As will be explained later, the coupling g comes with
the pair-contact operator, and thus

B'(g.) =2—0". (13)
Since close to the transition g varies continuously with 7', this gives
¥ * 1
E~|T-T|™, V= (14)

The free energy scales like the inverse correlation volume, i.e. in one dimension like'1/&

OF ~ LJE. (15)
Using (14), the divergence of the specific heat becomes
d? (20°—3)/(2-0")
= —F ~ |T — T,|207=3)/(2=67) 16
c= = F ~ T~ T (16)

Thus for 1 < #* < 3/2, this phase transition is of second order.

For our model, it is difficult to extract the correlation length & from a simulation
or experiment, since there is no scale at which a correlation function starts to fall off
exponentially. Rather, £ is the scale where the contact probability (®(i,j)) ~ |i — j|7

3 4

crosses over from p = 5 to p = p* Or p = pglass, Which will turn out to be p* & pylass ~ 3.

2.2. The free theory

We now recall the formulation of the LW continuum theory in the case where there is no
disorder.

2.2.1. Counting configurations. In the absence of disorder, all pairing configurations are
assumed to be equiprobable, with the topological constraint that they must be planar
configurations, as illustrated in figure 2. If we restrict ourselves to the case of compact
configurations, the number of planar pairings for a strand of length L = 2N (number of

4 A simple model for the last equation is as follows: suppose that the system is correlated over a size £&. Then
there are (L/€)? independent uncorrelated degrees of freedom. If they have Ising character (two states), then

§F = —kgTInZ = —ksTIn(2/9") = —kgT(L/€)* In 2.
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Figure 3. Two planar configurations with the same fixed substructure €2, and
graphical representation of Z(L,(2).

Dyck paths of length 2NV) is given by the Catalan number:

N _ 1 2N ~ —-3/24N _—1/2

planar compact ®

In the general case (Motzkin paths), or in more realistic models where there is a weight
for forming an arch, the number of planar configurations obeys a similar asymptotics:

Zo(Ly= > 1= = L~*ckay  with py = 3/2, (18)
planar ®

where ¢y and ag are non-universal constants. The exponent py = 3/2, which governs the
power-law correction factor L=%/2, is a universal scaling exponent playing an essential role
in the problem. The value of this exponent can also be understood from the observation
that, in the height formulation of the problem, the planar pairing ensemble becomes a
random walk ensemble on the half-line h(i) € N. The exponent py = 3/2 is then nothing
but the exponent for the probability for the first return to the origin at large time for a
random walker in one dimension.

Zo(L) is the partition function for planar pairings of an RNA strand with length
L, when the energy for every possible pairing is the same and when the only constraint
comes from the planarity condition. This problem is similar to the problem of folding for
an homopolymer considered by de Gennes in 1968 [7].

Let us now consider a strand with length L and impose the constraint that there are
P fixed planar sub-pairings in the configuration, as exemplified in figure 3 for P = 2. This
collection of sub-pairings is denoted

Q = {(i1,51), (i2, J2), .- -, (ip, jp)}- (19)
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These P sub-pairings divide the structure (with length L) into P + 1 substructures with
backbone lengths Lo, L1, ..., Lp such that

Lo+ Li+---+Lp=L-2P. (20)
The number of planar configurations with the substructure €2 fixed is denoted Zy(L|€2)
and is given by the product of the number of configurations in each substructure:
Z() L|Q Z 1= Z@ 21,22 Zp,jp) Zo(Lo)Zo(Ll)Zo(LP) (21)

$50

We write the sum over configurations as an unnormalized expectation value (e.v.) of an

observable O:
Z 0= <O>07 (22)
®

so that the partition function is the e.v. of the ‘unity operator’ 1:

Zo(L) = (1), (23)
while the number of configurations with a fixed planar substructure €2 is the e.v. of the
operator

Qlit, ..., jp) = ®i1,iz) - P(ip, jp) (24)
and is

Zo(L|Q) = (Q)g = (B(ir, j1) -~ P(ip, jr))o- (25)
With these notations the number of configurations with a fixed planar substructure
behaves in the large-size limit (L — oo, all L,,/L fixed and of O(1))

Zo(LIQ) = () = L™ L™ - Lp” ce M al ™ (26)

2.2.2. Continuum theory. In the rest of this paper, we are interested in the scaling behavior
for long RNA strands, and take the limit L — oo. We consider RNA in the presence
of disorder induced by the heterogeneity of the base sequence (primary structure), and
will construct a perturbation theory on the strength of the disorder. In this perturbation
theory, each term involves the expectation value for a product of a finite number of ®(7, j).
Our starting point is a free continuum theory where:
(1) The length of the strand L is rescaled to be finite.
(2) The positions i, of the bases become a continuous variable s,:
ie{l,2,...,L} - s€][0,L]. (27)
(3) The non-universal factor cfag in the partition function Zy(L) is absorbed in the
normalization of the expectation value (), so that the continuum partition function
of the strand with length L is
Zo(L) = <1>0 = pro’ Lo = 3/2 (28)
(4) Similarly, the non-universal factor ag/c3 is absorbed in the normalization of the
operator ®(7,j), so that in the continuum limit the operator €2 is defined by its
expectation value:
Zo(LIQ) = (Q), = (B(s1,t2) - Bsp, 1)), (29)
with
Ly LP - L if Q is a planar structure,
(B(si,t1) - Psp,tp))g =19 . " : (30)
0 otherwise.
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2.2.8.  Diagrammatic representation. A convenient diagrammatic representation of the
operator ® in the free theory is the following. We represent the partition function for
a strand of length L, Zy(L), by a single line with length L. This single line represents the
whole (normalized) sum over all planar pairings between points on the line:

(31)

<1>o: = Z

o

The operator ®(s,t) is then represented by a dashed arch over the line joining points s
and t (it is a bilocal vertex joining s and t):

(@)= i 2

The partition function for a strand with fixed planar substructure €, Zy(L|2) = (), is
the expectation value of a product of ® operators and is depicted by the corresponding
planar collection of arches over the line. If the substructure €2 is non-planar, the
expectation value (Q)g is zero, according to (30):

(33)
Qo= oy (@A

The expectation value of €2 depends only on the sub-backbone lengths, and hence on the
distances between the endpoints of the arches considered to be on a closed circle. Both
endpoints of the strand are identified, since this does not change the statistics. There is
formally no difference between open and closed RNA strands, since we are interested in
the secondary structure, not in the tertiary structure; thus steric effects are absent. An
alternative diagrammatic representation for the partition function and the ® operators
is to depict Z; as a closed loop with a marked point which depicts the endpoints of the
strand. Similarly, the partition function for a strand with a fixed planar substructure €2,
Zy(L|Q2) = (), is depicted as a closed planar arch system. This is represented in figure 4.

2.3. Random RNA, disorder and the Lassig—Wiese field theory

2.8.1. Random RNA. The field-theory approach initiated in [31] by Léssig and Wiese is
based on the random RNA model proposed by Bundschuh and Hwa [11,13]. In this model
one assumes that with each pair (4, 7) is associated a pairing energy n(7, j), and that the
total energy E for a pairing configuration ® is the sum of the pairing energies associated
with each pair. With our notations the configurational energy £ may be written as

El®n) = Y n(i,5) @), (34)

1<i<j<L

with ®(7, j) the contact function defined by (2). Given the collection of pairing energies
n = {n(i,j); i < j}, the partition function for the RNA strand at finite temperature is

doi:10.1088/1742-5468,/2009/10/P10019 14
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Figure 4. Equivalent diagrammatic representation as closed arch structures.

the sum over all planar configurations ®

Zy =Y exp(—f E[®;n)), (35)

[l

with § = 1/kgT the usual Boltzmann factor. For fixed pairing energies 7, the partition
function of a strand of length L can be computed recursively (see, e.g., [13,17]) in a time
T = O(L?).

While biological sequences are highly structured in order to fulfill their biological
function, here we consider random RNA sequences. While this may, or may not, be
realistic for real RNA, it is at least an important benchmark against which to compare
experimental results for biologically functional RNA.

However, the random-sequence model is still not amenable to an analytical treatment.
We therefore assume that the pairing energies are independent Gaussian random
variables. This approximation neglects correlations between the random pairing energies.
Numerically it seems that, at least in the low-temperature phase, these correlations do not
affect the large-distance properties [17]. We have to leave to future research to develop
an analytical handle on this problem.

We choose 7(i, j) to be a random variable with probability distribution

PUi.0) = s exp (5l — ). (36)
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7o < 0 is the mean pairing energy and o its variance. The randomness in the pairing
energy distribution amounts to the introduction of quenched disorder in the system. The
average over the Gaussian disorder 7 is denoted by the horizontal overline =™, so that
(with the ordering ¢ < j and k < ()

The averaged free energy for the system is

F= ; log Z,,, (38)

and the expectation value for an observable O is

©F Zo exp(— 3 E[®s 7). (39)

For instance, the probability that the bases ¢ and j are paired is

(®(i, ) = ZCD i, j) exp(—B E[®; n)), (40)

and the probability for a given pairing substructure 2 to occur in the random pairing
energy ensemble is

Q) = 729exp (—BE[@;n]) = Zexp —3 E[®; 7). (41)

’7 PO

2.8.2. Weak-disorder expansion and replicas. The idea of [31] is to study the model by a
perturbative weak-disorder expansion, and to extract its large-length L scaling behavior
at finite (and, if possible, large) disorder by renormalization-group techniques. The
perturbation expansion can be constructed in the discrete model by expanding in powers
of the disorder 7(i, j) and using (37) so that we get a perturbative expansion in powers of
the effective disorder strength (coupling constant)

g=p3*c% (42)

The quenched average over the disorder is done by the standard replica trick, which is well
defined for a perturbative expansion. One considers n replicas of the system, labeled by an
index a = 1,2,...,n. Finally, one has to take the limit n — 0. The pairing configuration
®,, of the replica « is given by the pairing function ®,(i, j):

& (i) = 1 if (i,j).e ®,, i.e. if i and j are paired for the replica «, (43)
0 otherwise.
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Since the disorder is quenched, all replicas see the same pairing energy 7(i, 5), and the
configurational energy for a replica ensemble ® = {®,} is

E@in) = E@an =) > n0(i,j) Palij). (44)

a=11<i<j<L

The average over the disorder gives the partition function for the n-times replicated system

Z=(Z) =3 exp(—BE[®:n). (5)
{®a}

The average over the disorder can be taken explicitly since the disorder is Gaussian.
From (37) one has

exp (—ﬂzznu,j)@a(i,j)) — exp (g DI NH) %(m)) (46)

a=1 i<j a,f=1 i<j

with g given by (42). One obtains an effective attractive interaction between replicas, and
one can rewrite the system in terms of an effective ‘Hamiltonian’:

BHuon[®) = 3Ho[@) + BH[®] = fno Z Z @alij) — 3 ; Z Pali, )P0, ). (47)

The first contribution, proportional to (37, is the one present for a homopolymer, which
we can solve analytically. The second term, proportional to the disorder, contains two
contributions: the diagonal contribution a = [3:

Z(I)Ot(iaj)q)a(iaj> :Zcba(iaj)a (48)

i<j 1<j
leading to a change of 7,:
eff g o eff - ..
Mo = To— %7 ﬂHO[CD] - ﬁﬁo ;;jq)a(zaj>a (49)

and an off-diagonal part H[P]:
H® = —g D) Was(inf),  Vas(i.j) == Pali, /) Ps(i, ), (50)

a<f i<j

where W,5(i, j) with o # (3 is the pair-contact or overlap operator. It gives the probability
that the bases ¢ and j are paired both in replica o and (3. The partition function and the
e.v. of observables are now

Z =) exp(~Hiu[®]),  (O) = lim(O[@]) = lim (% > O[®] exp(—Hior [@D> . (51)

The idea is to do perturbation theory in H, using the solvable theory with H, as reference.
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2.8.3.  Continuum limit. The Léassig—Wiese field theory [31] is obtained by taking the
continuum limit of this model. It is defined in terms of the continuum pairing operator
for each replica ®,(u,v), u,v € [0, L] and the overlap or pair-contact operator W¥,z(u,v).
One starts from the free theory for n independent non-interacting replicas. The partition
function for a bundle of n free replicas is

Zo(L) =Y 1=]]1)y=Zo(L)" =L". (52)

{®a} @

We represent diagrammatically this partition function by a collection of n lines, or by a
fat bundle:

2= - 11 . (53)

The expectation value for a product € of n (different) operators €2, living in replica «
factorizes into

Zo(L1Q) = Y [[2 = (@ = [ () = [ [ Zo(LI€2). (54)

{Pa} «@ a

We represent it diagrammatically by the collection of the n planar arch structures relative
to each €,:

e (55)
Zy(LlQ) - S

The continuum model with disorder is given by the theory with an effective disorder
Hamiltonian corresponding to an attractive two-replica interaction which is the continuum
limit of the discrete effective Hamiltonian (50):

H[P] = —g U,5(u,v), U,s(u,v) := @4 (u,v) Ps(u, v). (56)
(;6//0§u<v§L 7 7 o

The partition function for n replicas of a strand with length L with disorder is the
continuum version of (45). Therefore it is given by

Z(L) = (exp(=H[P]))o- (57)

It will be expanded in powers of the coupling constant g, each term of order ¢g* being of
the form (H[®]"), and can be computed using (54). Similarly the partition function for n
replicas with a given set of substructures  (i.e. the ‘expectation value’ for the operator
) with disorder is

Z(LI) = () = (2 exp(=H[P])),. (58)

It will be computed as a formal power-series expansion in g in terms of the (Q H[(P]k)o.
The details of these perturbative expansions will be discussed and studied in the next
sections.
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Figure 5. Example of a product of four W operators, consistent with planarity.

2.4. Perturbative expansion for the Lassig—Wiese theory

According to the LW diagrammatics, the continuum overlap operator W,g(u,v) is
represented by a double arch between points v and v on the two lines for replicas «

and [3:

Vag(u,v) = 7 A (59)

The perturbative expansion in g of the partition function Z(L) involves integrals of the
e.v. of products of ¥ operators:

///{uv} (Wo g, (1, 01) - - W, (g, 1)) (60)

which is represented as a set of k double arches between the replicas. An example is
given in figure 5. At a given order ¢*, the number of different replicas coupled by the
U arches ngg is bounded by 2 < ngg < 2k. Let us consider a configuration W.-- W
associated with replica pairs (o, 3;) and base pairs (u;,v;) for each replica among the
ngig coupled replicas, and consider the corresponding reduced system of ® arches. The
ev. (W, (u1,v1) - - - Wa, g, (ur, vg)), is non-zero if and only if for each replica « the reduced
system of &, --- P, is planar. For each replica a the e.v. of the product ®, - -- P, is the
product over the p, + 1 cycles of their backbone lengths, to the power —py = —3/2

(Do By )g = (jﬂoej,a> . (61)

Pa

The e.v. of the product W---W¥ is now the product of the previous terms for each of the
naier coupled replicas, times the product of the free partition function (1), = L3/ for the
n — ngg uncoupled replicas:

naig [ Pa —Po
(\I} “ e \P )O == H ( €]7a> (Lipo)nindiﬂ" (62)
k a=1 \j=0

An example is given in figure 5.
We expect the scaling dimensions of ® and ¥ to change in the presence of disorder.
It is the aim of this paper to calculate these changes. In a perturbative field theory,
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the latter can usually be extracted from the divergences of the diagrams, such as, for
example, the one given in figure 5. We therefore have to achieve two things: calculate
these divergences, but even more importantly, find which quantities they renormalize. In a
standard field theory, this task is not difficult: the needed renormalizations are associated
with the marginal and relevant operators present in the original theory, or generated by
the perturbation expansion. Here, and up to now, we only have a perturbation theory,
but no field-theoretic action to renormalize, so we do not know which quantities will need
renormalization! In the following, we will construct such a field-theoretical representation,
which will tell us which quantities to renormalize. In a second step, we will then calculate
the necessary diagrams.

Before doing so, let us as an example calculate the diagram drawn in equation (59)
to see that indeed there are divergences:

p “111\\ L L
" :/ du/ dv v — u| (L — [v — u]) =
! = 0 u
v

_ 1L2—4p0 I'(1—2pp)?

2 ['(2 —4po)
The diagram has a pole in 1/(1 — 2py), renormalizing the free energy. It has also a pole
in 1/(1 — po); the latter can be interpreted as a renormalization of the length of the
RNA molecule. However, it is not at all obvious why, and how, to do this; thus a proper
representation as an action is necessary.

(63)

3. The random walk representation

3.1. Basic ideas

The diagrammatic expansion of the model bears strong similarities with the diagrammatic
expansion of the Edwards model [50, 51], which describes three-dimensional random walks
with a weak repulsive interaction upon contact, and which has been widely used for
polymers and self-avoiding membranes.

Here is a heuristic explanation for this similarity: planar pairing configurations for
an RNA strand are in one-to-one correspondence with planar arch systems over a linear
strand, which are themselves in one-to-one correspondence with discrete paths (Dyck or
Motzkin paths) on the half-line of integers N. In particular the (normalized) partition
function of the free strand with length L is nothing but the probability of first return to
the origin at time t = L for a random walk on N, or Z, which scales at large times as
the continuous random walk on R (the Wiener process), that is as t~3/2. Now for several
observables the one-dimensional random walk on the half-line R, behaves as the three-
dimensional random walk on the full space R3. In particular, the first-return probability to
the origin for a RW in one dimension scales as the total return probability to the origin for
a RW in three dimensions. As a consequence, the pairing operator ®(i, j) has a natural
representation in the 3d RW picture as the so-called contact operator 6*(r(u) — r(v))
(probability of contact at times u and v for the random walk r(¢)). Similarly, many
observables and many questions about scaling can easily be represented or formulated in
the RW picture. In particular, the analytical reqularization used in [31], where the contact
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exponent py = 3/2 is analytically continued to p € [1,3/2] and used as a UV regularization
parameter to construct an € expansion for the RG equations and the scaling exponents,
is nothing other than classical dimensional reqularization where the dimension dy = 3 of
space for the RW is analytically continued to d € [2,3] and used to construct a d =2+ ¢
expansion.

There is, however, an important difference. The planarity constraint for the pairings
implies that the product of several pairing operators vanishes if the resulting configuration
is not planar. This is a global topological constraint that cannot be represented by
local operators in a RW representation. To implement this constraint, we shall introduce
additional matrix-like degrees of freedom in the RW representation which allow us to deal
with the topology of the diagrammatics and to take the planar limit as a large-N limit
(where N is the dimension of the ‘internal space’ associated with these additional degrees
of freedom). This is a usual trick in QFT and in statistical mechanics. In particular, it
has been introduced in [6] for the problem of RNA secondary structure enumeration and
statistics.

Thus we construct in this section a quite involved RW-like representation of the LW
model, which involves ‘generalized random walks’ in a d x N X n-dimensional space,
where d = 2p is the dimension of space, NV is the dimension of internal space and n is the
dimension of replica space. We are interested in the limit d — 3 (py = 3/2), N — o
(planar limit) and n — 0 (limit of quenched disorder).

This representation turns out to be very powerful. It allows us to apply the
mathematical tools developed in the renormalization of polymers and self-avoiding
membranes, in particular the so-called multilocal operator product expansion (MOPE).
Although the random RNA model is mapped only on the closed RW subsector of the
RW model, there are other observables, associated with open random walks, which have
no interpretation in terms of RNA observables, but which are much easier to study and
to compute. They allow a more direct calculation of some of the renormalization-group
functions and of the scaling exponents for the random RNA model.

3.2. The simple RW model

In the rest of this paper, we normalize the Dirac ‘0 function’ in R? as
5d(r) = (4m)¥% 54(x). (64)

With this normalization most of the annoying factors involving powers of 47 disappear in
the calculations.

3.2.1. Closed random walk. We start from the random walk process in R? in the time
interval ¢ € [0, L], described by the random variable r(¢)(r = {r*;u = 1---d}). The
Euclidean action for the RW is (with proper normalization)

Solr] = /0 at 1 i(t)?, (65)

doi:10.1088/1742-5468,/2009/10/P10019 21


http://dx.doi.org/10.1088/1742-5468/2009/10/P10019

Field theory of the RNA freezing transition

and the functional measure is the standard Feynman—Kac measure® (in Euclidean time)
for the quantum particle with mass m = 1/2:

dy
Dir] = H ﬁ, a = UV regulator ~ 5 1: o)’ (66)

The partition function for the closed RW (periodic boundary conditions) is defined as
25"(L) = [ Dlr)exp(~Slx)) (x(0) - (L) (67)

To extract the infinite factor from the translational zero mode in R, we formally write
Vol(RY) — / d'r — (27)16%(q = 0) (68)

(with q the momentum in the conjugate space of R?) and
closed ~(closed
25"V (L) = (2m)" 8%(q = 0) Zg"™(L). (69)

The normalized closed partition function Z{?**Y(L) is nothing but the heat kernel given
by

25 E) = Ol exp(LA)0) = [ D] exp(~SuleF(x(0) ~ v(L) = L2 (70
r(0)=0
Note the disappearance of the usual (471)_d/ 2 factor, thanks to the normalization (64) for
the Dirac ¢ distribution in the definition of the partition function.
For d = 3, Z\"*Y(L) is equal to the partition function Zo(L) of the free closed RNA
strand in the continuum limit of the LW model, as defined by (28) (hence the similar
notation). Therefore we also denote it as the unnormalized expectation value

~(closed close:

Zy" (L) = (1)g>, (71)
and represent it as a single line with length L, as for the RNA model:

~ (closed

25" (L) = = . (72)

The normalization for the action (65) was chosen such that the propagator (the IR finite
two-point function) becomes

([r(w) = ()][r" (u) = r"(v)])g = 0"|u = o], (73)

® The measure has dimension [t]*/? = [r]%.
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3.2.2. Open random walk. Although the observables for the random RNA pairing model
are related to observables for a closed random walk, we also consider open random walks
with free boundary conditions. For the open RW it is convenient to define the generating
function:

28" @i 1) = [ Dle] exp(-Sot]) explitasr(0) + qur(L).  (74)

It is the Fourier transform of the partition function for an open RW with fixed boundaries:

200 (p) 1y: L) = / Dlx] exp(—Solr]). (75)

r(0)=r1,r(L)=r2

q: and q are the momenta flowing through both endpoints ¢ = 0 and L of the RW. With
our normalization for the measure, and using translational invariance, it is given by

Zéopen)(l‘l, ro; L) = (ri| exp(L Ay)[ra)

= (4 L)~ %2 exp (—%) (76)

hence

Z (a1, a2 L) = (27m) 0%y + ) Z§P™ (e L) (77)
with

Z¢™ (au; L) = exp(~La}). (78)

These notations will be useful later. We represent diagrammatically the open RW function
as a single line with length L with bars at its endpoints (if necessary for clarity):

25" L) = -, Mﬂ. (79)

3.2.8. Contact operator. The contact operator =(u,v) is defined as
E(u,v) = 6%(r(u) = r(v)) = (4m)7* 8(r(u) — r(v)). (80)

Again, the factor of (47)%? is a normalization factor simplifying the calculations. We
represent it diagrammatically as an arch joining the points u and v. The partition function
with one contact operator inserted is thus

= o Pl S Z0) = (1 ) ol (51

This is nothing but the product of the sizes of all loops, raised to the power of —d/2.
More generally, the partition function with K contact operators inserted is

(E(ur,v1) - E(u, UK))f)losed - / DIr] exp(—=So[r]) E(u1, v1) - - - E(uk, vk)
r(0)=r(L)=0

= PL(UZ‘, Ui)_d/2 (82)
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0 ujugug wv3us V4VU5UG V6 U5V UTUSUY Vg Ug U1y Vo V7 L

Figure 6. An arch system (top) and the corresponding ¢* cactus-like diagram
(bottom) with its loops. The length of the k = 11 loops are ¢y = L — (v1 —uy) —
(U7—U7), fl = (UQ—U1)+(U5—U2)+(U1—U5), 52 = (U3—U2)+(U4—U3)+(U2—U4),
53 = (7}3 — U3), f4 = (7}4 — U4), f5 = (u6 - U5) + (U5 - U6), 66 == (U6 — U6)7
b7 = (ug —ur) + (uio — vg) + (v7 — v10), g = (ug — ug) + (vg — vg), L9 = (vg — ug)
and f19 = (v19 — u1p). The Symanzik polynomial Py, is the product of the length
for each loop P, = [[;_¢ 10 4i-

where Py is the Symanzik polynomial of the K + 1 loop (¢*-like) diagram obtained by
contracting to a four-vertex each arch associated with a contact operator, or equivalently
the product of all loop sizes, raised to the power of —d/2. An example of such an arch
system (with K = 10) is depicted in figure 6, together with the corresponding ¢* diagram.

The main problem with this simple RW representation is that the product of several
contact operators A does not vanish if the corresponding arch configurations are non-
planar. As a consequence, the model of interacting RWs with a contact interaction given

by the action
sil=4 [ wer—of [ 5t (53)

(the attractive Edwards model) has a perturbative expansion which contains, besides
the planar contributions which correspond to terms in the expansion for a RNA pairing
model, many more non-planar contributions. Thus the complete action must be more
complicated. (Note that (83) is, of course, only a toy model, since it does not contain the
replica part necessary to treat the disorder.)

3.3. The dressed planar RW model

In order to classify the pairing configurations according to their topology in the RW
representation, and to keep only the planar configurations, we introduce additional matrix-
like degrees of freedom and modify the action accordingly.
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(G(t2))g = timmrmme B ta

~(closed Y S
Z§(1L) = =

.

7 (q, L) =

Figure 7. The auxiliary field propagator and the dressed closed and open RW
partition functions.

3.8.1. Auziliary fields. First we add a conjugate pair of auxiliary N-component fields 7,(t)
and 7,(t) with a dynamical It6-like action

N

SiA=3 [ Ao (84)

a=1

a =1,...N is a color index which will play its role later. The action is such that the
propagator for these auxiliary fields is the causal Heaviside function 6:

- 5ab if ty > tl,
Gt el = dwlta — ) = { g 12 (55)
while
Fa(t)A(t2))o = (Va(t1)m(t2))y = 0 Va,b,ty,1s. (86)

We represent the propagator (85) by a dashed oriented line, see figure 7. The (closed or
open) partition function for the free dressed RW is now defined as

Zo(L) = [ Dl Dly.5]e S-S0, (57)

where we insert the bilocal boundary operator:

r, - <% ;%wm@)) (88)

with the proper boundary conditions for the path integral over r(¢). I'}, creates an auxiliary
field at the initial point and annihilates it at the endpoint, thus still giving a contribution
1 for the free RW. At that stage nothing changes for the expression of the closed and
open RW partition functions Z§°°d and Zy", which are still given by (69)—(71) and
by (76)—(78), respectively. However, the boundary operator is crucial for the correlation
functions and the interacting theory.

The dressed RW partition functions are now graphically represented as a ribbon (or
fat line) with a full line for the RW and a dashed oriented line for the auxiliary field, see
figure 7.
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Figure 9. Example of planar (left, h = 0) and non-planar (right, h = 1) products
of ®. The left one carries an additional factor of N2 from the sums over b and c.

3.8.2. Dressed contact operator. Now we can dress the contact operator =(u,v) with the
auxiliary fields so that it becomes a ribbon arch with its topological features encoded by
the auxiliary field color indices a € {1,..., N}. Let us define the dressed contact operator
® as

Bt,0) = 1 3 a(w) 30(0) B x(a0) = 7(0)) 0) Tl (59)

With the diagrammatic rules given above it is depicted as a ribbon arch (see figure 8).
The partition function with the insertion of operators ®, defined as in (82) by

<¢)(U17 Ul) e é(uK7 UK)>glosed - / D[r] D[Iya ’3/] e_SO[r}_SO[%:Y]
r(0)=r(L)=0

X Fb@(uh U1) c CID(uK, UK) — N_QhPL[ui, Uz‘]_d/2 (90)

now contains a multiplicative color-counting factor N 2" where h is the number of handles
of the surface on which the planar arch system for the product of the ®s can be drawn
without crossings. The argument is standard and requires counting the factors of N which
arise when summing over the internal color indices a carried by the auxiliary field line and
by using the Euler relation for the system of arch diagrams. This counting is illustrated
in figure 9.

3.8.3. The planar N — oo limit. If we take the planar N — oo limit, only the contributions
of the planar arch configurations (with 2 = 0 handles) survive. This shows that we can
build the RNA perturbation theory in terms of a self-avoiding polymer model embedded
in d = 3. In the following, we discuss how this can be put to work for the random RNA
model defined in equation (47). The advantage of this formulation, and the only reason
we have gone through this formal exercise, is that we can write perturbation theory with
a polymer-like action (microscopic free energy), which allows us to apply the tools of
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non-local field theory, and especially the multilocal operator product expansion MOPE
(see [36] for a review).

3.4. Replicas, the interacting RW model and its diagrammatics

3.4.1. The action. To construct a random walk representation of the LW field theory, we
introduce replicas and construct a RW representation for the effective interaction term (56)
between replicas induced by the quenched disorder. Consider n replicas of the RW field,
r.(t), labeled by a € {1,...,n}, and n replicas for the auxiliary fields v%(¢) and 4% (t).
The action for the free replica system is

Solr.7.5] = / D DEXUIES ) SACIAT! (1)

The dressed contact operator @, for the replica « is
1 (6% jagl 0% — (07 jag 0%
o, 0) = 5= > e ()3 () Ealu, v) 75 (0)75 (v) (92)

with 2, (u,v) the contact operator for the replica «

Zo(u,v) = (4m)7? 6% (ro(u) — ra(v)). (93)
The dressed overlap operator between distinct replicas a # (3 is

Uos(u,v) = Oy (u,v) Ps(u,v). (94)

The attractive replica interaction is

St il =93 [ [ sl (95)

a<f 0<u<v<L

so that the full action is
S - S() + Sint‘ (96)

We shall construct the perturbative expansion and its diagrammatics for this theory,
starting from the diagrammatic representation of the interaction operators represented in
figure 10. We are interested in the double limit N — oo (planar diagrams) and n — 0
(quenched disorder). In the remaining discussion and in the calculations we shall take first
the planar limit (the number of diagrams is thus greatly reduced), but keep the number n
of replicas non-zero. We take the n — 0 limit at the end of the calculation. Since N = oo,
we do not represent the auxiliary field propagators as dashed lines any more, but simply
keep planar diagrams.
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u v u 0

Figure 10. Diagrammatic representation of the contact operator @, (left) and of
the overlap operator W,z (right).

ZOZ =

Figure 11. The replica bundle.

3.4.2. Closed-strand partition function. The n-replica closed-strand partition function for
the free model (g = 0) is

ZN((]closed) (L) _ <1>glosed _ / o . ,D[r,")/,:)/] e*SO Fb - [ZO(L>]n = L*nd/Q’ (97)

where the measure and the boundary operators are

'D[I‘,’}/,’ﬂ = HD[ravvavia]v 'y, = Hthavﬁ/a] - H (% Zﬁa(o)Va(L)> . (98)

We represent it diagrammatically as a single (fat) line, see figure 11, but it is understood
that this represents a bundle of n lines.
The closed-strand partition function for the interacting model is

Z~(closed) (L) _ <eXp(_Sint)>glosed _ / ’D[r’ v, :)/] ei‘s I. (99)
ra(0)=ra(L)=0

It can be expanded in a perturbation series in powers of g. The term of order ¢ is of the

form
%Z///(qu% (100)

and can be represented diagrammatically in terms of double-arch systems involving P
replicas with 2 < P < 2K, exactly as for the LW model. In the following we represent
as a line only the replicas coupled via overlap operators W¥,s. It is understood that the
n — P other replicas are there and give a factor of (Z)"".

It is clear that for closed RWs the diagrammatics and the resulting integrals are
equivalent to those of the LW theory. The amplitude (¥ --- W), is given as a product
over each of the P replicas « of products of the internal loop lengths to the power —d/2,
equivalent to formula (62):

P/ —d/2
@y~ 1] (ma) Ly o)

k a=1 \j=0
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=[(0=r)y =)L —vtr—y+a)

(u=t)v—u+t—r)(L—v+r)]
x[(u—t)w—u+t—s)(y—a)(L—y+z—w+s)] ¥
 [(w—s)(L —w+s)]"Y?

™ L(477z)d/2

y —d/2

Figure 12. Example of the e.v. of K = 4 Us as given in (101). The factors are
grouped by replica lines, starting at the front.

The combinatoric factor for each amplitude, which is a polynomial of degree P in n, is
also the same for the LW and the RW models. An example of such an amplitude is given
in figure 12. The RW representation in the planar limit provides a (somewhat formal but
systematic) functional integral representation of the LW model and a way to study its
short-distance structure (see section 3.5).

3.5. Single open-strand partition function

As already explained above, it will be useful to consider other sectors and other observables
in the RW model. These observables are associated with open random walks and have no
interpretation in terms of the random-pairing RNA model.

By similarity with the partition function for an open RW (74) and (75), we consider
now n replicas of a dressed open RW r,(t) with ¢ € [0, L], and with free boundaries r,(0)
and r,(t). We attach to each endpoint momenta q; and qs which (for simplicity) are
taken to be the same for the n different replica. The open-strand partition function is
defined as

ZW(qu, ap L) = / / Dlr, 7, 7e STpelld Zara0)ta Yo ra(L)] (102)

where S is the action for the interacting dressed open RW model (96) and T', is the
boundary operator, as defined by (98). The index (1) added to the partition function
(instead of the index (°P") used in section 3.2 and 3.3) indicates (i) that we deal with
open strands and (ii) that we deal with one single bundle of n replicas of the same open
RW. Later on we shall consider the partition functions Z® for p > 1 (bundles of n replicas
of) open RWs interacting via the disorder-induced 2-replica contact-interaction term W,g.
Using translational invariance in R? for each replica, we can factor out a momentum
conservation term for each replica, thus defining, by analogy with the free case (77)

Z(l)(Ch, qg; L) = [(27)d5d(ch + %)]nZN(l)(Ch; L). (103)
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// \\ Il // \\ \ — <A(/u/17 rvl) e A(up7 /Up) e*iqlr(L)>8pen

0 u v wy z x L

Figure 13. Diagrammatic representation for the open-strand planar arch sub-
system (106) for a single replica, and the corresponding amplitude. The open
strand with length ¢y is depicted by a bold line. The cut at the ends of the
strand indicate that we deal with a open strand with incoming momenta q; .

The IR finite function 2(1)(q1; L) can be expanded in perturbation theory in a power
series in g as

2(1) (ql7 L) = <e_iq1 Za[ra(o)_ra(L)]>0pen = <e_$i“t eiq1 Za[ra(O)—ra(L)}>8pen

- //() Dlr, v, 7)o STpe ' Zatall) (104)
ro(0)=0

with Siy given by (95). The rules to compute the perturbative expansion are a simple
generalization of those for the closed RW model. The term of order g% can be expanded
into a sum (over the various distributions of (o, 3)) of integrals (over the u and v) of
expectation values of the form

<‘;[1011ﬁ1 (uh 1)1) o \Ijakﬁk (uk7 Uk)eiiql 2o ra(L)>8pen' (105)

The integral over the auxiliary fields selects the arch configurations which are planar for
each replica, and give zero for the others. We end up with a product for each replica of
an e.v. for the open RW model of the form

(Aur, v1) - Alup, vp) eiiqlr(L)%pen (106)

with the planar arch sub-system = A(uy,vy) - A(uy, v,) extracted from the planar
double arch system W,z (u1,v1) - Vq,p, (ug, vg) for each replica a. The e.v. (106) is

easily calculated. The p arches form p internal loops with backbone lengths ¢;,...,¢,.
At variance with the closed RW model, the remaining segments of the strand that
are not under an arch form an open sub-strand with total length ¢y = /fge (with

60 —f-gl —+ e 4 ép = L) The €.V. (106) 18
—d/2

(A(ur,v1) - - Aluy, vy) e_iqlr(L)>gpen = H l; e aito (107)

closed loops
jzlv"'vp

and is represented in figure 13.
Each e.v. (104) is the product over P amplitudes of the form (106) (for the P replicas
coupled by the U,4), times the n — P remaining free-strand amplitudes. Hence it is given
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e (0 =)y —2)] 2 x [(u—t)(v—utt—r)] >
0 r s t v wx yL x[(u=t)(w—u+t—s)(y—a) 2[(w--s)]>2

Figure 14. Diagrammatic representation for a single planar open-strand W
system, and the corresponding amplitude. The bars at the endpoints of the
bundle indicate that we are dealing with an open strand with incoming momenta
q: and —qj.

by an amplitude of the form

P P —d/2
11 <H fw) e e (108)
a=1 \j=1

and is represented in figure 14.

3.6. Multiple open-strand partition function

Finally we consider partition functions for M > 1 strands interacting via the disorder-
induced contact operator W. Let us restrict ourselves to the two-strand case M = 2.
These two open strands are described by the RWs r; and ro, and more precisely by

1o (t1), 77, (t1), A1, (1) (strand 1) (109)

o (t2), V5, (t2), 75, (t2) (strand 2). (110)

For simplicity the two strands have the same length L; = L, = L, so that ¢; € [0, L] and
ty € [0, L]. The action is taken to be the sum of the action for strands 1 and 2, plus an
interaction term between the two strands:

S = Z(/irla —i—Z/’hofha /tirm +Z/7§a7§‘a>
(L e ot
] )

The first line in (111) is the free action for the two strands. In the second line W ;(uy,v;)
and W2 ;(uy,v5) are the overlap operators (94) for the two strands 1 and 2. The new
operator \Ifi; (u1,v9) is the overlap for the contact between strands 1 and 2, defined as

s, m) = ‘1’5’2(% v2) 5" (ur, v2) (112)
q)l 2 Uh U2 2’71 U1 '71 b Ul)gd(rla(ul) - r2a(v2))7§b(v2)iga(v2) (113)
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Figure 15. The new contact vertex @i’g(u, v) and the interaction vertex \Ifig (u,v)
between two different strands (labeled 1 and 2).

q4 — b - — q3

—

T Do 1 ! oy

[ ! 1 , ! [

[ | 1 | 1

I ! 1 1 ‘ I ! ‘

N L i .

- | I |

¥ R T

¥ IR EE
q — 'i - :E - ; E — Q2
Figure 16. An example of a two-strand diagram, representing a

\I/H\Ilig\llég\llég\llig\ll%g term. Note that on the lower strand 0 is left and L
right, whereas on the upper strand L is left and 0 right.

and depicted in figure 15. The model can be generalized by assigning different coupling
constants ¢, g and g; 2 to the operators \Iféﬂ, \Iliﬂ and \Ifié For simplicity we keep
g1 =92=412 =G

The two open-strand partition function is defined as

Z9(qy,q2,q3,q4; L) ://D[rh7175/1]2)[1'277275/2]6_81‘% L'y,

w ell@ X ria(0)+a2 X, ria(l)+as X, r26(0)+aa 3, r2a(L)) (114)

It is calculated in perturbation theory as a power series in g. The term of order ¢’ is
a sum of expectation values of products of \Ifiﬁ, \Ifiﬁ and \Ifié operators. Each term is
represented diagrammatically as a system of two bundles (one for each strand), with a
planar system of double arches on each strand (for the ¥! and ¥?) and of double ribbons
between the two strands (for the ¥h?). An example of such a diagram (with only \I/i;
operators) is depicted in figure 16.

When computing Z® there is a subtle technical point when dealing with translational
invariance to factor out the (27)46%(Xq) terms for each replica. For each replica a one

has to compute a term of the form

(L. L &2...92 pL2... L2 ei(qlrla(0)+qzr1a(L)+qsr2a(0)+q4rza(L))>0_

——— — e ——
K1 Ky K2
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Either there is no W, 5 operator (K72 = 0) and the two strands are decoupled, so that
from translational invariance we factor out a term

(2m)%6% (an + a2)(2m) 0% (a3 + qu), (115)

or there is at least one W, 5 operator (K5 > 0) and the two strands are coupled, so that
from translational invariance we factor out a term

(27)"6% (a1 + @2 + a3 + ). (116)

We already note that this subtlety will become fully manifest when, under renormalization,
the field r goes to rv/Z, and correspondingly the momenta q go to q/ VZ, thus inducing
different additional powers of Z in (115) and (116).

We must treat separately the contributions to Z?) according to the number Q of
replicas such that the strands 1 and 2 are coupled. More precisely, a term of order
g% involves K; W', K, U? and K Uh? with K + Ky + K2 = K, and may have
2 < @ < 2K, replicas with strands 1 and 2 coupled. Thus we can decompose uniquely
Z® into the contribution of these ‘Q sectors’, Z2@ as

ZO(qap asai L) = Y [(2m)2 6% + ) 8%(as + q4)]"

Q
X [(27?)d §qr + s +qs + Q4)]Q Z2V(qy, qz,q3; L). (117)
The @ = 0 term is the disconnected contribution:
Z00(qy, qp,q3; L) = Z2M(qu; L) 2M(as; L). (118)

Since the interaction is a 2-replica interaction, the () = 1 term is zero:
2(2’1)((117(127(13; L)=0. (119)

The details of the calculations of these two-strand partition functions will be given in
section 5. To identify all necessary renormalizations, we only need to compute the Q) = 2
sector contribution Z3?) at zero external momenta q = 0.

4. UV divergences and renormalization

4.1. Introduction: dimensional analysis

The LW field theory suffers from short-distance (UV) divergences when py, taken as an
analytic regularization parameter, is greater than or equal to 1. Using

£ =2py — 2 (120)

as a Wilson-Fisher expansion parameter, it was shown in [31] that at one loop (first non-
trivial order in g), these UV divergences appear as poles in 1/e, and can be absorbed into
a renormalization of the coupling constant g (strength of the disorder) and of the strand
length L. In this renormalization framework, for € > 0, the one-loop calculation shows
that there is a physically relevant non-trivial UV fixed point ¢* = O(e) (with g* > 0),
which controls the continuum limit of the LW theory. This UV fixed point separates a
weak-disorder phase (g < g*), where disorder is irrelevant at large scales, from a strong-
disorder phase (g > ¢*), where disorder is strongly relevant at large distances.
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In this section, we consider the UV divergences in the RW representation of the
model. We show that the divergences can be analyzed via the short-distance behavior of
the RW model, through a multilocal operator product expansion (MOPE). This MOPE is
similar to the MOPE for polymers (the Edwards model) and for self-avoiding polymerized
membranes (SAM), and is a generalization of the well-known operator product expansion
(OPE) for local quantum field theories.

The RW model in d dimensions is equivalent (for closed RW) to the LW model with
analytic regularization where the contact exponent is pg = d/2. Hence we denote

e=d—2. (121)

Using units of the strand length L, in the action S given by (91)—(96) the bare scaling
dimensions of the base position t, of the position vector r and of the auxiliary fields v and
v are

=1 =12 K=KH=0 (122)

The dimensions of the elasticity 2, of the contact operator ®, of the overlap operator W,
and of the coupling constant g are

%] = —1, (@] = —d/2, (V] = —d, g=d—2=c¢. (123)

If the theory behaves as an ordinary quantum field theory, it is natural to expect that
it has UV divergences for d = 2, is perturbatively renormalizable for d = 2 and is
non-renormalizable for d > 2. This will be true if the short-distance singularities are
proportional to the operators already present in the theory, and if no new terms are
generated under renormalization.

4.2. The MOPE

The short-distance singularities can be analyzed via a multilocal operator product
expansion (MOPE). The importance of this MOPE was already recognized by Léssig—
Wiese, [31,52] (see especially [52]).

The fact that the short-distance singularities for products of ¥ operators in our RW
model are described by a MOPE is easy to understand, without much explicit calculations.
Indeed, the operator W,s5(u,v) is a product of two bilocal contact operators @, (u,v) for
two independent replicas o and [3:

Uos(u,v) = @y (u, v)Pg(u, v). (124)

Each contact operator is the product of the standard bilocal contact operator =(u, v) for
the plain RW, times two local operators Y (u) and Y (v) for the auxiliary fields v and #:

O (u,v) = % Z Top(u) Z(u, v) Tpa(v) (125)
with
E(u,0) = 8(r(u) —r(v)) = (4m) 2 6% (x(u) —r(v)),  Yap(u) = yalu)F(u). (126)

It is thus sufficient to analyze the short-distance behavior separately for each replica «;
and further separately for the &, functions of r,,, and for the local operators T, involving
only the auxiliary fields v, and 7,.

doi:10.1088 /1742-5468 /2009/10/P10019 34


http://dx.doi.org/10.1088/1742-5468/2009/10/P10019

Field theory of the RNA freezing transition

When dealing with open strands, one must be careful to take into account the
boundary operators at © = 0 and L. One has to write the MOPE at the boundaries for
products involving a boundary operator and bulk operators, when some of the points go to
the boundary. As we shall see, boundary operators are important for the renormalization
of the model.

4.2.1. MOPE for the r operators. The MOPE for the = operators is nothing but the
standard MOPE for the operators of the Edwards model for an SAW, and of the general
D > 1 polymerized (or tethered) membrane (SAM). This MOPE was studied extensively
in [32]-[38], [42]. It is obtained by expressing the contact operator as

diq .
= — iq[r(u)—r(v)]
_(u,v)—/ﬂdﬂeq . (127)

One then writes the short-distance expansion of products of vertex operators exp(iqr(u))
in terms of normal products, and the short-distance OPE for the massless free field in 1D
(the quantum free particle), using the explicit form of the 1D propagator.

The 1D massless propagator Go(u,v) >~ (r(u)r(v))e for the scalar field is the solution
of

1 02 1
533 Go(w,v) = 8(u—v) - (128)

L
with periodic b.c. for closed strands and Neumann b.c. for open strands. The 1/L term
takes care of the zero mode. The propagator is explicitly, for the closed strand

G (u,v) = (Ju —v| — L/2)?/L (129)
and for the open strand

G (u,v) = ((u — L/2)* + (v — L/2)* — L|lu — v|)/L. (130)
We only need the difference propagators, see equation (73):

1 lu — v for open b.c.

57 (@) = (@) = § Ju- v|(LL— f=v) b oed b (131)

The product of multilocal operators has a short-distance expansion in terms of other
multilocal operators, of the general form

O, (uj,ui,...)Oo(uy,uz,...) - Op(u;, ui, o)

= > OO ({ul—st}) O({sf}): (132)

{uid—{sh 55

This expansion generates an algebra containing all multilocal operators of the form

O(sy,...,5,) = /ddro H (H (0™ir(s;)) V¥ (r(s;) — r0)> , (133)
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where 0 and V are the derivative in internal and external space:

0 0
0=—, V=—. 134
ds or (134)
n;; and k; in equation (133) indicate the power of the corresponding derivative operator.
The coefficients C’g 102"'0p({u§-—3f}) of the MOPE are homogeneous functions (or rather

distributions) of the relative distances ué-—sf . Except when s} is a boundary point, they

do not depend on s¥, but on the differences of the ué
For k = 1 (local operators) the most relevant operators (with the highest canonical
dimension) are

1 and  Ordr= (1)’ (135)

with canonical dimension 0 and —1, respectively (remember that the dimensions of s and
r are 1 and 1/2). For k = 2 (bilocal operator) the most relevant operator is the contact
operator

E(Sl, 82) = 6d(r(51) — I'(SQ)) = /ddro Sd(r(sl) - I'()) 5d(r(32) - I'()) (136)
with canonical dimension —d/2. For k = 3 (tri-local operator) the leading operator is
=G (s, 59, 53) = 0%(r(s1) — r(s2)) 6%(x(s1) — r(s3))
_ / dlro 5(x(s1) — 10) 54(x(s2) — o) 8(x(s3) —10)  (137)

with canonical dimension —d, etc.
We give here the explicit form for the MOPE of the relevant operators at leading
order, as calculated, for instance, in [35, 36, 42],

E(ur,ug) = Jur —ua| " 1(u) — L |uy — us| Y b (u)? 4 - (138)
UL — U

with u = (uy + uz)/2.
Z(ur, 01)Z(ug, va) | = (Jur — ua| + o1 — v )"Y*E(u,v) + - -- (139)

UL —U
V1 —V

with u = (uy + u2)/2, v = (vy + v9) /2.

=(u,v) E(uq, ug) = |uy — uo| =2 Z(u, v) + - (140)
u2—Uu
i (uy) 12 (up) = 85(up — ug)i*(u) + - - (141)
up—u2

with u = (uy + ug)/2.

Z(uy, ug)t? () = luy — us|~Y? % (u). (142)
U —U

For the boundary operator:

E(ug, u)1p(0) = |uy — ug]"Y?1,(0) + - - - (143)
u1—0

ug—0
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~~~~~~

..........................
- . - .

Figure 17. Example of nested MOPE.

There is another potential term, but it vanishes because of the Neumann boundary
condition for the open RW:

i (u)1,(0) =0+ (144)

Similar MOPESs can be written for the product of three or more operators. The coefficients
C of the MOPE are homogeneous functions of the relative distance between the points
involved. They have themselves a singular behavior when some of the points coalesce.
These nested singularities are also given by a MOPE, with coefficients which have
themselves nested sub-singularities, etc. This corresponds to the standard concept of
nested sub-divergences (associated with Zimmerman forests) in the field theory. It is this
nested MOPE structure which ensures the renormalizability of the self-avoiding polymer
and membrane models studied in [32]-[43], [53]-[55]. An example is given in figure 17.

4.2.2. MOPE for v and 4. 'The propagator for the auxiliary fields is a step function. The
OPE for the T operators is very simple and is exactly given by

Top(u)Yea(v) = 0(0 = u) 04 Laa(v) + 0(u = v) G Loy (v)- (145)

Similarly, for the boundary operators of the open strand one has
/?a(o) Tbc(v) ujo+ 5ab ,76(0) ’7(1([/) Tbc(v) uj/_ 5ac /Yb(L) (146)

This ensures that we keep track of the topology (planar structure) of the diagrams at short
distance. It is clear that, while (145) and (146) eliminate some of the UV divergences
completely, they ‘go along’ for the remaining ones and thus do not complicate the analysis.

4.2.3. MOPE for ®. Using (125) it is easy to obtain the MOPE for the dressed contact
operators ¢ in each replica sector (we omit here the replica index « for simplicity of
notation), and to take the planar large-N limit (N being the number of ‘color’ indices a
for the auxiliary fields 7, and 4,) to obtain the MOPE for the planar pairing operators.
At leading order this MOPE involves only ®, and the local operators 1 and 12, or rather
their ‘dressed versions’:

17 () = Z Folu)Va(w)1(u) = % Z Toalu (147)

i Z% ()i () = %ZTM(U)#(@L) (148)

(we shall omit the dressing ‘’ for local operators in the rest of this section).
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The first MOPE (138) is unchanged:

D(uy,ug) = |ug — ug| ¥ 1(u) — Hur — | () + - (149)
UL — U

The two MOPESs involving two ¢ become

@(Ul, Ul)q)(UQ, UQ) Ul,'li*)u [9(’&2 — Ul)e(’l)l — ’U2) + 9(u1 — u2)0(/02 — Ul)]

X (Juy — ug| 4 [v1 — va])"Y2 D (u, v) + - - - (150)
and
D (u, v) P(uq, us) = 0w — ug) + O(uy — u)]|ur — ug|~Y? B(u,v) 4 - - - (151)

The remaining MOPEs (141)—(144) for the bulk and boundary operators are unchanged
at this order.

One important remark is in order, about the MOPEs (140) and (151). For the simple
RW contact operator =, (140) is just the product of the MOPE for = — 1, times an
independent =, which can be viewed as a ‘spectator’. As a consequence, the sum of the
diagrams

. N N . N
’ N N ’ N
\ \
, \ / A ! | (152)
LS ! AN i N ! )
Ll 1 L 1 P 1

u (4

which carry a potential UV divergence in the SAW model, are canceled by the counterterm
for the leading divergence in (149), and no counterterm is associated with these diagrams
in the Edwards model. However, the corresponding MOPE for the planar pairing model is
different, since the term associated with a non-planar configuration (the second diagram
in (152)), is absent. As a consequence, and as we will see later, the MOPE (151) gives
a non-trivial UV singularity in the replica-interacting model and requires an additional
renormalization, which is absent in the SAW model.

4.2.4. MOPE for W. It is clear that there is an analogous MOPE for the W¥,g, since
these operators are products of ® operators on two independent replicas a and 3. More
generally, one can write a MOPE for any product of multilocal-multireplica operators of
the form

Ousama, ({57}) = Oa, ({57}) OF, ({s7}) -+ - OF, ({s}}) (153)

where each O}, is a multilocal operator O of the form (133) for a single replica o;. Of
course, the MOPE is non-trivial only if some of the replica indices a are common to the
different multilocal-multireplica operators. We give here the MOPE for the ¥ operators
which are of interest for the renormalization of the model at one loop. For a single ¥ we
have

Wag(ur,ua) = fur = o] ™1 (u) = fur — ol ™ [8F () + 5 (w)] + - - (154)

RS

T > _

X

+ 4o

a3
u u
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For two ¥ we have

\Ifaﬁ(ul, Ul)‘yaﬁ(UQ, Ug) u u:—>u [9(@62 — u1)9(vl — Ug) + 9(u1 — UQ)O(/UQ — Ul)]
vi’,vg—w
X (|U1—U2|+|Ul—1}2| _d\Ila/g(U,U)+"' (155)
/ I/tj/:’: :_:‘\ > \\:\ //,/” - \\
11’ IIIII \Ijl ‘L\| . 1’11 \|,\' n
ul ”2 Uz Ul u v
and
W (u,v) Yap(ur, us) | = [0(u = uz) + (ur — )] |ur — ug| ™ Yag(u,v) + - (156)
U2 —U
L’/xl "4': ! \ . L’/xl \ ) n
uougu, v u v

Let us note that the product (155) of two ¥ which share only a single replica « generates
a 3-replica operator of the form

3 3
Uy Uy — W) U0 (u,0) = @y (u, v)Bp(u, v) D, (u, v) (157)

aBy’

which turns out to be irrelevant. But the product (156) involving three replicas is relevant:

Uos(t, v) Wan (g, us) = [0(u — us) + O(ur — u)]|us — us| ™ Wop(u,v) + - - - (158)
Us—U
L,’I i ‘L," N L,LI' T +
u Lll u % u v

2

For the bulk operators and local boundary operators the MOPE is similar to (141)—(144).
For the bulk we have

2 (uy) 12 (ug) = 86(uy — ug)i2(u) + - - - (159)
UL —U
HK—K — X + -
Ml u2 u
and [42]
U op(u, ug) [2 (u) + £5(u)] oy —Ad O(uy < u < uy) |uy — up| " 1(u)
+ [14+(d—1)0(u; < u < u)l|us — ugl’d [02 (u) + r%(u)] (160)
r”; \ _ X _|_ cee e
u, u u

1 2

The four terms in the square bracket in (160) are obtained by not contracting 12 (u) (first
term), contracting twice (second term) or once (third and fourth terms).
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For the boundary operator we have

Was(ur, u2)1p(0) = fur — ug) " 1,(0) + - - - (161)
u2—0

0 Uty 0

The trivial one is

2 (u)1,(0) = 0+ --- (162)

u—0

x — o
ou 0

This MOPE structure for the multilocal-multireplica operators can be shown to hold at
higher order, and to have a nested structure for its sub-singularities, as for the single-
replica case. It is this nested structure of the MOPE which ensures that the model is
renormalizable.

4.3. Renormalizability

We can now analyze the short-distance singularities of the full interacting theory with
n replicas for € close to 0. The analysis is very similar to the general proof of the
renormalizability of the SAW and SAM models [32]-[36]. Thus we can constrain ourselves
to an outline.

We compute the partition function and the correlation functions of the model for open
strands and generic n, as defined in section 3, with d or £ as an analytic regularization
parameter. Using the standard rules of analytic (or dimensional) regularization, the
integrals are calculated for d # 2, treating short-distance divergences via a finite-part
prescription. Within this framework, UV divergences appear as poles in the complex d
plane. There are no long-distance IR divergences since the strand length L is kept finite
and acts as an IR regulator.

The UV poles at € = 0 are associated with the terms of the MOPE with the correct
power counting. They give the superficial UV divergences of the theory. These divergences
can be subtracted by adding counterterms to the action if they are proportional to the
original operators in the action and if no new terms are generated under renormalization.

According to the MOPE derived above, the dangerous UV terms come from the
MOPE for products of operators of the following form:

Firstly
TT WasCusud) TT0) TTi50) == 1(u) + (F(u) + 5(w)), (163)

p ; B Wi, ug Uy —u
which describes the MOPE for a product of local and bilocal operators into a local
operator. The coefficient for the relevant identity operator 1(u) gives dimension-full UV
divergences, i.e. poles in the complex ¢ plane for negative values of € = —2/p, p integer.
These do not give a pole at ¢ = 0 and thus do not require a renormalization in the
minimal subtraction scheme. Physically, this term gives a dimension-full UV divergence
of the form A~'L, where A is a physical UV regulator (with dimension of a mass) and L is
the strand length. Since the strand length L is kept fixed in our scheme, this divergence
is the same for all partition functions and does therefore cancel in correlation functions.
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The coefficient for the marginal operators 12 (u) and r%(u) gives a pole at ¢ = 0 and will
be subtracted by a wavefunction counterterm proportional to the free action Sy.
Secondly

H \Ijaﬁ Uy, Uz

k

[T I ?(u;;'>]

H\I/ V], v H (v;’)] —  Was(u,v) (164)

Ui U U U —U

m
IRTARTARVUE)

which describes the MOPE for a product of local and bilocal operators into a single bilocal
operator. This gives also poles at ¢ = 0 which are subtracted by a coupling constant
counterterm proportional to the interaction term S in the action.

Thirdly, for the open strand, there is a divergence coming from the MOPE for the
boundary operator 1,, here located at u = 0:

T wos(ui u) TT 2() Hrﬁ Y —  1,(0). (165)
( J

ul,u UG U —0

This divergence is subtracted by a new counterterm proportional to the boundary operator
1,. It is, of course, not present for closed strands.

There are no UV divergences associated with the auxiliary fields y54%. This is not
surprising since these auxiliary fields are introduced to organize the topological expansion
of the perturbative expansion and to construct the planar limit for N — oo.

The analysis of the sub-divergences and the fact that the UV poles can be recursively
subtracted in perturbation theory is similar to the one of [32]-[36], [38, 42] and shall not
be repeated here.

Finally, let us stress that the arguments for perturbative renormalizability are valid
for any value of n (the number of replicas) and of 1/N (the parameter for the topological
expansion of perturbation theory).

We can now study the renormalized theory, and write the corresponding
renormalization-group equations.

4.4, Bare and renormalized action and observables

Renormalizability of the theory means that, when expressed in terms of the renormalized
field rg and of the dimensionless renormalized coupling constant ggr, the theory defined
with the renormalized action Sr[rg; gr, pt] for the open strand with

7
Sr[rg] :Z/O ; (ZrR —1—77) — grZglt” Z//O aﬁ U, v +ZQZ1 (166)
o <s<

a<p3 <u<v<L
and with
Wits(u,v) = 6%(rra () = rra(w))0(trg(u) — rrg(u)) (167)

is UV-finite when € = 0. Z and Z, are, respectively, the wavefunction counterterm and
the coupling-constant counterterms. They will correspond to a renormalization of the
operators 2 and W. p is the renormalization mass scale, which has dimension L=!. Z;
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is a new boundary counterterm and is associated with a renormalization of the boundary
identity operator 1;,. The counterterms are defined as a perturbative series in gg, of the
form

Z=1+) gkAe) (168)
k>0
Zy=1+) gk Bile) (169)
k>0
Zy =) gr Cile). (170)
k>0

The counterterm coefficients Ay (e), Bi(e) and Cy(e) contain poles at ¢ = 0 which cancel
the UV poles of the bare theory. For the general case, these coefficients depend on n and
N. No renormalization is required for the auxiliary fields.

As usual, defining the bare field rg and the (dimension-full) bare coupling constant

gB as
rp = rrZ'/?, g8 = grZ, 21", e=d—2, (171)

we can rewrite the renormalized theory as a bare theory, defined by the bare action
Sg[rp; gs] given by

Splre; gl = Z/ (5r8% +77) — g8 Z// Wos(u,v). (172)
o 0<s<L < O<u<v<L

Similarly, for an open strand, this amounts to renormalizing the boundary operator 1,
through

17 =e 2113 (173)
When computing the counterterms and UV-finite observables for the renormalized theory
from the UV divergent bare theory, one must be very careful with the field renormalization
and the treatment of the translational zero modes. To see this, let us first consider

the partition function for the closed strand, Z°d(g L), as defined by (99). Since the
(infinite) contribution of the translational zero modes

T . = (205 = O (174)

has already been factored out, this partition function has dimension
Zelosed (g L) o= [r] " (175)

Taking into account the renormalization of the field r given by (171), the relation
between the bare partition function, computed with the bare action Sg[rg; gg], and the
renormalized partition function is

éélosed(gB7 L) Z(nd)/? _ Zﬁlosed(gRy L) (176)
with Z the wavefunction renormalization factor.
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The partition function for one open strand Z1(q: g, L) is defined by (103), with q
the external momentum. It has scaling dimension zero:

20(qig,L) ~ 1. (a77)
Since the external momentum q is conjugate to the field r, it is renormalized as
qs = qrZ~ '/, (178)

The relation between the bare partition function for a single open strand (computed
with the bare action Sg[rp; ¢gg], and expressed as a function of the bare coupling gg and
the bare momentum qp) and the UV-finite renormalized partition function (computed
with the renormalized action Sg[rg;gr] and expressed as a function of the renormalized
coupling gr and the renormalized momentum qg) is

Z0(ap; g8, L) e 2" = 20 (qr; gr, L) (179)

Note the additional multiplicative boundary renormalization factor exp(—2nZ;) which is,
of course, not present for closed strands, and which is important for the calculations.

Finally we consider the partition function for two open strands in interaction
Z@(qy---qa;g, L), defined by (114). We have seen that it must be decomposed into
terms associated with the contribution of the so-called ‘@ sectors’ where @ replicas
interact amongst the n available replicas, Z2Q)(qy---qs; g, L), defined by (117). Each
term Z2@)(q;---qs; g, L) has a different scaling dimension

ZC(qy---qs;9, L) ~ [r]9 (180)

Therefore the relation between the bare two-strand partition function and the
renormalized one is

Z0aqp -y gp, L) 27 @02 o= B0 = ZBD(qp -5 gn, L), (181)

Note that the boundary renormalization factor is now exp(—4nZ,;) since we have two
strands, hence four endpoints.

The argument is a bit sketchy, but can be made more rigorous by taking into account
the functional measure D[r] in the definition of the RW model, and using the fact that
this functional measure is dimensionless for closed strands, but dimension-full for open
strands, with dimension

D[r]closed ~ 17 D[I‘] (open) ~ [r]”d' (182)

The difference can be viewed as the insertion of a contact operator 0%(r(0) — r(L)) for
each replica in the open ensemble, which closes the strand and thus leads to the closed
ensemble.
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4.5. Beta function and anomalous dimensions

We use the minimal subtraction scheme (MS scheme), i.e. define the counterterms Z, Z,
and Z; in such a way that they contain only poles at € = 0, but no finite part with analytic
terms in e:

_ a s (a2 6 5
Z=1+gr—+gr| =+ + O(gr) (183)
19 19 19
b b b
Zy=1+gr— + gk (5—2 + f) +O(g) (184)
c c c
zi=m i (G + L) + Ol (185)

The 3, function for the coupling is defined as the variation of the renormalized coupling
with respect to the renormalization scale p. Using (171) we get

d 1 dlogZ dlogZ]™*
Bg(gR> = IR = —¢ l + &% + (2 + 8) & .
9B

2B - 186

a du gr dgr dgr (186)
The function 3, is the Wilson flow function considered in Lassig-Wiese [31] and our short
paper [47]. Its derivative B; gives the scaling dimension of gg (in the sense of Wilson,
hence in units of mass p):

d
B = 3y alor): (187)

Since the renormalized coupling gg is the scaling field associated with the bilocal overlap
operator Wg(u,v), the scaling dimension of the operator ¥ (in units of p) is

szz—é%@@m. (188)
In [47] we considered the dimension of r (in units of length L ~ 1/u), x+(gr), defined as
lon) = 3 1+ By (o) TERIL | = 21 ) (189
with
dlog Z(gr)

Y(gr) = By(gr) : (190)

dgr
Xr(gr) equals minus the scaling dimension of r considered as a local operator (hence in
units of mass p)

Ar = =Xz (gr)- (191)

Finally the scaling dimension for the boundary operator 1y, is (still in units of mass p)
Ay, =ni(gr) = ﬁg(gR)%'
These formulae will be used to derive the anomalous dimensions and the renormalization-
group flow of the RNA model from the two-loop calculation of the counterterms presented
in section 5.
It is also possible to study the renormalization of the contact operator ®,(u,v) =
04(rq(u) — ro(v)) and to compute its scaling dimension Ag. This is done in section 4.7.

(192)
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4.6. MS and MS subtraction schemes

We use two slightly different subtraction schemes. The first one stated in (183)-(185) is
the standard minimal subtraction scheme (MS scheme), where the counterterms Z, Z, and
7 are chosen such that they contain only poles in £, but no term analytic in . It is useful
to make the connection with the renormalization in the Léssig-Wiese formulation [31],
see section 4.8.

The second one is denoted MS and is defined as follows: remarking that the relation
between the bare and the renormalized coupling constant is gy = grZ,Z*™ ¢, its total
renormalization factor is

Ly = L 72, (193)

It contains also analytic terms of order ", n > 0. If we choose Zg to have pure poles in
e, together with Z and 7Z;, we obtain the MS renormalization scheme where

rg = rrZ'/?, g8 = grZgit . (194)

Z and Z, are still of the form (183) and (185) (but with a prior: different coefficients af
and ¢)), and
- b by by

b
Zy=1 +9R;1 + gk (; + f) +O(g3)- (195)

The two schemes MS and MS differ by a finite redefinition of the renormalized coupling
constant gr. In the MS scheme the definition (186) for the new beta function j3, is
——
— dg 1 dlogZ
Bq(gr) = —ud—R :—sl - 9} .
K 9B

- 196
gr dgr ( )

4.7. Renormalization and anomalous dimension of the operator ®

We have seen that the local field r and the overlap operators ¥, 4 are renormalized and get
dimensions y, and Ag. Similarly the bilocal contact operator ®,,, involving a single replica
«, must be renormalized and gets an anomalous dimension Ag. This dimension plays an
important role in the analysis of the model, in particular in the ‘locking’” mechanism
presented in [31] and discussed below.

4.7.1.  Contact operator ® for a single strand. To compute the anomalous dimension of
®, we must compute correlation functions involving this operator. We first consider the
contact operator between two points u and v for a single strand with replica index «. It
is, from (89):

Dy (u,v) = 0%(rq(u) — ro(v)). (197)

(For simplicity of notation, we omit the dressing by the auxiliary fields which is necessary
to make it a planar operator.) It is depicted by a single arch as in figure 18, see also
equation (32). Its engineering dimension in units of y is
d
0

9
Ag==-=1+-. 198
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Figure 18. Contact operator ®4? between two strands.

This operator allows us to define the ‘height operator’ h(s) for a single closed strand:

hs) = / / o) (199)

Since the theory is renormalizable the operator ® can be renormalized as
q>R = Z‘I’(bBa (200)

where ®p is the bare operator (197) involving the bare field rp and Zg is the
renormalization factor, computed in either the MS or MS scheme. Its coefficients depend
on n (the replica number) and contains ultraviolet poles in €. The standard RG analysis
shows that the scaling dimension of ® in the renormalized theory is

dlogZg

: 201
dom (201)

p(gr) = Dalgr) = Ag +7a(9r),  Ya(9r) = y(gr)
where 3,(gr) is the coupling constant § function given by (186). Its value at the UV fixed
point gf, i.e. at the freezing transition, gives the contact exponent p at the transition:

p" = As(gr). (202)

4.7.2. Two-strand contact operator ®“2. It is more convenient to consider the contact
operator between two different interacting (open) strands, in the same spirit as in
section 3.6. The two strands labeled 1 and 2 are described by the RW ry, and rs,,
respectively (and the associated auxiliary fields). The inter-strand contact operator
QL2 (u,v) is

057 (u,v) = 0%(r14(u) = 120(v)) (203)
times the appropriate dressing to ensure planarity.  This operator is represented
diagrammatically by a single line between the two strands. Repeating the analysis of
the UV divergences and the renormalization for this operator, it is easy to see that the
singularities come from the very same terms in the MOPE as for ®, that is from the

singularities when a bunch of ¥ coalesces on the endpoints of ®. This implies that ®.2 is
renormalized in exactly the same way as ®, namely that the renormalized operator is

O = Ze®y, (204)
with Ze containing the same counterterms as in (200).
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We consider in perturbation theory the following partition function:

e
||
A

28

_ / Dlry.] / Dlraple(Srial+Ste2s) / / 82 (u,0)  (205)
r1,(0)=0 1"2,8() 0;8#ag u Ju

which contains all the diagrams which contribute to the renormalization of ®. This
partition function is the partition function of two strands (replica bundles), with
interactions between replicas inside each strand 1 and 2, no interactions between these
two strands (this would result in higher replica operators, not ®) and constrained to be
in contact via the replica ag. We have omitted the auxiliary fields and the boundary
operators I'y and I'y which are present in the definition of the partition functions of open
strands (102). The constraints on the path integrals r1,(0) = 0 and ry3(0) = 0 take care
of the zero modes, except for ra,,, whose zero mode is fixed through r1,,(0) = 0 and the
operator ®12(u, v).
This partition function is renormalized as

ZP R(gr) = 27U Ly "2 2 5(gn) (206)

la

(compare with the renormalization of the Z(2®) partition functions in (182), where there
are () replica interactions between the two strands). The diagrams and the corresponding
amplitudes are discussed in section 5.5, and the corresponding counterterm Zg and scaling
dimension Ag are calculated in section 6. However, we shall now derive directly a scaling
relation for Ag at the fixed point g*, which implies a scaling relation between the exponents
p* (the contact exponent) and (* = ((g*) (the full dimension of the r field).

4.7.8. A scaling relation between Ag and A.. We remark that Zf) can be written as

so_ 1 [_izm( )

2
n2 aq qJ . (207)

Indeed each —(8/9q%)Z™M (q)|qo gives the partition function for a single open-strand
bundle with a point marked on one of the n replicas. Taking the square gives the partition
function for two replicas. The factor of 1/n? takes care of the fact that the replica ag

is not summed over in the definition of Z~<(1>2)‘ Using the renormalization of the partition
function for one open strand given in equations (178) and (179), Z~<(1>2) is UV-finite for

Ty = 7722, (208)

Ze is not subtracted minimally, but this is enough to compute the full dimension of ® at
the fixed point, using (201):

plgr) = Ao(gr) =1+ % — <1 _ f) @(gR)m%E{Z)
=145 - (1-5) Cxlow) - 1)
=2—(2—-¢)xe(9r) (209)
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with x;(gr) defined in (189). At a fixed point g* we get the scaling relation
pPr+2—e)x =2 (210)

Using the scaling relation p* + (* = 2 from equation (8), this implies the relation between
the roughness exponent (* of the height h and the dimension of r:

CF=2-e)x"'=@l—-d)x" (211)
Ford=3 (e =1)
¢ =x" (212)

as expected, since h is the height variable, equivalent to the radial coordinate h = |r| for
the random walk.

4.8. Relation with the length renormalization framework of Lassig—Wiese

In the original one-loop renormalization-group calculation of [31] by Léssig and Wiese the
random RNA folding model is not formulated in terms of a dressed random walk model
with auxiliary fields r. The model is defined as a perturbative expansion in the disorder
strength ¢ in terms of the overlap operator W. The renormalizations at one-loop order
are extracted from the behavior of the free energy at two-loop order. Since there is no
r field in this formulation, there is no renormalization factor Z for this field. Also in
their scheme two renormalizations are required: the first one is a renormalization of the
coupling constant g as here, but the second one is a renormalization of the length L of
the RNA strand.

In order to compare our results with those of [31], and to check that our
general argument for the renormalizability of the model implies the consistency of the
renormalization scheme of [31], we must understand the relation between these two
renormalization schemes. This relation is, in fact, easy to establish.

Let us start from our renormalization scheme. The renormalized action is of the form
(we omit the auxiliary fields, the associated indices a,b, ..., the replica indices «, 3,. . .,
the boundary counterterms, and consider only closed strands

This renormalized action can be rewritten as a bare action Sg in terms of the bare field
rg and the bare coupling constant gg:

provided that we renormalize the field r and the coupling constant g as

rp(u) = Z(gr)"*rr(u), 98 = 9rZqg(gr)Z(gr)" 1" (215)
The overlap operator ¥ is defined as usual as
Wog(u, v) = 0%(ra(u) — ra(v))d(rs(u) — rs(v)), (216)
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so that we have
\I/B(U,U) = Z(gR)_d \IIR(uﬂ})' (217)

We now reconstruct the Lassig-Wiese renormalization scheme from our scheme. We can
consider the strand length L and the base coordinates u € [0, L] as renormalized length
parameters:

L= LR, U =URr € [O, LR] (218)

and in our scheme the length L is not renormalized, i.e. the length in the bare action Sp
is the same as the length in the renormalized action Sg.

Instead let us construct another renormalization scheme (hereafter indicated by ‘tilde’
superscripts) where the coupling constant g and the length L are renormalized, but
where the field r is not renormalized. We define the base length parameter ug and the
renormalized length Ly as

IJB = Z(QR)LR, aB = Z(QR) UR € [O, IJB] (219)

with Z(gr) a renormalization length factor (to be determined). Similarly the bare coupling
constant gg is defined as

G5 = gr Zy(gr) 1 ° (220)

with Zg(gR) the coupling constant renormalization factor. The r field is not renormalized;
the bare field is simply

rp(tp) = rr(ur) (221)
so that

Ug(ip, 8) = Yg(ur, VR). (222)
It is a simple exercise to check that if we choose as counterterms

Z(gr) = Z(gr) ™, Zy(gr) = Zg(gr) Z*(gr) (223)

we have renormalized the theory in the Lassig—Wiese scheme, since we can rewrite our
renormalized theory, given by our renormalized action Sg in equation (213), which gives
a UV-finite theory, as a bare LW theory, with the bare action Sg of the form

5~ 22 ~ = ~ o~
SR[I'R] = SB [I‘B] = i/ . r's — gB // . ‘;[/B(’LLB, ”UB). (224)
O<up<Lp O<up<vp<Lp

We have thus proven that our renormalization scheme implies that the Lassig—Wiese
renormalization scheme exists and is consistent at all orders. The reader interested in
the precise correspondence between the one-loop calculations of [31] and our formalism
may check that in [31] the calculations are done in a minimal subtraction scheme where
the renormalization scale is set by the renormalized strand length. This corresponds in
our formalism to set u = Lz' and to choose a minimal subtraction scheme where the
counterterms for the coupling constant g, that is Zg, contain pure poles in €. The relation
between the 3 functions is obtained as follows. Insert y~!' = Ly = Lg/Z(gr) = LsZ(ggr)
in (220), and use (223) to obtain

g = grZyZ " (gr) L. (225)
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Table 1. Correspondence between our renormalization scheme and the LW

scheme [31].

This work [31] by LW  Denomination

I w= L;{l Renormalization scale

IR U Dimensionless renormalized coupling
JB go Bare coupling

Ly Lo Bare length

L=1Lgr L Renormalized length

Zl=17 7 Length renormalization factor

Zg’l = Z£71Z’2 Zg Coupling renormalization factor
Bg(gr) B(u) Beta function

Comparing (215) and (225), we conclude that

d

= 226
udugR ( )

d
Lon——
BdLBgR

JB 9B

The lhs is the § function denoted ((u) (with v = gr) in LW [31], whereas the rhs is our
B function F,(gr) in equation (186). According to (223) this corresponds to our minimal
subtraction scheme MS. The precise dictionary between our notations and results and
those of [31] are given in table 1.

5. Two-loop diagrams

5.1. Presentation of the calculation, fixed-length scheme

This section is devoted to the explicit calculation of the two-loop diagrams which are
required to evaluate the renormalization factors and the renormalization-group functions
at second order. The main calculation will be performed for open strands in the
fixed-length framework which is presented and discussed in the previous sections. For
completeness and comparison with the calculations of [31] we shall also discuss the so-
called grand-canonical scheme where an integration over the length L of the strands is
performed. This scheme has the advantages that it allows for an independent check, and
that some integrals are much simpler.

We first recall the definition of the amplitudes in the fixed-length framework. The
partition function for p strands, Z®(q---;gg, L) is decomposed into a sum of the
contribution of the @ sectors, where @) is the number of interacting replicas between two
strands, according to (114). Each sector gives the partition function ZwR)(q---;gp, L)
which is a function of the 2p — 1 independent external momenta q. The 2n — @ delta
functions for the conservation of external momenta are already extracted and taken into
account in (114). To extract the necessary renormalization factors, in fact we only need
two cases: first, p = 1, and Q = 0, with the partition function denoted Z"(q; gg, L)
and second p = 2,() = 2. Note that p = 2,0 = 0 reduces to the previous one since
220 = zW) z(M) and the case p = 2,Q = 1 is trivial since 2 = 0.
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5.1.1.  One-strand diagrams. The perturbative expansion of the one-strand partition
function ZM(q; g, L) is written as a sum over one-strand planar diagrams &;:

ZW(q; g8, L ZgB Y. &) Eda; L), (227)

diagrams

i

c(&;) is the combinatorial factor of the planar diagram &;. This combinatorial (or
symmetry) factor depends on n (the number of replicas). F;(q; L) is the amplitude of
the one-strand diagram &;. It is given by an integral over the position of the internal arch
points of amplitudes of the general form given by (106). For a diagram of order k (with
k double arches), by homogeneity this amplitude is of the form

Ei(q; L) = L") Ey(qLY?) e "L, (228)

where, for historical reasons and to make an easy comparison with [31], we keep the
notation

g
2

g
=1+ - 229
+5 (229)

Each dimensionless amplitude F;(q’) depends only on the dimensionless momentum
q = qLY? and of course on 6. The UV divergences appear in our dimensional-
regularization scheme as poles at # = 1 (that is ¢ = 0). Power counting shows that
the primary divergences (needed to compute the RG functions) are contained in the first
two coefficients of the amplitudes E;(q) in a small-momentum expansion in q around

q = 0. We denote these two coefficients as A; and B;:
Ei(q) = Ai + ¢°B; + O(q") (230)

(they depend on ). Finally, since we can express everything in terms of dimensionless
quantities, we set

L=1 (231)

in the rest of the calculations in the fixed-length scheme. In this case, the calculation
of the amplitudes E;(q) and of the coefficients A; and B; for each diagram &; involves
integrals over the relative successive distances between arch endpoints on the strand of

the form
1 ul U2k—1
/dul/ du2---/ S (232)
0 0 0

Setting up = 0, and w941 = 1 and denoting v; = u;41 — u; the relative distance between
ordered endpoints we denote such integrals by

1 1
/ :/ / dug--- . (233)
V1,1 ...V 0 0
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5.1.2. Two-strand diagrams. The perturbative expansion for the two-strand partition

function ZN(Q’Q)(q- -+,g,L) is written as a sum over the connected planar two-strand
diagrams C; with () = 2 replica interactions between the two strands:
ZCq--i98, L) =) g5 Y eC)Cila---;L). (234)
k=0 diagcrams

The two-strand diagrams are now denoted by C; and ¢(C;) is the combinatorial factor
for the diagram C;. It depends on the number of replicas n. Cj(q---;L) denotes the
amplitude of the diagram C;. It depends on the three independent external momenta
q = {qi1,92,q3}, on the length of the two strands (which are taken to be equal for
simplicity: L; = Ly = L), and on @ (or d or €). Following the discussion of the previous
sections, the amplitudes C;({q}; L) have a scaling form similar to (228):

Cil{a); L) = #2000 ({qL'?)). (235)

The UV divergences which are needed to compute the RG functions are contained in
the first coefficient of the two-strand amplitude at small momenta q. Similarly we can
deal with dimensionless amplitudes by setting as in (231) L = 1. Thus we denote the
dimensionless zero-momenta two-strand amplitude coefficient for the diagram C; as

Ci = Ci({a}; L)|g=o,L=1- (236)
These coefficients still depend on 6 (or d or €) and have UV poles at § = 1.

5.2. Grand-canonical scheme

We had defined above the canonical, i.e. fixed-length, partition function for open strands,
Z@eQ)(q---;g8,L). We now define the partition function for open strands in the
grand-canonical scheme. This scheme leads to several important simplifications in the
calculations and therefore offers a valuable check.

5.2.1.  One-strand diagrams. We start with the one-strand diagrams. The partition
function is defined as

Z7(_1)(q . ;gB,T) — / dLe_LTz(l)(Q' . ,gB’L> (237)
0

As an example, the free (non-interacting) single-strand partition function for the n-times
replicated open RNA is

ZW(q, L) = e L, (238)

Thus, its Laplace transform is

ZW(q,7) = / dLe 7 2W(q, L) =

: Pl (239)

According to (228), the contribution of diagram i to the one-strand partition function at
order ¢* is of the form

Ei(q: L) = L™ E;(qL?) e "'l = [7h "9 L[A, + B;@?L + -] (240)
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Its Laplace transform is

El(q,7)= / dLe ' E;(q; L)
0

1
BT [0(1 = ke) (T + ng®)* 4; + ¢°T'(2 — ke) (T + ng®)* 7 'B; + - -] .
(241)
Thus we can write for diagram i at order gg:
By (q,7)ghy = o na MU= o (T Zhe) | T2 ke) DB (242)

T + nqg? ['(1—e)k F'(1—e)kr+ng?|"

To simplify calculations, in the next subsections we will evaluate all amplitudes with the
combination T + nq® = 1 kept fired. We define AT and B to be the coefficients in the
square brackets of the above expansion, i.e.

AT (1 — ke)

(2 — ke)
: A; Bl = —— B, 24
‘ [(1—g)k™" (243)

U MO L
These are the coefficients which we calculate in subsection 5.3. Note that the division
by 1/T(1 — ¢)* was introduced to have the simplest possible coefficients, especially no
derivatives of the I' function. This is achieved by replacing gg by gg/I'(1 — €) in the
bare action (172). As we will see from the explicit calculation, this replacement leads to
tdentical RG functions up to two-loop order in both schemes.

5.2.2.  Two-strand diagrams. We now discuss two-strand diagrams, for which the
differences are more important. In principle, there are two possible definitions: one could
either take two strands of the same length L and then perform the Laplace transform,
or one can take a length L, for the first and a length L, for the second strand and
then perform a Laplace transform for each of the two strands separately, using the same
chemical potential. The first method will give essentially the same results as in the fixed-
length framework, and will not allow for any simplifications. On the other hand, the
latter method, which we shall adopt in the following, leads to important simplifications,
see diagram C'17, equations (319)—(341) and (342). Formally, if the contribution of diagram
ito Z32(q...;gs; L1, Ly) (with length L; for strand 1 and length L, for strand 2) is for
the only needed contribution at q = 0 given by C;(L1, Lo)gk, then we define

1 o0 o0
T = —— dL ALy e Tt )0 (L) Ly). 244
i F(l—e)k/o 1/0 2€ (L1, L) (244)

These are the coefficients which we will calculate in section 5.3. Of course, we will
not calculate them first for fixed lengths, and then do the Laplace transform, but take
advantage of the fact that, after Laplace transform, many integrals factorize quite nicely.
Note that we have again consistently divided each diagram by I'(1 — ¢)*, as was done
for the single-strand diagrams, due to the replacement of gg by gg/I'(1 — ¢) in the bare
action (172). The coefficients C7 will be calculated in section 5.3.

To keep notations compact, we will indicate the corresponding integrals in the fixed-
length scheme and in the grand-canonical scheme, respectively, by superscript L (for the
length cutoff) and by superscript 7 (for the chemical potential). Equivalent integrals are
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denoted by ‘=’ to distinguish them from the same diagram, so, for example, C| = Cy
means that diagrams € and C5 have the same integrals in both schemes, although their
combinatorial factors, denoted ¢(C}) and ¢(Cy), may be different. Writing C¥ = C¥

denotes that this is true only for the integral in the fixed-length scheme.

5.3. Explicit diagrams: single strand

5.3.1. Order k =1. 'There is only one diagram:

c(&)=1xn(n—-1)/2, Es(q) = / o2sa? 20
r,8,t

= [ a0 = NEER e o
:§—1+0@

By = /HSH 250 = 2P(1%(:1 39;16;)(2) T (3- 20)2(2 —20) _g —2+00)

Ag:%%{%?:é—1+@@)

B =2

5.3.2. Order k = 2. There are five inequivalent diagrams:

A§ — / 8—26u—20 — %/ 8—26u—20(1 —5— u)?
r,8,t,u,v stu<l

1
_ l/ dzr x1—40(1 . I’)Q/ 8—20 U—QG
0 s+u=1

102 —40)I(3)T(1 - 20)0(1 —20)  T(1 - 26)?

[\

2 I(5—40) ['(2 —46) (5 —40)
:é—§+@—%)+0@
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1
BY = / 2(s +u)s PuY = / dz2®~%(1 - x)Q/ 5720472
r+s+t+utv=1 0 st+u=1

_ T(3—40)0(3) T(1 - 20)T(1 — 20) _ 2(2 — 4)

= A
(6 — 40) (2 — 40) (5—40)
4 4 272
=—— -4 (-124 = 254
= €+( +3)+O(8) (254)
Aj = (A7) (255)
B3 = BJAj (256)
&= _ 7 E4(q) _ / e2(s+t+u)Zq2 (s + u)fze 420 (257)
e 7,8,t,U,v

c(&)=1xn(n—-1)/2 (258)

AL = / (5 +u)"21% = / (1= (54 u+1))(s + u) 22
r+s+t+utv=1 stu+t<l

1
— / $(1 . (x + t))x729t729 _ / dy y2749(1 o y>/ x1729t729
T+t<1

0 z+t=1

_ T(3—40)L(2)T(2 - 20)I(1 —20) _ T(2 - 20)I(1 — 20)

I'(5— 46) (3 — 46) I'(5— 46)
:—8%+§+ (%2—1) +0(e) (259)

1
By = / 2(s+t+u)(s+u) 2t = 2/ dy >~ (1 —y) / R
r+s+t+utv=1 0 T

+t=1
(261)
T(4—4)T(2)T(2 — 20)T(1 —20) _ 2(3—46) ,
=2 = Ay
(6 — 46) (3 — 46) (5 46)
2 6 72
52+5+(0 3)+O(€) (262)
24 4e 2 2
Br=2T% _ 2,2 9 2
4 -2 i -3 -2 + - + 0(5) ( 63)
&= r— Es(q) = / 220" 204,720 = Fu(q) (264)
- 7,8,t,u,v
0(65) =1x n(n — 1)(71 — 2), A5 = Ag, B5 = Bg (265)
& = (266)
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(&) =1xn(n—1)(n—2),
Es(q) = / p(2s+3t+2u)Z¢? (s+t4+u)(s+u) 0t (267)
r,8,t,u,v
A :/ (s+t+u)?(s+u)0t%
r+s+tt+utv=1

= / (1—(s+t+u)(s+t+u)(s+u)

— /O dy y2—46(1 _ y) /th:l xl—Gt—QG
_ T(3—40)0(2)T(2 - H)T(1 - 20) 3 9

T(5— 40) T(3—30) 4 4 O(e) (268)
; (2 -1I(—e-1T'(1—-(/2)) 3 9 )
A= ['(1—¢)T' (—(3¢/2)) =ty to) (269)

Bk :/ (25 4+ 3t +2u)(s +t +u) " (s +u) 0t
r4+s+t+utv=1

1
= / dyy3~19(1 — y)/ (22 + 3t)z' 0t~

B r((]4 —40)T(2) (2 —969+)tr:(11 —20) (2(2 = 0) + 3(1 — 20))
~ T'(6 —40) I'(3 - 30) (3 —30)

(3 46)(7T —86)
T (5-40)(3—-30)"°

:2—;+2%+(g—g—4)+0(5) (270)
L 2¢ /7 (4e + 1)T(—2e) 13 1 ,
B = s ra—eeraa — @) 2 T T )+ o)
(271)
57 _ l;L ’ E7(q) _ [/ . e2qu2 829:| _ Ag((])Q (272)
c(&)=1xn(n—-1)(n—2)(n—3)/8, A = A3 B; =2A5Bs. (273)

5.4. Explicit diagrams: two strands

We now consider two-strand partition functions. For simplicity both strands have the
same length L or the same chemical potential 7, respectively. Note that, in order to
transform from one ensemble to the other, one would need to know quantities for different
lengths, or different chemical potentials, which are more difficult to calculate. This can
be seen as follows: if one inverse-Laplace transforms results for fixed chemical potential,
one obtains results where the sum of the lengths on both RNA strands equals L and not
their individual lengths.
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We recall that there are subtleties for defining and computing multi-strand correlation
functions, which are discussed above. We only need the ) = 2 diagrams, i.e. the connected
two-strand diagrams with inter-strand interactions between ) = 2 replicas. It is also
sufficient to evaluate the amplitudes at zero external momenta q = 0. At two loops we
need the diagrams with £ < 3 interactions.

5.4.1. Order k=1.

Ci = ., Ci=1,  cC)=1x ”(”2_ D (274)
5.4.2. Order k =2
Co = o Cy = / =2 ¢(Cy) = 4 x ”(”2_ D (275)
L 7,8t
o - / 20 / o AL I'3— 29)F(1)A§
r+s+ttu=1 Til—vzl ['(4 —20)
= Gowe_wa_w ~° 90 (276)
Cl = A (277)
Cs = : Cs = / t7% =y, c(C3) =4 xn(n—1)(n—2)
(278)
C, = ey =2x M= 1)(”4_ 2)(n=3) (279)
Cck= Cngy (280)
Cr = %Ag (11185) = % — 2+ 2+ O(e?) (281)
Cs = , Cs = / / (s+v)™2  ¢C5) =1x w (282)
I rsit S

CE)L—/ / (s+wv)~ /ds/ dv (1 —s)(1 —v)(s+v)?
+s+t=1 Jutv+w=1

8 x 4-0 420 — 5 1 1
TR0 —0)B-20)(1-20)2 _E+ li ~2Mn( )} +0() (283)

1
G5 = (284)

doi:10.1088/1742-5468,/2009,/10/P10019 57


http://dx.doi.org/10.1088/1742-5468/2009/10/P10019

Field theory of the RNA freezing transition

5.4.8. Order k = 3.

Cs= 1 o, Osz/ / (s +w) ">t + )~
H H H r,s,tu Jvw,r,y

Cy = / / (s +w) 2 (t +2)7%
r+s+tt+u=1 Jv+w+ar+y=1

N /+t<1 /+ <1(1 —(s+ )1 — (w+2)(s+w) > (t+z)*

1 1 1
= 00— /o ds/o dx K(s,z)K(x, s)
K(s,z) =" —(1+s—2)""" +201 —2)(1 - 0)s"%

1 —1 +In(16 2
Cy = -+ —1+mn16) + [2 - % —4In(2)* + 81n(2)} + O(e)
g 19
C§ = (CF)?
Cy = E ; Cy = / / (5 +v) 222
Ll Ll Vyiﬂ;\ r,s,t Juvw,xy
—1
C(Cg) =4 X n(n )
2
O = DAL
1
Dt = / / (5 +v) 2> = / ds(1— 5)/ (5 +v) 2w
r4+s+t J utvt+w 0 vtw<1

1 1
T (1-20)(2—20)(3 — 20) /O do[(1+0)"
— 072 — 20 4 0)|(1 —v)*~%.
The last integral is a hypergeometric function, finite when # — 1. Therefore
L 1 [—(7 —40)T'(3 —20)T'(4 — 20)

Dy = e =5 20 (7 — 40)
2Fy (1,20 — 2,5 — 26, —1)]

(4 — 20)

- —é - % +1n(4) + O(e)

ck = _51_2 + (% - 21n(2)) é + (—2 + g +2In(2)? — 2111(2)) +0(e)

doi:10.1088/1742-5468,/2009,/10/P10019

(285)
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(287)

(288)
(289)

(290)

(291)

(292)

(293)

(294)

(295)

(296)
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Cr = CIA]
Co= ! S Cio = / / (s +v+x)w™
DA r,s,t Ju,v,w,z,y
-1
C(Clo) =2 X n(n2 )

Clh = / / (s +v+x) Pw?
r+s+t=1 Jutv+w+z+y=1

= /01 ds(1—s) /Z+w<1 2(1—z—w)(s+ z)_%w_%

_ /1 (1—2)"((e—2)z 4+ (z+1)¢2)
0 e2(e +1)2

1 1 w2 9

—2—€+ (_§+E) + (1—€+<(3))€+O(8)
CT. = / (S+U+x)—2ee—s—v—ac — A72- / U(S+U)—266—s—v
0 F(]- - 5) $,0,% P(l - 8) s,V

S rB3-20 1 1
“or(i—e) 2 2190

- _ —20, —20 _
Cll = P i i , 011 = / t v C(CH) =4 x 5
| RN 7,8,t,u,v,Ww

1 1 w2

Cro — _ - Cro — / 20,20
e st
c(Crz) =2 % w
Ch = /r+s=1 P2 205220 A2 — %Ag = 5_12 + (3 - %2) + O(¢)
%:ﬁ = -2 4340()
Ciz = :
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(298)

(299)

(300)

(301)

(302)

(303)

(304)

(305)

(306)
(307)

(308)

(309)
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C(Clg) =4 x 5 (310)
1 1 1 2
L—_ - - -~ (34T 11
Cis 5 _49144 R + ( 3+ 6 ) + O(¢) (311)
Cls = Aj (312)
i —1
Ciy = 'l ) 0(014) =2X n(n2 )7 Cu = 022 (313)
§ —1
015 = o s 6(015) =2 X n(nz >, 015 = 014 = 022 (314)
Ci6 = , Cig= / / (s +v) = (315)
L ‘V,*'_":‘ r,s,t Ju,v,w,x,y
c(Cig) =4 xn(n—1)(n—2), Ci6 = Cy (316)
o= i G
= / / (s+vt+w+2z)0(s+v+a)w? (317)
r,s,t Ju,v,w,r,y
c(Ci7) =2 xn(n—1)(n—2). (318)

The integral Cl; is hard to calculate. In order to simplify matters, we calculate instead
its derivative O, w.r.t. L. Using that Cz ~ L%  this gives

L
Cch :/ ds (L—s)/ 2(L—z—w)(s+z+w) s+ 2)w?
0 z+w<L

1 /

L=1

L
17 :/ ds / 2L —s—z—w)(s+z+w) (s +2)w
0 zHw<L

1
=—(F+F+G 320
where we have again taken the derivative w.r.t. L. The different contributions, named F,
F and G, are

L=1

E= 2(L—z—w)(L+z+w) (L +2)w?
0<z+w<L

= F + E, (321)

L=1
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which we integrate by part w.r.t. w. The boundary term is F;, the remaining one Fs:

1 ! -

b, = 120 i dz[z(1 —z—w)(1+z+ w)_e(l + Z)_Gwl_%m;(l)_z =0 (322)
1 1 1—z

Brm oy [0 [ s+ w) 400 -2 - w2 (1 2 )
- 0 0

= F,+ EY (323)

1 1 11—z

By = 150 i dz/o dw z((14 2) +0(1 — 2))(1 + 2) 172!~ (324)

and FY = E,— FE}. The decomposition is such that E) can be integrated analytically over
w, whereas EY is finite, so that it can be expanded in ¢:

By= e /O Az (14 2) +0(1 — 2))(1 + 2)72(1 — 2>
= i + [—Z + ln(2)] +0(e) (325)
Ey =1+ 0(e). (326)

The next contribution is

F = / / 2(L—8)(L+8)s+2)w™? =F + Fy.  (327)
0<s<L Jz4+w=L L=1

Again we split into a contribution F}, containing the divergent contribution but integrable
analytically, and F5, the finite rest to be evaluated at ¢ = 0:

_ w2T(1 — $)w(—s ~1)(s —20-1 — \(s —20
F—// (1= SJw(—s+6— 1)(s + 1) 1 (1 — s)(s + 1))

AT [-2(4%(0 - 1)+ 1) 6(20 — 3) — 47 4 2]
B (0(20 — 3) + 1)2
(3/4) —In(2) 1

T [—9+2In*(2) + In(512)] + O(e) (328)
(s —1)s

F, = / / +O0(e

P Jocsat Jocwa s+ 13 (s —w + 1) )
= L[27* = 3(5 — 41n*(2) + In(64))] + O(e). (329)

The last contribution is
G= / / 22(s + 2z +w) (s + 2) Pw™ (330)
0<s<L JO<z4w<L L=1

which is the most divergent one, since both the integrals over w as over the global scale
will give a pole in 1/e. To isolate the global pole, we again derive w.r.t. L, reducing this
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time the number of integrations by one. Since G ~ L*~*? we obtain
1
G = H+ K 331
L+ x) @31)
H = 22(L + 24+ w) (L + 2)'w™ =Hi+ H,+ H; (332)
0<z+w<L L=1

K= / / 22(s+ L) (s +2)Pw?| = Ky + Ko, (333)
0<s<L J z+w=L L=1

From both H and K, we need also the finite term, since it is multiplied by 1/e from (331),
but we will even calculate the next sub-leading term. We use again the technique to split
H into parts which contain the divergent contributions H; and H, and which are doable
analytically, and a part for the rest, which is finite and can be expanded in e:

H, = / dz/ dw2z(L + z)~ -20,, /ldz 2(2_1;,2(_11_/22)29
SRC AL R =) (334)

2(e +1)

1 1-2 cq9
Hy = —28/ dz/ dww' ™ 2(z 4+ 1)1 = —/ dz (1 —2)"%z(z+1)"=73 (335)
0 0

€ Jo
Since the last integral is convergent, we can expand it in e:

_e+2 [! z  zln((—2)/(z+1))e 2In®((1 — 2)/(z + 1))e? 3
Ha = £ /0 dz{(z+1)3 (z+1)3 * 2(z+1)3 Ol )]
_te EJF?—ZJF%JFO( )} (336)
Hg_z/ dz/lz O2(z +1)2 [(z+1)9(w+z+1) +wT01—1} (337)

Having calculated separately the most diverging terms in w, H; and Hs, the remainder
Hj is finite, since the square bracket is of order w?. Thus the whole expression can be
expanded in e, and then integrated analytically. This is straightforward, but since the

intermediate expressions are rather cumbersome, we only give the final result:

Hy = {—g + 1n(2)] + Hg i(g ~In(2)(18 + 1n(2)))] e+ 0(2). (338)

We now treat K, which we split into a diverging integral K, doable analytically, and a
convergent rest Ky, which we expand in e:

K, = / / w25 +1)7* =2(s+ 1) w(s — 0+ 1))
0<s<1 JO<w<1
C1-(1-2"%e(e+2)—3x 272
- e(e +1)2

+ O(£?) (339)

- 4_15 v [311(2) —2] + l3—21n(2) -
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Ky, =2 /0<S<1 /O<w<1(8 + 1) = {—(s + 1D (w—-1(s—w+ 1) +w— ;i—el 1
_ {_é _ qu + lz - 237: +1n(2) - 71“;(2)} e+ O(e2), (340)

where in order to integrate K5, we have again expanded in e, which is justified since the
square bracket is of order w?.
Taking all terms together, the final result for C¥ is

4 16 2

The diagram in the grand-canonical scheme is much simpler, and all integrals can be done
analytically, using the standard Schwinger representation. The result is

) 2—2(e+1)ﬁcsc(ﬁg/z)F((l/Q)—5) B i—i— 3 +( 3 7T2> + O(e). (342)

Cl = Ly F — ln(Q)} 1y [—§ + L 11n(2) + ln(Z)Q] + O(e). (341)

B (R ) N (P R A= =

The remaining diagrams are

T
T
|

Cis = : , c(Cig) =4 xn(n—1)(n —2), Cis=Cus (343)
Cig = ¥ ] , c(Cr9) =4 xn(n—1)(n—2), Cio=0Cn (344)
Coo = G =2xni-1(n-2), Cu=Cu (345)
Cor = i i LI ) C(C21) =4 X n(n - 1)(” - 2) (346)
cL = / AL = b AL = _3 + 3 + O(e) C; = A (347)
21 — s 6 5 _ 40 6 46 4 Y 21 — 6
Coy = ¥ - , c(Cy) =4 xn(n—1)(n—2), Uy = Oy (348)
Co= o Gy =dxn(-D(-2), Cu=Cy (349)
Coy = i 3 ) C(C24) =4 X n(n - 1)(” - 2) (350)

doi:10.1088/1742-5468,/2009,/10/P10019 63


http://dx.doi.org/10.1088/1742-5468/2009/10/P10019

Field theory of the RNA freezing transition

C’2L4 = / 34_46A§ = C’lLl, Ci = (A§)2

T
T
|

Cos = ~ : c(Cys5) =4 xn(n—1)(n—2),
Co = e c(Cy) =4 xn(n—1)(n—2),
Cor = . o, c(Cy7) =4 xn(n—1)(n—2),
Cog = . o c(Cog) =2 xn(n—1)(n—2),
Cag = ) T c(Ca9) = 4 x n(n — 1)(n — 2),
Cao = L eCo) =4 x n(n—1)(n—2),
Cy = . e(Cu) =2 xn(n—1)(n—2)7
Cp= = . e(Csy) =2 x n(n—1)(n—2)2

C33 = : c(Cs3) =2 x n(n — 1)(n — 2)?,
Csy = ¥ : c(Csq) =2 x n(n —1)(n —2)?,
- |

c(Cs5) =2 xn(n—1)(n—2)(n—3)/4, Ch =CEAL

doi:10.1088/1742-5468,/2009,/10/P10019

Cos = Coy
Co = Coy
Cy; = Cha
Chys = Cha
Cy =Chy
Cs0=Cha
U351 =Cu
U3 =Cly
Cs3=Cla
Cy=Cly

(351)

(352)

(353)

(354)

(355)

(356)

(357)

(358)

(359)

(360)

(361)

(362)

(363)
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4

T — L e_Ll_L2 Sy
035 - F(l o 6)2 /L1 /L2 O5(L1,L2)L2
- (e —2)(2T(3 —¢)? + (e — 2)T'(3 — 2¢))
2(e2 +¢)°I(3 —¢)?
:_é+i+(4+6)+0@
Cao = , c(Cs6) =2 X n(n—1)(n—2)(n —3)

CLT(2 — 2¢) 1—2¢ 1 4
L — ~L 5L T — 36 _ _
036201A37 036 = F(1—€)2 = 52(€+1)2 == 52 _g+7+0(€)

n(n—1)(n —2)(n—3)

Cg7 = H s 0(037) =2 X 1
CLT(2—2) —1+2¢ 13
CL =claL cro =23t =—=—+--3+0
37 144> 37 F(]_ —5) 52(5+ 1) 52 + e + (6)
Csg = Css = / (s+t+u)"(s+u) "t (r +5)
AT r,8,t,u,0

c(Css) =4 xn(n—1)(n—2)(n—3)

Cig :/ (s+t+u)(s+u) 2 (r+s).
+s+t+utv=1

Symmetrizing {r, s} «{ v,u} gives

:1/ (54t +u) (s + u) "2 (1 — 1) /2
+s+t+utv=1

= / Ll —t—a) 1 —t)(x+t) a0t
r4+t<1

1
= [y [ g
0 t+z=1

11(3 — 40)1(2) (r(z —Or(1—20) (3—40)T(2—6)(2— 20)

2 I'(5-—40) r(3—30)  (5—46) I'(4—30)
17 1

L _ - v 2

Cy = e 8€+48(6+7r )+ O(e)

. T@2-2)0Ck 1 3 (15 o

Cs=Ta—z - 12 st\s 1) 00
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(365)

(366)

(367)

(368)

(369)

(370)

(371)

(372)

(373)
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: c(Cy9) =4 xnn—1)(n—2)(n—3) C39 = Oy
(374)
Cyp = | . clCh)=4xnn—1n—-2)(n—-3)  Cip=Cy
(375)
Ca = ) N c(Cy)=2xnn—1)(n—2)(n—3) Cy =Cho
(376)
Cor = - H ’ (Cra) = 4 X n(n—l)(nz—Q)(n—ZS)
CL:/ P Ag)? = S (Ay)? = : — 2 +3+00)
2= ) YT 549 T (5—40)(2—20)2(1 —20) &2
(377)
T2 -—2) , (2 — 2) 12 ( 7T2)
Chh=——"-04h= ==—-——-4+(3+—)+0 378
2T (2 D(e24+e)°’T(1—e)2 €2 & 6 (&) (378)
—1D(n—2)%*n—
cae | - ax D=
CL =CLAL,  Cn, =ClA; (379)
e ovar a2
Caa = 1 ; c(Cy) =1 % nin = Din 3 =)
B T r(4—202 1 4
Ch=(A9)? O = (A%)Qm =5~ - +8+0() (380)
Cos = H o (Cas) = 4 x n(n—l)(n—22)(n—3)(n—4)
Cys = Cy A CT—CLALF(6 ) _1_3 —2—|—4 + O(e)
45 = V3 2, 45 = “2 QF(l_ 2 2 ¢ €
(381)
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C46 = s C(C46) =2 X 5
B T T6-46) 1 4
046_01LA§, O46:A§F(1—€)2 :g—g‘f‘?—i‘(/)(é) (382)
! 1) (n—2)(n—3)(n—4
Cor —  e{Cu) =2 n(n —1)(n 2)(” 3)(n —4)
B ., T(6-40) 3 15
D -1 -2 — —4)(n —
o | ) =2 M0 D=0 =D = )=
B O T(6-4) 1 4 (x?
T —1)(n—2)(n—
o | dew—ax ey
B o, T(A-20) T(2-2) 1 3
(385)
C50 = i i - s C(C50) =4 X n(n — 1)(”4_ 2)(” — 3) 050 = 049 (386)
Cs1 = L . clC)=4xnn—1(n-2(n-3) Cu=Cn (387
Csp = ! . o(Cx) =4 xn(n—1)(n—2)(n—23)
CE{/Q = Aé/ t729(7n + 8)2729 — Aé/ t729x3729
r+s+t+u=1 r+t+u=1

_ Ag/ y449/ §-20,3-20 — AL 1 D(1—20)I'(4—26)
uty=1 ott=1 5—40 I'(5—40)

=5 -+3-T+00) (388)
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. CLr2-2) 1 3

: c(Cs3) =4 xn(n—1)(n—2)(n—3) Css=Ch (390)

: c(Cs4) =2 xn(n—1)(n—2)(n—3) Csy = Cra. (391)

5.5. Diagrams and amplitudes for ®

We compute in perturbation theory up to two loops (order g?) the partition function
2&,2) (g9, L) defined in (205). g is the (bare) coupling constant and L is the length of the
open strands. It is written as a sum over the diagrams (labeled by D;) involving two-
strand bundles with a single contact line (the ® operator) between the two strands and
arbitrary (planar system of) double arches within each strand bundle (the W interaction
operators). The perturbative expansion is thus

2(%2) (g’ L) _ ng ],2H2k(1-6) Z C('DZ) D, (392)
k=0

D;

where D; are the diagrams, ¢(D;) their symmetry factors and D; the amplitudes. The
amplitudes D; can be deduced from the amplitudes C; already calculated for the two-
strand diagrams C; considered for the renormalization of g.

At order k = 0 there is only the trivial diagram

D, = : . ¢D)=1, D=1 (393)

5.5.1. Order k =1. At order 1 there are two diagrams:

D, = . D) =4(n—1), Dy=Cs (394)

D3 = : , c¢(D3) = (n—1)(n—2), D3 = (. (395)
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5.5.2. Order k =2. At order 2 there are 19 diagrams:

Dy = : N c¢(Dy) =4(n — 1), D, =
Ds = , ¢(Ds) = 4(n —1), Ds =
Dg = ~ : o c¢(Dg) =2(n —1), D¢ =
D; = ; o (D7) =4(n—1)(n—2),
Dy = ; T c(Dg) =4(n—1)(n —2),
Dy = ; o c(Dg) =4(n —1)(n —2),
Dy = S D) ===
Dy = 5 : : c¢(Dy1) =4(n—1)(n — 2),
Diy = 5 i ¢(Dy3) =4(n —1)(n — 2),
D3 = L c¢(D13) = 2(n — 1)(n — 2),
Dy = ) 5 ] : ¢(Dyy) = (n—1)(n — 2),
D5 = , ) c(Di5) = (n —1)(n — 2),

doi:10.1088/1742-5468,/2009,/10/P10019
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Cho
Cis
Cao
D7 = Css
Dg = Csy
Dy = Csy
D1y = Cyy
Dy = Oy
Dy = Csg
D3 = Csy
Dy = Cy
Di5 = Csy

(396)

(397)

(398)

(399)

(400)

(401)

(402)

(403)

(404)

(405)

(406)

(407)
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D16 = E —~ s C(Dw) = 4(n — 1)2, D16 = 031 (408)
D17 = ; R C(D17) = 2(n — 1)(n — 2)(n — 3), D17 = 045 (409)
Dis — L D) =2—-D)(n-2)(n—3), Du=Cy  (410)
Dyy — 1 D) =2n-Dm-2(n-3), Du=Cp  (41D)
Doy = . ¢(Dy)=2(n—1*(n—2),  Dy=Cy (412)
D, — | (D) = (n—l)(n—QL(n—B)(n—4)’ Dy = Cig
(413)
Dyy — S U 1)24(" “2° p = (414)

6. RG functions and results

6.1. Calculation of the UV poles and finite parts at two-loop order

In section 5, we have computed the first two terms in the small-momentum expansion
(in powers of the external momenta qp) of the bare (unrenormalized) single-open-strand

partition function 2](31) (aB; g8, L), as well as the two-open-strand partition function in the
@ = 2 replica sector 2](32’2) (aB;; g8, L) at zero momenta (qp; = 0). We consider here the
fixed-length L ensemble and normalize the strand length L to

L=1 (415)

to simplify the calculations. This is equivalent to deal with the dimensionless momenta
q = qL'Y? (see section 5.1). To order g3 and order qg® this single-strand partition
function is

21 (api g5) = Algs) + as’B(gs) + O(as?) (416)
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with
A(gs) = Ao+ g8 A1 + g5 Az + O(g3), B(gs) = Bo + g B1 + g5 Bo + O(g).  (417)

The two-strand partition function is

21(32’2) (aB;ig8) = C(gn) + O(QB2> (418)
with
C(gs) = g8C1 + g5 Co + g5, C3 + O(gp). (419)

The amplitudes A, B, and C; depend on the dimension d, and have UV poles at € = 0.
They also depend on the number of replicas n. They are given by the sum of the diagrams
calculated in section 5, more precisely they are given by

Av= > c&HAr,  Be= > o&)BL

order k diagrams order k diagrams

. (420)
Co= > cC)C}
order k diagrams
We only need the poles and the finite part of these amplitudes. We find
AO = ]_, ]BO = "N (421)
nn—1)1 nn-1)
A = - — 422
=2 B o (422)
—1 2)1 —1 —2
g _nn= DO+ nln=Dn=2) (123)
2 € 2
nn—1(n—-2)(n+5) 1 n(n—1)(-n*—6n+14)1
Ay = — + -
8 g2 4 €
-1 2 111 — 47%)n — 21 2
+n(n )(3n? + ( )n O+87r)+0(6) (424)
24
nn—1)(n+2)(—n*-5n+12) 1 n(n—1)(n*+ 6n* — 20n + 16) 1
BQ - - + -
8 g2 4 5
NV an3 i ( 2\,,2 _ _ 2
N n(n —1)[=3n° + (=99 + 47%)n* — 54n + (456 — 267%)] L O) (425)
24
-1
C, = n(n—1) (426)
2
C, = (=1+n)n (=7T+3n+n°)1 (=1+n)n[11-10n+2n*+In(16)] L0
2 € 4
(427)
-1 1
Cs = % X {(—7 +3n+n?) (=124 5n + n2)§

— [~104 + 142n — 58n” + 3n® + 2n* + n?In(16)
1

— 81n(64) + 2n In(1024)]-

g
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+ £[2238 — 2091n + 231n° + 102n° 4 18n* — 1407°
+ 137nm? — 26n2n? — 4n3r?
+ 504 1In(2) — 2761 In(2) — 360 In(2)* + 180n In(2)?

+ 12n°In(2)* + n* In(4096)] + (’)(5)}. (428)

Finally, the partition function ’Zg) with one ® operator defined by (205) is given in the
bare theory by

29 5 =D(gp) = Dy + Dy g + Dy g + O(g}), (429)
with
Dy = 1 (430)
1
]D1:(n—1)(n+2);+(n—1)(2—n)+0(5) (431)
1 , 11 R 1
D, = 5(n—1)(n+2) (n +3n—7)?—§(n—1) (2n® + 5n® — 24n + 20) .
+ 5(n—1) (18n® — 47°n® + 96n* — Tr’n — 6n + 267° — 348) + O(e).
(432)

6.2. Counterterms and RG functions in the MS scheme

6.2.1.  Counterterms. We use the minimal subtraction (MS) scheme described in
sections 4.4 and 4.5. The one- and two-strand partition functions are renormalized
according to (179) and (181) into Zél)(qR;gR) and ééZ’Q)(qR- -+;gr), with the coupling
constant g and the momenta q renormalized by (171) and (178) and the renormalization
factors for the field Z, the coupling constant Z, and the boundary Z; of the form (168),
(169) and (170). This means that the renormalized coupling constant is related to the
bare coupling constant by

98 = 9r Zg(gr) Z(gr)* 1, (433)
i being the renormalization mass scale, and that the three amplitudes:
Ags) e 0m)  B(gp) Z(gr) e W), C(gp) Z(gn)"* e W) (434)

considered as a series in the renormalized coupling constant ggr, must be UV-finite at € = 0.
In the minimal subtraction scheme (MS) the counterterms Z, Z, and Z; are chosen to
have only poles in 1/¢. Putting together (417), (419), (421)-(428), (433) and (434), we
obtain for the counterterms

2w =1+ 9" 4 U (1584 220 1 o) (435)
Zy(or) = 1+ gn 4 ghn = 2)(an =) (5 + 52 ) + Ol (436)
Z1(gr) = gr (n4_€ b _ 9% (n g 2 (2n€2_ S ; 2) +0O(gd). (437)
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Similarly, the amplitude

D(gp) Z(gr) ™"+ Zg (gr) e~ *"*1lom) (438)
must be UV-finite. This fixes the Zgs counterterms to be
1—n 3(n—2)(n—1 n—1
Zalgn) = 1+ 0 g (2020 B2 g o (439)

6.2.2. RG functions in the MS scheme. We now use the definition (186) of the 3, function
to obtain

By(gr) = —egr + (5 — 2n) +e(n — )] gi + (3 — 2n)[(5 — 2n) + e(n — D)]gi + O(gw)-
(440)
Using (189) and (192) we obtain the anomalous dimension for the r? field:
(gr) = (1= n)gr + (1= n)(3 = 2n)g5 + Olgr), (441)

and the anomalous dimension for the boundary operator 1y:

nlon) = L g CZ0B =20 oty (442
Finally, using (201) we obtain the anomalous dimension for the ® operator:

Yo(gr) = By(gr) d(lingRZCI) =gr(n—1) - g3 (n=1)Gn 1) +O(gs). (443)
We remark that we still have at two loop

Y(gr) = 471(gr) + O(gi), (444)

but we do not know if this is a general relation valid at all orders.

6.3. Counterterms and RG functions in the MS scheme

We now compute the RG functions in the MS scheme. The counterterms are Z, Zq and
Zy with gg = grZ,u~° and they are chosen to make the three amplitudes in (434) finite
at ¢ = 0. We obtain

z-14+0"Y = ) g~ ((n = ?g D, Beo ?gn - 1)) g + O(g3) (445)
Z,—1+ (5 _€2n)gR+ ((Zn; 5) N (2n—52)(€2n—3)) 2+ 0() (446)
2= g - (2= BB o), (447)

We find for the beta function and the anomalous dimension in the MS scheme
By(gr) = —egr + (5 — 2n)gi + (5 — 2n)(3 — 2n)gi + O(gg) (448)

F(gr) = (1 =n)gr + (1 = n)(4 = 3n)gi + Olgn) (449)
1(gr) = 3r(1 = n) + 7gr(1 = n)(4 = 3n) + O(gg) (450)
(451)

Yo(gr) = gr(n — 1) — 1gi(n — 1)(4n — 3) + O(g3)- 451

2
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6.4. Counterterms and RG functions in the grand-canonical scheme

In section 5.2, we have seen that the perturbation expansion in the grand-canonical scheme
is in terms of the dimensionless combination

g5 = gs(T + nag /Z)". (452)
Using this, we find in the grand-canonical scheme
. _ |(n=1)n 1
A"(gg) =1+ gB l(T) ——(n—1)n+ O(s)]
€ 2
pr (n=2)(n=Dn(n+5) (n—1n(n®+6n—14)
B 82 4e
+ 5 (n—=2)(n — Dn(x®n + 18n — 37> + 102) + 0(5)} +O(g}) (453)
- - n—1)n
B (gg) = —n + gs {—( ) + 0(5)}
L[ (n=Dn®*+2n-6) (n—1n(2n*+n—4)
9 { 2¢e? * 2¢

— L(n— 1 (2% + 120% — 117%n — 24n + 14n® + 24) + 0(6)}

+ O(g3) (454)

(n—1)n(n*+3n-7)
2e

€ () = 20(n — Un -+ 33 [ 1P 0<a>}

L (n—1)n(n*+3n—"7)(n*+5n—12)
5 4e2
(n — 1)n (4n* + 19n% — 63n + 15n + 28)
4e

+ & (n— Dn(r°n* +90n* + 27°n® 4 24n° — 497°n> — 102n° + 1407°n
— 504n — 11672 + 192) + (’)(5)] + O(gg). (455)

Since this scheme will mostly serve as a check for the integrals in the fixed-length scheme,
we restrict ourselves to one possible subtraction scheme, namely the grand-canonical MS
scheme. This gives the RG factors, the index 7 indicating the grand-canonical scheme:

T =1t g {—("_42)5(?_ ) s ”2(63”_4)] +0(g}) (436)
Z; _, +gR5 —€2n L {(2718—2 5) N (2n — 5;£2n — 3)] - O(gh) (457)
R A e = ) (45%)
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The RG functions are

B7(gr) = —gre — gr(2n — 5) + g (2n — 5)(2n — 3) + O(gg) (459)
X (g9r) = 5 + 59r(1 = n) + 59(n — 1)(3n — 4) + O(gy) (460)
Y7 (gr) = 39r(1 —n) + $ga (1 —n)(4 = 3n) + O(gy)- (461)

They are identical to (448)—(451), confirming our calculations in the fixed-length scheme.

6.5. Fixed point and critical exponents

We now analyze the RG flow within an ¢ expansion as in LW [31] and in our letter [47].
First, we give all results at arbitrary n, before specifying to n = 0 in the next subsection.
For small € > 0 and n > —5/2, thus especially for the limit of interest n — 0, there is an
IR unstable fixed point ¢*. In the MS scheme this fixed point is at

1 2n — 3

= 2 %). 462
A s P +0(=) (462)

This freezing transition separates the molten (weak coupling) phase with 0 < g < g%,
where disorder is irrelevant, from the (strong coupling) glass phase with g > ¢*, where
disorder is strongly relevant. The anomalous dimensions at the fixed point give the critical
exponents at the glass (freezing) transition.

The correlation-length exponent v defined in equation (14) is

1 1 2n-—-3
V= = = -+ + O(e). 463
71 " 5o T 0O (463)

The scaling dimension of the overlap operator, which gives the decay of the pair correlator,
is

2n — 3
5—12n

It is in agreement with our result announced in [47] (note that [47] contains a sign typo in
the intermediate identity of equation (20), but the final result at order £ for 6* is correct).
The anomalous dimensions of the r? and contact operator ® are respectively

g2 + O(e%). (464)

- 1
0 =2-flg) =2- - =2-c+

n—1 n—1\" 9 3

*:_ * = — 4

=) = g5, (5_2n) e*+0(e”) (465)
n—1 3 1-n

=g ) = —— e - O(e%). 466

This gives the scaling dimension for r:
1 v 1 n-1 (n—1)?

o1 I 167
=3 g st moo Yoo TOE) (467)

and the dimension of the contact operator ®:

€ 3 3(n—1
pr=1+-+7=1+ ( )

_ 2 3
5 TR 2(5—2n)2€ +O(e”). (468)
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Finally, our explicit calculation shows that the scaling relation (210), ¢* = (2—¢)x*, holds
at two loops. Indeed

CH+pr—= 02— +p" :2+(9(53), (469)

in agreement with the exact scaling relation (8).

6.6. Results for the disordered system (n = 0)

The physically relevant case is the zero-replica limit n = 0. There we find

.1 3
V= ——=
)

0*=2—e—2e24+ 0O

+0(e) (470)

pr=142c+ 32+ 0(%)
X =13+ e+ 52+ 0(e?)
F=1-3e— 32+ 0().

The physical case for the RNA folding model corresponds to ¢ = 1.

6.7. Physical interpretation

We now discuss consequences and the physical interpretation of our two-loop calculation.
It is useful to first discuss our results, and to compare them with the one-loop results
of [31,52], in the simpler cases n = 2 (two interacting replicas) and n = 1 (one replica),
before analyzing n = 0 (quenched disorder). In figure 19, we have plotted, for n = 2, 1
and 0, 0* and p*, as obtained through our two-loop calculation (solid lines), as well as the
resummed one-loop results of [31] (dashed lines):

B £ = 14+ (e/2)+ (2(n — 1)e/(5 —2n))
14 ((n—1)g/(5—2n))’ W 14+ ((n—1)e/(5-2n))

Oy = 2 (475)

The latter are interesting, since they are exact for n = 2, where they can be obtained
by an exact solution of the corresponding self-consistency equations [31,52]. For n # 2,
they are expected to be better than the pure one-loop results, which are obtained by
extrapolating 8* and p* linearly around ¢ = 0.

Consider now figure 19 for n = 2. The dashed lines (resummed one-loop results) are
exact. However, since p* > py = 1+ (¢/2) (dotted line), the exponent p* gives only the
sub-leading corrections to the contact probability and the dominant contribution comes
from the mean-field exponent pg = 1 + ¢/2 (represented by the dotted line in figure 19,
first graph), instead of p*. Since base pairings common to two replicas are a subset of
base pairings in one replica, the pairing probabilities satisfy

(ap(s,1)) < (Pals, 1)) (476)
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Figure 19. Results for 0* (black) and p* (gray) at one- (dashed) and two-loop
(solid) order, for n = 2, 1 and 0. The dotted line for n = 2 is the value of py,
which is an upper bound for p*. For interpretation see main text.

and as a consequence
0" > p*. (477)

Note that 6* > py, consistent with (477), and the inequality is attained for ¢ = 1. One can
show [52] that for ¢ > 1 both exponents take the value %, and that there are logarithmic
corrections at ¢ = 1. We also see that the two-loop corrections are rather large and
a resummation appropriate. However, as we will see below, for the smaller n we are
interested in, this will not be necessary.

Consider now n = 1. This case is peculiar, since the disorder lives on pairs of distinct
replicas, and thus ‘does not exist’ for n = 1, as can be seen, for example, from the factor
of (n — 1) in the contribution to the anomalous dimension 74 in equation (466). As
a consequence, p* = pg exactly, which is respected by our perturbation theory. The 3
function can nevertheless be defined, as the limit of n — 1, resulting in the exponent 6*
plotted in figure 19. In order to respect (477), one has to set 6* to p* = py as soon as the
two curves cross, i.e. for € >¢ . = 0.589. As stated, p* = py cannot be changed, and thus
0* is a slave to p*. We call ¢, the upper critical dimension, i.e. the dimension at which,
at the freezing transition, the two replicas get locked [31].

We now arrive at the physically relevant case n = 0 (quenched disorder). The first
observation is that p* < pg; thus disorder makes the pairing probability more long-range-
correlated, and p* is the leading exponent for the latter (this is, in fact, true as soon as
n < 1). The second observation is that globally the scaling exponents #* and p* behave
at two loops like at one loop. As in the case n = 1, beyond the upper critical dimension,
ie. £ > ¢, = 0.592, the inequality (477) is violated. The value for ¢, is lightly smaller
than at one loop.
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Therefore one of the main results of this work is that the two-loop calculation
corroborates the one-loop calculation of [31], both in the physical n = 0 case and in
the case n = 1.

We now discuss the ‘locking scenario’, which was first proposed by Lassig and Wiese
in [31], in the light of our two-loop results. Following [31], we assume that the value of
p* can again be extrapolated analytically beyond e., and that 6* is given by p*. We have
no proof that this assumption is correct, but expect that, due to the very character of
the € expansion, which states that the topology of fixed points and their corresponding
exponents evolve smoothly upon a change in parameters (here n from n = 1 to 0), the
possible error is at least small for n close to 1, and 6* is there a slave to p*. We hope and
assume that possible errors are still small for n = 0.

Last, but not least, we remark that two-loop corrections (especially for p*) are small,
and thus no resummation is necessary. These arguments lead to the following value for
0* and p* at the transition

0" = p* = 1.36. (478)

Our discussion above implies that at the transition the two replicas are already locked
together, i.e. for a given disorder one possible fold dominates the partition function. This
is not what we would expect. Indeed, at high temperatures, in the so-called molten phase,
all possible folds are equally probable; and one expects that lowering the temperature,
at the transition, only a subset remains relevant, whereas at zero temperature a single
configuration dominates. This naturally leads to three different sets of critical exponents:
above, at and below the transition. However, since our theory suggests that at the
transition as in the low-temperature (glass) phase the same single configuration dominates
the partition function, we are led to conclude that increasing the disorder from its value
at the transition, or lowering the temperature down to zero, will not change significantly
the physical properties of the system. This naturally leads to the conjecture that in the
glass phase

leass — pglass — 9 = p*‘ (479)

This ‘locking scenario’ was first proposed by Léssig and Wiese [31]. Our final result for p
and ¢ at the transition and in the glass phase is

Potass = p* = 137£0.01,  Cass =2 — p* = 0.63F 0.01, (480)

where the central value and the reported error is an estimate based on the three possible
Padés for (*(g), the Padés (2, 0), (1, 1) and (0, 2). The error due to the neglect of

6 While confirmation or invalidation of this scenario will probably only be possible via numerics, let us discuss at
least the few remotely similar cases available in the literature. Firstly, the O(N) model can be expanded around
space-dimension 4 in a controlled ¢ expansion. The latter breaks down at d = 2, when the non-trivial Wilson—
Fisher fixed point merges with the trivial low-temperature one, and the O(N) model becomes disordered. In the
presence of disorder, the lower and upper critical dimensions 2 and 4 get shifted by two to 4 and 6, respectively,
see, e.g., [56]-[58]. In all these cases, however, the critical dimensions are obtained without doing perturbation
theory at all. This is different here, where the loop calculation and a full RG analysis are necessary to obtain
the critical e.. The only case we know of where a loop expansion is necessary to obtain the critical dimension
is that of the random-field O(/N) model in its nonlinear sigma-model expansion around dimension 4 [59]. There,
renormalization at two-loop order predicts that, for N < N, = 2.83.. ., the lower critical dimension plunges below
d = 4, as is expected on physical grounds since the random-field Ising model (N = 1) is ordered in dimension
d=3.
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higher-order corrections is difficult to estimate, and is not given here. Numerical results
obtained by Krzakala et al [17] in agreement with Bundschuh et al [13,60] give

Plass ~ 1.34 £ 0.003,  Cyrass ~ 0.67 = 0.02. (481)

These numerical results compare favorably well with those from the renormalization
group, using the locking argument. Numerical simulations at the transition are definitely
necessary to validate or disprove these relations.

Finally let us stress once again that this locking scenario is still conjectural. Other
effects might have to be taken into account. For instance, we have not discussed the
effect of higher-dimensional operators, which may become relevant at some finite €. Non-
perturbative effects are also not taken into account, but may play a role.

7. Random RNA under tension

An interesting question is what happens when an RNA molecule is pulled at both ends.
This problem has been studied in [17,29,30] both numerically and analytically in the
molten phase, and experimentally in [25]. In [48] a generalization of the field theory was
proposed for random RNA under tension and the force-induced denaturation transition.
In this model the pulling force f is treated as a small perturbation. An RG calculation
to first order in the force was performed to study the denaturation transition and its
interplay with the disorder-induced freezing transition.

In this section we recall the definition of the model, show that it is renormalizable for
e = 0 as for the tension-less random RNA model and give the details of the calculation of
the RG flow and of the critical exponents at two loops. For a more detailed justification
we refer to [48], where some of the results were already announced.

7.1. The model

The discrete model for random RNA under tension is obtained by adding to the disorder
Hamiltonian H[®] given by (50) a new term proportional to the external force f of the
form

7_lforce[q)] = _f Z Z AO&(Z) (482)

Here, the ‘free-strand operator’ A, (i) is defined for each replica « and for each site i as
1 ifh(i)=0
A, (1) = 483
(@) { 0 otherwise, (483)

where the height h(i) of the site 7 is defined via the height representation (6) of the planar
pairing system:

h(i) =Y ®(j k). (484)

§<i k>i
The graphical interpretation of this operator is depicted in figure 20.
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loop structures

h(r)

r

m ‘
>
terminating free strand

(a) (b) ()

Figure 20. (a) An open planar RNA structure, (b) arch diagram and (c)
corresponding height relief. The free part of the strand is in red, corresponding
to height h = 0.

Figure 21. Diagrammatic representation of the dressed force insertion operator
Ay (u).

In the continuum limit, this operator corresponds in the planar random walk
representation to the one-point contact operator

Au(i) = A Z% )5 e (1)) 35 () = - 3 Tan(u) Do) (185)
a,b

which represents the interaction of the random walk r(s ) with an impurity fixed at the
origin r = 0. The dressing by the auxiliary fields 7, 4 (which are the same fields as
in the previous sections) is introduced in order to eliminate non-planar diagrams. The
force insertion operator A, (u) is represented diagrammatically in figure 21 by a single
dashed line connecting the random walk (represented by the full line) to the impurity
(represented by a cross). The planar dressing by the auxiliary fields is represented as in
the force-free case by additional lines carrying color indices a (a = 1,..., N). Their role
is to replace the lines by thick lines so that the planarity constraint is implemented in the
limit of N — oo.

This planarity constraint is required since the force term only acts on the free part of
the RNA strand. It is easy to see that, once we include the disorder-induced interaction
between replicas, non-planar diagrams such as those of type (b) in figure 22 represent force
terms acting on the non-free part of the RNA strand, since they are inside an interaction
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Figure 22. (a) A force insertion on the free strand is represented by a planar
diagram, of order O(1). (b) A non-planar diagram represents a force insertion
on a non-free part of the strand and is of order O(N~1).

arch. Only planar diagrams such as those of type (a) in figure 22 are to be taken into
account.
The force is thus taken into account in the action by the additional interaction term

Sforce[ra’%’ﬂ - _fO Z/(K -1 Aa(u)‘ (486)

In the RW picture it corresponds to the addition of an attractive short-ranged pinning
potential at the origin r = 0 for each polymer. The potential is attractive because of the
minus sign in the action (the pulling force is fo > 0).

The full action of the model with disorder and force is

S = SO + Sint + Sforce (487)
and depends now on two coupling constants, the bare disorder-induced coupling constant

go > 0 and the bare pulling force fy > 0. The naive (engineering) dimension (in units of
L) of the force insertion operator A, (u) and of the bare force fj are respectively

(488)

The force f is thus relevant if ¢ > 0, exactly as the disorder coupling go.
Finally we consider observables in the force model. The length of the free open strand
in the discrete model (for a single replica) is

Lfree = Z 5h(i),0 = Z A(l) (489)
Therefore in the continuum model it is

gfree - / A(u)a (490)
0<u<L

and it has engineering dimension ¢/2. Secondly we consider partition functions for open
strands, which we describe in section 7.2.
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7.2. Perturbation theory

We can now build a systematic perturbation theory by expanding observables as a power
series in both go (the disorder strength) and fy (the pulling force). The diagrammatics
involves both the two-replica bilocal vertex of figure 10, representing the overlap operator
V.5 in Sing, and the single-replica force insertion vertex of figure 21, representing the
operator A, in Siree. This last term breaks the translational symmetry of the f = 0
model, since it corresponds to the addition of an attractive short-ranged pinning potential
at the origin r = 0 for each polymer. Therefore one must be careful when dealing with
the zero modes in perturbation theory.

7.2.1. One-strand partition function: zero-mode decomposition. We consider the partition
function for a single (bundle of n replicas of an) open strand with length L and external
momenta qf, q5 for each replica a. It is defined as

E)(ai, 92; qo, fo) = /D[ra]eS[ra]eizaq?ra(o)eizaqgra@)' (491)

In the perturbative expansion of (491) in powers of gy and fj, we must be careful how
many different replicas get at least one force insertion, since as soon as a replica gets a
force insertion vertex, no 0%(q; + q) occurs (since there are no translational zero modes
any more). Therefore we decompose the partition function Zu)(qi, qz; o, fo) in a sum
over sectors labeled by the number £ of different replicas with at least one force insertion,
and factor out for the n — k remaining replicas the d(q; + q2) factor coming out of the
translational zero mode, so that 0 < k£ < n:

Ew(an, a2 g0, fo) = D 6%ar + a2) " Epy(ar, @i 9o, fo)- (492)
k=0

Each sector (k) gives a finite partition function é(lﬁk)(ql, q2; 90, fo) and the translational
zero modes are taken into account in the factors of 6%(q; + qs).

One should keep in mind that, as in the force-free case discussed in the previous
sections, each replica may carry different incoming external momenta (qf,q3); for
simplicity we take these momenta independent of the replica index . This is why we
must keep the dependence on the two momenta q;,qs for = ). Note also that for the
sector k = 0 (no force insertions) we recover the partition function for the single free
strand (no force):

[1]:

(1,19:0)(0117 —d1; 90, fo) = 7(1)(011; 9). (493)

As we shall see, only the sector (k = 1) is in fact needed to study the renormalization of
the model. It is, of course, possible to define and study multi-strand partition functions
in the presence of a force and to treat properly the zero modes. Fortunately this is not
necessary either.
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7.2.2. Diagrammatics and UV divergences. We now compute the partition function é(l,k) up
to second order in the couplings go (disorder) and fy (force). The corresponding diagrams
are detailed below. Their amplitudes are calculated in dimensional regularization using
the same methods as in the force-free case. As discussed above, the force insertion vertex
is associated with a delta function in position space, which is represented by an external
momentum-vertex insertion:
d
Ay (u) — 6% ro(u)) = / idljg elkara(u), (494)

As explained in [48], using this representation for the force insertion vertex, together with
that for the bilocal contact operator:

- d%%,. .

Ea(u,v) — 0%4ry(u) —ra(v)) = /WT/; oikalra(u)—ra(v)] (495)
taking the e.v. w.r.t. the free field r, and then integrating over the momenta k, we obtain
an integral representation for the amplitudes of the diagrams in terms of the relative
positions of vertices (the u’s and v’s) on the line [0, L].

Let us look at a few simple cases to see how this works and where the UV divergences
occur. The complete list of diagrams is given in section 7.4.2.

The diagrams without disorder (¢ = 0) and (k = 1) (force insertions on one replica)
are the diagrams for the theory of a free polymer pinned by a single impurity. They
are represented by the corresponding amplitude. ¢; and ¢o are the momenta entering at
both ends, and we drop the combinatorial factors (given in section 7.4.2). The points are
labeled z, y and z (if appropriate) from left to right:

— / e_q%xe_qg(l’_x)
O<z<L

x

(496)
! _ / e N BV |y — g~/ (497)
O<x<y<L
S z/ e T (L2 |y g ~d2| 5 gy =42, (498)
0<z<y<z<L

The diagrams of order f x g are with the same convention for the points x, y and z:

i _ / e—qf:ve—qg(L—z+y—fc)e—que—qg(L—Z)|Z _ y|—d5d(q1 + )
“/f\ > O<z<y<z<L
(499)
— / efq%xefqg(fo)
i 0<z<L
" / o228 (=), _ y1=d [§d(g, + g,)]. (500)
O<y<z<L
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(Here y and z are the points on the first two replicas and z is the point on the third
replica.)

These amplitudes can be computed explicitly and contain short-distance UV
divergences (UV pole) at ¢ = 0. For instance (497) contains a pole at ¢ = 0 coming
from y — x, which is proportional to the amplitude of (496). Therefore it is proportional
to the insertion of a force operator A(z), and can be absorbed into a renormalization of
the force f.

Similarly, (499) contains (in addition to the poles coming from z — y and {y, z} — L),
a pole coming from {y,z} — =z, which is proportional to (496), therefore also to a
renormalization of f.

These new UV divergences can be analyzed by the Multilocal Operator Product
Expansion techniques already used for the tension-free model. One must consider the
short-distance behavior of products involving both replica interaction operators W,s(u, v)
and force insertion operators A, (u). We do not discuss this MOPE in more detail, but
mention that, at first order, in addition to the standard MOPE,

Uxi? =144, UV —147 4., (501)
UxV¥V —WU4... Uxl,—1y,+---

the following additional terms appear:
UxA— A+, A XA — A (502)

This implies that there is a force renormalization induced both by the force f and by the
disorder g, but that the force f does not renormalize the disorder g.

7.3. Renormalization

7.3.1. Renormalized action and beta functions. The renormalized action for the model of
open RNA strands under tension is thus (we omit the auxiliary fields v and %)

SR[I'R] :Z/L%I"RZ_ZQRZQM_E//LCDS/&—FZQZI_ZfRZf'u_E/2/LAS'

a<p

(503)

The counterterms Z = Z(gr), Z, = Z4(gr) and Zy = Z1(gr) are the same as those for
the force-free model, since they are not changed when f > 0. fr is the renormalized force
and Zy = Z(fr, gr) is the new force-renormalization factor. It depends both on fr and
on gr. For the disorder-free model gg = 0, one recovers the renormalized theory for the
model of a random walk pinned by an impurity [32,33], [61]-[63].

The renormalized action can be written as a bare action Sg[rr] = Sg[rg], with the
same bare fields and bare couplings rg and gg as before, but with a bare force fg given
by

g8 = gRZyZC,  f = fRZZP e, (504)

The renormalized functions 5?1 ) (d1,d2; gr, fr) calculated with the renormalized action

are UV-finite. They are given in terms of the bare functions Eg’k)(ql,qg;gg, /B)
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(calculated with the bare action) by
E%,k)(‘lh a2; 9r, fr) = ZR g7 El(gl,k) (Z_1/2Q17 Z_1/2Q2; 98, fe).  (505)

The factor Z7*¥/2 comes from the zero modes.
The RG beta function for the disorder coupling ggr, 5,(gr), is unchanged. In addition
there is a RG beta function for the force, which is defined as

O [ e d dlnZ dInZ;
5f(fR,gR) = M—a . = fr { 5 2ﬁg(9R)—ng 59(91%)7ng
dInZ
= fn {1 — 2+ 2)xelon) — Blam) L (506)
gr

7.3.2. MS versus MS schemes. As for the force-free model, we consider the two different
subtraction schemes MS and MS. In the MS scheme, the counterterms Z, Ly, Zn and Zy
are chosen such that they contain only pure poles in €, and no finite or analytic term at
e = 0. It is more convenient to consider the MS scheme, where the coupling constant
renormalization factor Zg = Z,Z**¢ has only pure poles. This scheme is easily extended
to RNA under tension:

Zy =77/ such that fg = fr Zy u /% (507)

In the MS scheme, it is Zf, together with Z,, which has only pure poles and no finite
analytic part at € = 0. The [, function becomes

= Ifr

€ dInZ
Bf(fRa gr) = —,Ua— !

= /r [—5 - Bg(gR) dgr

(508)

98,fB

7.4. Two-loop calculations

7.4.1. Principle. Since we have already computed the boundary and the wavefunction
counterterms (they are independent of fy), it is enough to compute the bare
5](31,@(% q2; 9B, fB) function for £ = 1 (force insertions on a single replica) and at zero
momenta q; = q2 = 0, and to isolate its UV poles at ¢ = 0, in order to compute the force
counterterm Z; and the RG functions for the force.

Further simplifications occur, since the contribution of the diagrams with a single
force insertion are related to the contributions of the corresponding diagrams with no

force insertion at first order in q, which we have already calculated. For instance

: 10
FEE 1 - B 509
ria— q=0 2 aq2 ( )

q=0
Similar identities hold for the two-loop diagrams.
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7.4.2. Diagrams. With these remarks we now collate the diagrams G;, their symmetry
factors ¢(G;) and their amplitudes G; for the bare function Z; 4—1(q1 = q2 = 0; g5, fB)
(with the strand length set to L = 1) up to two loops:

Eapen(m =a =09, /)= Y g5 fEe(G) G (510)

diagrams G;

When possible, we express the new amplitudes G; in terms of the already calculated
amplitudes A; and B; of the force-free model. We do not give results for the grand-
canonical scheme.

Order fo:
G = , c(Gi) = n, G, =1 (511)
Order f&: -
G2 = ; c(G2) =, Gy = /(1 — u)u~Y?
S B N 1 "
T 2—d2)1-d2) (512)
Order fogo:
Gs = L +
C(gg) = n(n — 1), Gg = A2 — %Bg (513)
g4 - /,\: ; C(g4) - n(n — 12)(n — 2), G4 = GlAQ. (514)
Order f3:
I'(1—d/2)?
Gs = ; c(Gs) = n, Gs = %(4 —/d)) (515)
Order fZ x go:
Goa = e ) C(g6a> = n(n - 1), Geoa = %/ Tﬁdsid/Q(l —-r— 8)2
e r4-s+t=1
- (=1 —-¢)'(—¢/2)
T T2 (3¢/2)) (516)
Gop = . dGa)=n(n—1),  Gg=GCe (517)
Y ———
Gec = , c(Ge.) = n(n — 1), G = / = dyt=/2,
iﬁ t+w+r=1
1 —-a)r(2—-d/2)
T T(5-3d/2) (518)
Gi= . dgn="t" 12)(" “2 G= G (519)
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, v ot
c(Gs) =n(n —1), Gg = A3 — B3/2 (520)
ST
c(Go) =n(n —1), Gy = Ay — By/2 (521)
+ I * e e
T T + P e
+ e . c(Gio) =n(n —1)(n — 2), Gio=3A5 — Bs
(522)
0 + +
+ L+ ::‘_\ + ::‘_\ (523)
c(Gi1) =n(n—1)(n—2), G11 =3A5 — Bs (524)
s dGn) = nln - 1)("2_ A=3) Gz aa  (525)
= L dGn) = nin - 12)(n — 2>, Gs = G As (526)
- f e P 12)(” “2 Gu=aA, (527)

Gis =

Gis =

: c(Gi5) = n(n —1)(n — 2)(n — 3), G5 = G1As  (528)

/:f::\\: , c(Gig) = n(n—1)(n —2)(n — 3), Gis = G1As  (529)
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n(n —1)(n —2)(n —3)(n —4)
8

gl? - ’:\\: ) C(g17> =

Gir = G147 (530)
Gathering the results we get

Eap=n(a =a2=0;9p, f5) = Eo1 /5 + E1198/5 + Eo2ff
+ ELQng]_g) + EQJQ]%fB + E073f]?3) =+ .- (531)

with (keeping the singular and finite part in e for the amplitudes E;)

Eo, = 1, E072:—§—1+---, E073:é+§—%+4+--- (532)
E1,1:n2+27:_2—%(n—2)(n—1)+~- (533)
E,, — (n=1Dn+2)(n(n+5)—12) (n—1)(n(n(n+6) —20) + 16)
’ Q2 4e
+ 5:(n = 1) (3n(n(3n + 31) — 10) + 7%(26 — n(4n + 7)) — 312) +--- (534)
B m+2)(n—1) (n—-4)n-1) 1 5
Ei,=— > 4 o — (B =2+ 33)(n—1) + . (535)

7.4.3. Beta functions. Starting from the relation (505) between the bare and renormalized
functions = y—1), using the already obtained two-loop expression for the counterterms Z,
71 and Zg, we are left with the determination of the force-renormalization factor Zf. This
counterterm is determined by enforcing that the renormalized function E%,k:l) has no

poles in €. In the MS scheme this yields

4 1 (n-1)(2n-5)

_ 2 n
7 =1 ST - 2 536
7(gr, fr) +fR€ +fR€ + frROR 5 + Jr 12 (536)

We find for the two-loop beta function for the force fg in the MS subtraction scheme:

3(1—=n) (I —=n)(5b—2n)
L A

Bt(gr, fr) = —%fR + R+

frgp + - (537)
We recall that the beta function for the disorder coupling gr in this scheme is

By(gr) = —egr + (5 —2n)gp + (5 — 2n)(3 — 2n)g} + - -. (538)

7.5. Freezing and denaturation transitions

We now discuss the physical applications, following [48]. To apply our calculation to the
problem of random RNA under tension, we must take the n = 0 limit and set ¢ = 1. The
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RG functions become at n =0

B,(gr) = —€ gr + Bgi + 1595 + - -- (539)

3 5
B1(gr, fr) = _%fR‘i‘f?{_}_if}%gR_inglQ%"i_"" (540)

Note that there is no f§ term in the MS scheme.

We recall that equations (539) and (540) give the RG flow, when going to large scales
(large RNA molecules). For small ggr and fgr, the flow is dominated by fixed points of
order ggr ~ fr ~ ¢, and can thus be studied in a Wilson—Fischer small € expansion. This
flow in the (gr, fr) plane is depicted in figure 23. Besides the unstable Gaussian fixed
point O = (0,0), there are three non-trivial fixed points, which are at order £2:

3 2
freezing transition f.p. F gy = % — %, fr=20 (541)
denaturation transition f.p. D g =0, n= % (542)
N ., € 3¢ , € ¢
bicritical f.p. B 95 =5~ o5 1= 3~ 20 (543)

D is the fixed point for the tension-induced denaturation transition of homogeneous RNA
(i.e. for homopolymers). F is the fixed point for the force-free RNA freezing transition.
B is the new unstable fixed point of [48], corresponding to a bicritical freezing plus
denaturation point.

The denaturation exponent v at weak disorder is given by the derivative w.r.t. fr of
Br(gr, fr) at the fixed point D:

_ 9B,(gn. fr)
Ofr

(this is in fact an exact result). At the bicritical point B this denaturation exponent is
modified to

g
=— =05 (544)
D 2 e=1

1
=+ ~ 06 (545)

7 s 2100 =

Ifr

Assuming the locking scenario of Léssig—Wiese, this exponent should be equal to the
critical exponent for the tension-induced denaturation transition of RNA in the frozen
phase (g large). Our two-loop estimate v, ., = 0.6 is to be compared with the result of
numerical simulations of Krzakala et al [17], vgm =~ 0.7, and is definitely better than the
one-loop estimate 7| _y,,, = 0.5.

8. Conclusions and perspectives

In this paper, we have considered the folding of RNA strands with random pairing energies,
as a model for folding of random RNA sequences. We have established the existence of a
phase transition from a high-temperature/low-disorder phase with a pair-contact exponent
p = % to an exponent of p* ~ 1.36 at the transition. This was achieved via a designed
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Figure 23. RG flow as given by equations (540) and (539), with fixed points
(red) and separatrices (thick orange/gray lines).

field theory, modeled along the lines of self-avoiding polymers and membranes. It allowed
us to use the tools of the multilocal operator product expansion, show renormalizability
and to obtain results at two-loop order.

Our considerations here are for RNA molecules in thermal equilibrium. An important
question is whether the dynamics of RNA folding [2, 64], especially after a quench, can be
modeled too, or melting scenarios a la [65] explored.

The order of the phase transition may depend delicately on the role of excluded-
volume interactions. It is now possible to ask questions about the tertiary structure, using
as a starting point our field theory and the ensuing statistics of branching, or equivalently
the statistics of the RNA fold seen as a tree.

Our results suggest that steric interactions should be relevant. Indeed, the internal
fractal dimension is d; = 1/¢ ~ 1.56. If the embedding of the tree in external space is
dominated by entropic effects (mean-field), so that the tree forms a ‘blob’, the fractal
dimension of the tree in bulk space should be dy, = 2d; &~ 3.12. Steric interactions
are a priori relevant if the dimension of the embedding space is demp < 2dpion, thus
are important for long strands, even though their effect may not be pronounced since
2dyp1on — demp 18 small. The numerical results in equation (481) are indeed consistent with
2dpion, — demp = 0, which would lead to logarithmic corrections only.

Finally, in view of the results of [2] it will be necessary to reanalyze the role of knots
and pseudo-knots, even though their existence may not change the asymptotic scaling.
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Our field theory is capable of achieving this by including corrections in 1/N i.e. corrections
to the planar limit, systematically, in the spirit of what was done in [6] for homopolymers.
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