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Abstract

We introduce a geometric generalization of the O(N)-field theory that describes N-colored
membranes with arbitrary dimension D. As the O(N)-model reduces in the limit N — 0 to
self-avoiding polymers, the N-colored manifold model |eads to self-avoiding tethered membranes.
In the other limit, for inner dimension D — 1, the manifold model reduces to the O(N)-field
theory. We analyze the scaling properties of the model at criticality by a one-loop perturbative
renormalization group analysis around an upper critical line. The freedom to optimize with respect
to the expansion point on this line allows us to obtain the exponent » of standard field theory to
much better precision that the usual 1-loop calculations. Some other field theoretical techniques,
such as the large N limit and Hartree approximation, can also be applied to this model. By
comparison of low- and high-temperature expansions, we arrive at a conjecture for the nature of
droplets dominating the 3d Ising model at criticality, which is satisfied by our numerical results.
We can aso construct an appropriate generalization that describes cubic anisotropy, by adding
an interaction between manifolds of the same color. The two parameter space includes a variety
of new phases and fixed points, some with Ising criticality, enabling us to extract a remarkably
precise value of 0.6315 for the exponent » in d = 3. A particular limit of the model with cubic
anisotropy corresponds to the random bond Ising problem; unlike the field theory formulation, we
find a fixed point describing this system at 1-loop order. (© 1998 Elsevier Science B.V.
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1. Introduction

Field theoretical models are particularly suited for description of universal quantities
which do not depend on the details of the system. This is epitomized by systems
undergoing symmetry breaking continuous phase transitions. Their critical behavior is
described by a set of exponents which are completely characterized by dimension and the
underlying symmetry (the number of components of the order parameter). Universality
is assured since the microscopic details are averaged out, and do not effect the large scale
fluctuations (for areview, see Ref. [1]). The universal features are thus captured by the
O(N) model, which is afield theory for the statistics of N-component spins. A variety of
techniques have been developed to obtain the critical behavior of this model; possibly the
most successful is the renormalization group procedure [1] which anaytically justifies
the concept of universality. The most technically convenient implementations are field
theoretical methods, e.g. the e-expansion about the upper critical dimension of 4, an
expansion about the lower critical dimension of 2, and exact resummations in the large
N limit. (For an overview of these techniques, see Ref. [2].) The best studied method
is the e-expansion about the upper critical dimension 4, where calculations have been
performed up to 5-loop order. Together with resummation techniques which take care
of the large-order behavior known from instanton calculus, this is a very powerful tool
for extracting critical exponents.

On the other hand, field theories have strong connections to geometrical problems
involving fluctuating lines. For example, the motion of particles in space-time describes
a world-line. Summing over all world-lines, weighted by an appropriate action, is the
Feynman path integral approach to calculating transition probabilities, which can aterna-
tively be obtained from a quantum field theory. Another example is the high-temperature
expansion of the Ising model. The energy-energy correlation function can be expressed
as a sum over al self-avoiding closed loops which pass through two given points. The
generalization to N-component spins is straightforward: The partition function of the
corresponding ‘loop model’ is obtained by summing over al configurations of a gas
of closed loops, where each loop comes in N colors, or has a fugacity of N. In the
limit N — O, only a single loop contributes, giving the partition function of a closed
self-avoiding polymer. For N > 0 the model describes polymers which can break up
and polymerize dynamically like liquid sulfur [3-5].

A more direct approach to study self-avoiding polymers was developed by Edwards
and Des Cloizeaux [6-8]. In this approach, hard self-avoidance is replaced by a soft
short range repulsive interaction between the monomers. The repulsive interaction is then
studied perturbatively by expanding about ideal random walks. Here too, the perturbative
expansion can be reorganized into a renormalization group about the upper critical
dimension 4, which was shown [9] to be equivaent to the perturbation expansion of
¢*-theory in the limit N — 0. This equivalence holds both on the formal and on the
perturbative levels, providing two apparently different approaches for calculating the
same exponents.

There is much work in the field theory community on generalizing results for fluctu-
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ating lines to entities of other internal dimensions D. The most prominent example is
the work on string theories, which describe D = 2 world-sheets. An earlier example is
provided by the correspondence between gauge theories and random surfaces [10,11].
The low-temperature expansion of the Ising model in d dimensions also results in a
sum over surfaces that are d — 1 dimensional. For d = 3, the surfaces are made out of
plaguettes, the basic objects of lattice gauge theories.

The simplest generalization of linear polymers is to “tethered” (or polymerized)
surfaces [ 12,13], which have afixed internal connectivity, and are thus simpler than their
gauge theory counterparts. For theoretical analysis, it is convenient to further generalize
to membranes of arbitrary (inner) dimension D, interpolating between polymers for
D =1 and membranes for D = 2. Simple power counting indicates that the self-avoiding
interaction is relevant only for dimensions d < d. = 4D/(2 — D), making possible an
e=2D—d(2—D) /2~ (d.(D) — d)-expansion, which was first carried to 1-loop order
around this line in Refs. [14-18]. To obtain results for polymers or membranes, one
now has the freedom to expand about any inner dimension D, and the corresponding
upper critica dimension of the embedding space [19]. This freedom can be used to
optimize the calculation of critical exponents.

Following more rigorous analysis of this novel perturbation series [ 20-24], recently 2-
loop calculations were performed for membranes with inner dimension D between 1 and
2 [25,26]. The results have been applied to polymers, where the swelling exponent » has
been found to be 0.59 in an appropriate extrapol ation scheme at both 1- and 2-loop order.
By contragt, in standard field theory, the 1-loop result is an underestimate, while the
2-loop result is an overestimate by a similar amount. For self-avoiding membranesin 3-
dimensional space, 2-1oop calculations predict an isotropic fractal phase with dimension
of about 2.4 [25,26]. In addition, there have been extensive numerical studies [27-36],
and a few experiments on graphite oxide layers [37-39].

In this article, we reverse the analogy that leads from the O(N) model to self-avoiding
polymers: The idea is to generalize the high temperature expansion of the O(N) model
from a gas of self-avoiding loops of fugacity N, to a similar gas of closed fluctuating
manifolds of internal dimension D. The primary goal is to obtain a novel analytical
handle on the field theory for D = 1, and we do not insist that the models for general D
correspond to any physical problem. Given this caveat, the generalization is not unique.
Encouraged by its success in polymer theory, we study the generalization to tethered
manifolds, and in addition restrict ourselves to the genus of hyperspheres. For this
class of surfaces calculations are simpler; in particular yielding excellent values of the
exponent v in the limit of polymers [25,26]. We have chosen hyperspheres as they have
no additional anomalous correction exactly at D = 2. The resulting manifold theory
depends on two parameters N and D, whose limiting behaviors reduce to well known
models, as indicated in Fig. 1.

The rest of this paper is organized as follows. In Section 2 we review the high-
temperature expansion for the O(N) mode to explicitly indicate how it relates the
sum over self-avoiding loops. The different renormalization group schemes used in
the literature to study polymers may potentialy lead to some confusion regarding the
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O(N)-field theory <———  O(N, D)-manifold model
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self-avoiding D-dimensional

self-avoiding polymers <———
tethered membranes

Fig. 1. Schematic description of the new model, and its limits.

connection to ¢*-theory. To clarify the situation, we explicitly compare and contrast the
two main schemes in Section 3. We then generalize the model in Section 4 to polymers
of N different colors, making the connection to the O(N) ¢*-theory. Our central result,
obtained in Section 5, is the first-order expansion for the exponent » (D, N, d), given by

2-D 1+c(D)Y
y(D.N,d) = =2 |14 = LreD)g
50 (%) T(25)  +1+aD)f

2 2D
(1.1)

The above result depends on afunction ¢( D), which at the microscopic level isrelated to
the relative strengths of self-avoidance between parts of the same manifold, and between
different manifolds. In Section 6 we propose two choices, ¢(D) =1, and ¢(D) = D, for
this parameter. The numerical values resulting from several extrapolations are discussed
in Section 7. For the O(N) model in d = 3, our best extrapolations for the exponent »
are equal to 0.601, 0.646, 0.676, and 0.697, for N =0, 1, 2, and 3 respectively.

The ambiguity associated with ¢(D) disappears in the N — oo limit, where it is
possible to exactly sum the dominant diagrams in the perturbation series. This result,
aong with a mean-field variational estimate, is presented in Section 8.

The low-temperature expansion of the d-dimensional Ising model (N = 1) provides
another route to sums over random surfaces. As discussed in Section 9, the sum is
over surfaces of internal dimension D = d — 1, embedded in d dimensions. However,
in crucia difference with tethered manifolds, it is necessary to sum over al interna
metrics (connectivities). For N — 0, this difference is known to lead to quite drastic
geometries. In particular, sums over a single random surface are dominated by singular
configurations which in fact resemble branched polymers [40]. However, for N # O,
it may be entropically advantageous to break up a singular spike into many bubbles.
If so, a description in terms of fluctuating hyperspherical surfaces may not be too off
the mark. The requirement that the dual high- and low-temperature expansions of the
Ising model partition function have the same singularity, leads to a putative identity
a(N=1,d,D)=a(N=1,d,d— D). The numerical tests based upon the 1-loop result
of Eqg. (1.1) appear to support this conjecture.

While obtaining better exponents for the O(N) model is an important goal, our
generalized approach is more valuable if it aso applies to other local field theories. The
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simplest extension of the N-component ¢* theory includes cubic anisotropy by adding a
term proportional to >°, ¢%. The geometrical interpretation of this term is an additional
interaction that only operates between manifolds of the same color. In Section 10 we
develop the corresponding manifold extension, whose renormalization equations involve
two interaction parameters, leading to a variety of new phases and fixed points, some
with Ising criticality. A particular scheme in this model yields an Ising exponent of
v* =0.6315 in d = 3, which is indistinguishable from the many loop calculations [2]!
The consequences of this generalization for the random bond Ising model are explored
in Section 11. In the standard description with D = 1 there is no fixed point for the
random bond Ising model at 1-loop order, necessitating a /e expansion. By contrast,
we do find a fixed point at this order for D # 1.

A number of technical discussions are relegated to the appendices. Appendices A and
B present derivations of some properties of the renormalization group factors used in the
text. For completeness, and convenience of the reader, some technical details of dealing
with divergences in the perturbation series for D # 1 are presented in Appendices C
and D. Finally, Appendix E deals with the question of what happens if manifolds of
other topology are also considered.

2. The O(N) model in the high-temperature expansion

In this section, we briefly review the high-temperature expansion of the O(N) model.
(For more extensive reviews, see Refs, [11,41].) The Hamiltonian is

H=—IN> S-S (2.1)
()
where the sum runs over all nearest neighbors of a d-dimensional cubic lattice. To

obtain the partition function, we have to integrate over al S; subject to the constraint
that |S;| = 1, resulting in (K = BJ)

Z= / e AN = / HeNKSf‘Sf. (2.2)
{s:} {s;y )

The high-temperature expansion is obtained by expanding the exponential factors in
Eqg. (2.2) as

eVkSSi =14 NKS;-S; + ... (2.3)

Typically, only the first two terms in the Taylor expansion are retained. This is justified
as we are only interested in universal quantities, for which the weight is already not
unique and may be modified [exp(NKS; - Sj) — 14 NKS; - S;] in order to cancel
subsequent terms in the Taylor expansion.

We can represent the various terms in the perturbation expansion in the following
manner (see Refs. [11,42]). For each term NKS; - S;, we draw a line connecting sites
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Fig. 2. Some terms in the high-temperature expansion of the O(N) model.

i and j. At any given site i, up to 2d such lines may join. The integral over the spin
S; is non-zero, if and only if an even number of bonds end at site i. For calculational
convenience, we normalize the integrals by the corresponding solid angle such that

/ ds; = 1. (2.4)

Let us now study the first few terms in the perturbation expansion (see Fig. 2). Diagram
(a) is

(a) = (KN)“/dsl...ds4sgsgsfs§sg51523f. (2.5)
To do the integrations, note that

/dSi 2 :/ds,-lz 1, (2.6)

and therefore
/ ds; stsP = Lo, (2.7
Lt B N
Performing al but the last integration in Eqg. (2.5), we obtain
(a) = K*N / ds; S5 = K*N. (2.8)
For any non-intersecting loop, this result is easily generalized to

Knumber of IinksN’ (2.9)

i.e. every closed loop contributes a factor of N. Let us now analyze what happens when
loops intersect and to this aim calculate configuration (b). Doing all but the integration
over S;, we obtain

(b) = K8N2/dsl (8§3)2=K8N? = (a)2. (2.10)

Two configurations which have one common point thus give the same contribution in
the high-temperature expansion as if they were digoint. This is not the case if they have
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one bond in common, see (c). The integral contains an odd power of the field S;, and
therefore

(c) =0. (2.11)

This high-temperature series can thus be reinterpreted as the sum over all self-avoiding
(non-intersecting) loops. Bonds are totally self-avoiding, see e.g. configuration (c),
while vertices are aso partially self-avoiding as can be seen from the following ar-
gument. There are three possible ways to build up configuration (b): One may take
two small loops, but there are also two possibilities to use one loop only. The latter
have to be excluded from the partition function. (There are additional constraints as-
sociated with multiple intersections.) On the other hand, as we are only interested in
universal quantities, taking precise account of these configurations should be irrelevant
as long as bond-self-avoidance is present. In the direct polymer approach of Edwards
and Des Cloizeaux [6-8] discussed below, this corresponds to taking a smaller initial
(bare) coupling constant.

A single loop can now be viewed as a random walk, i.e. as the trace of a particle
moving under Brownian motion. The corresponding Hamiltonian is

L
Ho=/dx%f(Vr(x))2+Lt, (2.12)
0

where r(x) € R? is the trajectory of the particle at time x (equivalently, x is the
polymer arc-length). The total length of the loop is L = [ dx. In addition, one has to
demand that the particle returns to its starting point, i.e. that the polymer is closed. To
make it self-avoiding, Edwards and Des Cloizeaux [6-8] added an explicit repulsive
interaction upon contact, leading to

L

L L
H:/dx%(Vr(x))2+ bu /dx/dyéd(r(x) —r(y)) +Lt. (2.13)
0 0 0

4

The factors of 1/4, as well as the normalization hidden in 5, are chosen for convenience
and will be explained later on; w sets the renormalization scale. In the high-temperature
expansion, there appear loops of all sizes. We thus have to sum over all different lengths
of the polymer, weighted by a chemical potential ¢ conjugate to the length, mimicking
the constant K in Eq. (2.2). To avoid possible confusion, let us stress that athough
closely related, InK and ¢ are not identical. While K is defined as the fugacity for the
length of the lattice walk, the chemical potentia ¢ is conjugate to the coarse-grained
length. In principle, the same lattice walk can be represented by curves r(x) of different
length L. However, as far as universal quantities are concerned, this is unimportant. Both
parameters have to be tuned to reach the critical point, and only their deviations from
the critical value, but not the critical value itself, have some physical correspondence.
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3. Renormalization group for polymers

We now discuss the perturbation expansion of the Hamiltonian in Eq. (2.13). Let us
start with the correlation functions of the free (non self-avoiding) polymer. One has to
be careful in distinguishing between open and closed polymers which will be denoted
by subscripts , and . respectively. For open (or closed, but infinitely long) polymers,
the correlation function

_1/1 B 2
Co(x) = p <2(V(X) r(0)) >0 (3.1
is the solution of the Laplace equation
%ACU(x) =d(x), (3.2)

which is easily found to be
Co(x) =|x|. (3.3)

For closed polymers, Eg. (3.3) has to be modified. The reason is that the information
has two equivalent ways to travel around a polymer loop of size L, leading to

oy = B

We next calculate the weight of a polymer of length L. For open polymers this is
simply

vV |x| < L. (3.4)

el (3.5)
where ¢ is the chemical potential. For closed polymers, an additional factor of
(8" (r(z) o))y (36)

has to be added, which measures the probability to find a closed polymer among all
open polymers. The expectation value therefore is taken with respect to the weight for
an open polymer, and calculated as follows:

(5 (r(L) = o)) :/<eik<f<L>*r<°>>>0

k

=/e*"zcv(“ = /e*"zL =L792, (3.7)

k k

The normalizations of 8¢ and fk are chosen for calculational convenience such that
/ g Ka = g=d/2, (3.8)

The same normalizations are also used to incorporate self-avoidance as discussed later.
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To get the quantities obtained in the high-temperature expansion of the loop model
introduced above, we gtill have to integrate over all possible lengths of the polymer. We
define the partition function for a single polymer as

dL d
20 =/ Lo LI=F<1§) /21 (3.9)

We have chosen to integrate over a logarithmic scale ( [ dL/L) in order to make the
integration measure dimensionless. The factor L counts for the number of points which
may be taken as origin. Our final check, however, is that we obtain the same result as
in the free (Gaussian) field theory.

Additional insight is obtained from a different way to calculate Z{°. If we do not
perform the last integral in Eq. (3.7), Eqg. (3.9) becomes

(0) — —Lt — KL _ 1 _
A —/dLe /e _/kzﬁfo. (3.10)
k k

As suggested graphically above, this term of the polymer perturbation theory is equive
lent to a term in the perturbation theory of the field-theoretical description of the O(N)
model. In the usua treatment of the O(N) field theory, the hard constraint of |S| = 1 is
replaced in favor of a soft constraint, implemented by the Hamiltonian

Hon =/ddr E(vsu))%ész(r)+%(sz(r>>2 . (3.11)

In this description, one has to take the limit N — 0 in order to allow for only one con-
nected piece. (Remember that every closed loop counts a factor of N.) This equivalence,
first pointed out by De Gennes [9], is not accidental and can be proven both perturba-
tively and by formal manipulations of the functional integral [2]. It reflects the fact that
both the field-theoretic formulation of the O(N) model, as well as its lattice equivalent,
belong to the same universality class. The reader not familiar with this statement is
invited to manipulate a few other terms in the perturbation expansion. In the following
discussion, we shall demonstrate this equivalence for all diagrams encountered.

We now perform the perturbation expansion of the polymer Hamiltonianin Eq. (2.13).
The first term is the expectation value of one §-interaction with respect to the free theory
of a closed polymer, integrated over al positions of the interaction on the polymer of
length L, and then over al polymer-lengths. This is explicitly

L L
/dLL—d/Z —Lz/dx/dy/ (k=
0
o) L

0
L —
/dLe—Lt/dx/dy |:|x_y(L |x_y‘) d/zL—d/Z
0 0
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0o L X
:Z/dLeiLt/dx/dZ [Z(L_Z)]—d/Z
0 0 0
:Z/dz /dx//dyl e—t(x’+)yl+z) /eipzz /esz(x'ﬂ/)
0 0 0 14 k
—2//##
i (k2+1)2p2+1
k p

52=ZO><O. (3.12)

The relation to ¢*-theory is again apparent: The integrals in Eq. (3.12) are ultra-violet
divergent. The leading divergence is subtracted via a finite part prescription, the sub-
leading term is treated via dimensional regularization as a pole in

e=2-4d/2. (3.13)

(Note the factor of 2 difference from the more usual definition of e =4 — d.)

Let us now introduce a renormalized Hamiltonian. Three renormalizations may be
required: A renormalization of the field », of the coupling constant b, and of the
chemical potential ¢. Denoting the bare quantities with a subscript o, we set

ro= \/Zr,
to = Z[t,
bo=u*Z?Z,b. (3.14)

This yields the renormalized Hamiltonian

H=Z/dx%(Vr(x))2 + L? /dx/dygd(r(x) —r(y)) + Z,t/dx, (3.15)

where u sets the renormalization scale. It is possible to subtract at the scale of the
renormalized chemical potential ¢, but this turns out to be rather confusing when deriving
the renormalization group equations. We can now eliminate the divergence in Eq. (3.12)
by setting

b

Z,=1- ZRas((>). (3.16)

This is seen by expanding e~7* with H given in Eq. (3.15). From Egs. (3.9) and
(3.10), we read off the numerical value of O yielding

b
Z=1+ —.
! Jr28

The next step is to study the renormalization of the interaction, to which the following
two diagrams contribute:

(3.17)
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):( and DC (3.18)

To calculate the first diagram, change coordinatesto xo and yo, which indicate the points
midway between the contacts on each polymer. The shorter relative distance between
these points on each polymer is denoted by x (or y), while the longer one is indicated
by 2, (or £2,). The arbitrariness in this choice leads to a combinatorial factor of 2 per
polymer loop, for an overall coefficient of 4. For each contribution of

)--(: / /e—z(ax+!zy+x+y)

ko,xo0,yo  k.x,y

% <ez<%+k>(r(xo+é>—r(yo+%))g(%—k)(r(xoﬁ)—r(yo—%))>, (3.19)

short distance singularities appear in the integration over x and y. The leading term in
the short distance expansion is

/ <eiko(r(x0)7r(yo))>eft(.OXJr.Ov) /eka(C[.(x)JrCc(_\r))eft(ery)_ (3.20)

ko,x0,y0 k.x,y

For small arguments, the correlation function can be approximated by its infinite volume
limit, leading up to subleading terms to

¥ x /e Wrntin =Y. /(k2+z)2 (3.21)

k.x,y

The final result is

1 = ¥}{ X + subleading terms. (3.22)
H=2C-0

The second diagram in Eq. (3.18) has already appeared in Eqg. (3.12), and we can
symbolically write

e /Q B Qi/r_lmz =r (2 %) 242, (3.23)

This diagram appears with a combinatorial factor of 2 for its left-right asymmetry, and
another factor of 2 for the possibilities to put the single point on .

Adding these contributions yields the following renormalization factor at 1-loop order
(note that the combinatorial factors of 4 cancel with that of the b/4 in the Hamiltonian
Eq. (3.15)),

Zy=1+ - Ra(}(Jr:}C)-lJr— (3.24)

No field renormaization is necessary (Z = 1).
The next step is to calculate the renormalization group functions, which measure the
dependence of the renormalized quantities upon a change of the renormalization scale
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m, while keeping the bare values fixed. The derivation of these functions is given in
Appendix A, and results in a so-called B-function

—&b

d
b)=pu——| b= , 325
PO =T 152 nz, + b2 nz (525
and a scaling function for the field R
1 1 a
v(b) = >~ Eﬁ(b)%ln(zzt)- (3.26)

We are now in a position to calculate the exponent »* in 1-loop order. The B-function
is at this order

B(b) = —eb + b’Res (}( +:}C) + O(b%) + O(b%)
= —gb+ 2b* + O(b*) + O(b%e), (3.27)

and the scaling function » (b*) becomes

(b =S %Res(@) b—z* +O(e?)

2
=1_¢ e (O) + O(&?)
(320
:% +g+(’)(sz). (3.28)

This renormalization scheme is also used in ¢*-theory. At 1-loop order, no renormal-
ization of the wave-function is necessary. Only the reduced “temperature” ¢ is renor-
malized. There is another scheme, equally useful, to perform the renormalization of
polymers, which is also used in the broader context of polymerized membranes. This
scheme also works for infinite membranes. Naturally, for infinite membranes, no renor-
malization of ¢ can occur as it is identically 0. It is aso known for the renormalization
of standard field-theories that one has the choice to work either in a massive (¢ # 0)
or a massless (¢ = 0) scheme.

For the polymer model, let us find a renormalization scheme where ¢ is not renormal-
ized, and therefore the limit + — O can be taken without problem. The key observation is
that only the combinations ZZ, and Z,Z%? enter the renormalization group calculations,
and these combinations are left invariant by changing the Z-factors to

z'=1,
Z'=277,
Z)= 7,252 (3.29)

For a derivation of this property as a conseguence of the rescaling-invariance of the
underlying Hamiltonian, see Appendix B. In terms of the modified Z-factors, we obtain
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—&b
b = b
A 1+bZ%InZ + §b2InZ’
_l 1 / l? !/
v(b)=5 =SB/ (b)o-InZ" (3.30)

This is the scheme used by David, Duplantier and Guitter [23,24], and by David and
Wiese [25,26] in the context of polymerized membranes, where it is the most suitable
for higher loop calculations. On the other hand, it may lead to some confusion as it
necessitates a renormalization of the field, even in the case of polymers. This may
not have been expected from the 1 to 1 correspondence on the level of diagrams for
the N — O limit of ¢*-theory, and polymers. As shown above, the two schemes are
completely equivalent and one may use the one better suited to the problem at hand.
Let us stress another important difference between the two approaches. This is most
easily done by using the multilocal operator product expansion (MOPE) introduced
in Refs. [23,24], and heavily used in Refs. [43,25,26]. To this end, let us write the
multilocal operator Sd(r(x) —r(y)) as y——s,. Divergences in the perturbation
expansion then occur when distances become small. The first such configuration is

the contraction of the end-points of one dipole, which we shall denote by ) A

derivation of the contribution of this diagram in the more general context of self-éi\}bidi ng
membranes is given in Appendix C. Specializing to polymers gives the result

x©y=|xyd/21%xy|1d/2++..., (3.31)
where
1 2
+ =5V (3.32)

The divergence proportional to the operator 1 is subtracted by analytical continuation.
In the absence of any boundary and for infinite membranes, this term has no effect on
the renormalization functions. The second term is more serious and has to be subtracted.
This is done by renormalization of the field, thus introducing the renormalization factor

Z=1+ ﬂ. (3.33)
2e
Upon expanding the Hamiltonian, this yields a counter-term proportional to 4, which
cancels the divergence.

Let us now study the renormalization of the coupling constant in this scheme. Using
the MOPE, we can write down the following two UV-divergent configurations

e L (53
from which we shall extract terms proportional to the interaction «——, which we
denote as
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<\/ * > and <HO "—°> (3.35)
The first is written in the notation of polymer theory as
<'\/‘ > }( (3.36)

Indeed this diagram was subtracted when we renormalized the interaction in Eq. (3.24),
where we also subtracted the term

(o Lb)pe
The MOPE now tells us that

H@ =X Q (3.38)

as will aso be proved in the context of membranes (see Appendix C, or Refs. [23-
25], where this is discussed in some detail ). This result implies that having introduced

a counter-term for Q i.e. a renormalization of the field, no counter-term for the

diagrams in Eq. (3.37) is needed.
We can check for consistency by comparing the B-functions from the two schemes
at 1-loop order. In the massive scheme, we had

B(b) = —eb + b*Res (}( +:}C) + O(B3) + O(b%). (3.39)

In the massless scheme, we obtain
- 2 CeT e o o ) — g Q
B(b)=—eb+b (Res< s ’ > 2Res< ‘+ >>
+0O(b%) + O(b%). (3.40)

It is now easy to see that expressions (3.39) and (3.40) are equivalent up to order
O(b®) and O(b%), since

Re;< Q ‘ .—.> = Res <}( ) = Res (::}C) =1 (3.41)
_gRa;<@‘+>:§:1+o<s>. (3.42)

Another observation is that in the massless scheme, vertex operators like €k () —=r(»)
are finite, whereas in the massive scheme they require an additional renormalization.

and
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4. Generalization to N colors

Having performed a careful analysis of the different renormalization schemes, we
are now in a position to generalize to the case N > 0, i.e. to an arbitrary number of
self-avoiding polymer loops. To this aim, we introduce polymers of N different colors,
and for the time-being, work in the massive scheme. In addition to a , Which
renormalizes the chemical potentia ¢, there is now a second contribution, namely

OO : (41

This diagram is easily factorized as

O0=0~O 42
and is therefore equivalent to the digram already encountered in Eq. (3.12) and absorbed
in Z, (for N=0in Eq. (3.16)).

Let us now determine the combinatoria factor. A configuration

QO @3

can be made out of one polymer in two different ways or out of two polymers. The latter
comes with an additional factor of N, accounting for the N different colors introduced
above. Z, is thus modified to

Z=1- Z%Res (Q) <1+ g) +Ob?)

_..,. b N 2
=14 o <1+ 2)+(9(b). (4.4)

This is indeed the same combinatorial factor as derived from N-component ¢*-theory.
For the renormalization of the coupling constant, in addition to

}j( and :}C (4.5)

thereis the possibility that an additional l1oop mediates the interaction between two given
polymers, described by a configuration

}Q{ . (4.6)

The configurations in Eq. (4.5) are redlized in four different ways each in the high-
temperature expansion, while for Eqg. (4.6) there is only one realization which comes
with a factor of N for the N different colors. Z, is therefore modified to

b ) ; N
we1s pres( Y+ DC+7)OL)
b(8+ N)
+ T.
Evaluating the critical exponent »* as before now yields

=1 (4.7)
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€2+ N
28+ N’
It is again possible to switch to the massless scheme. At this stage this is not very
enlightening, as for polymers all diagrams are essentially equivalent. We will therefore
discuss this scheme in the context of membranes, which is introduced in the next section.

1
*=Z 4.
v 2+ (4.8)

5. Generalization to membranes

We shall now introduce a generalization to polymerized tethered membranes. Formally,
one generalizes the function r(x) to [12-17,20-26,43]

r:xeRP = r(x) eRY, (5.1)

with membranes obtained from D = 2. While perturbation theory is aways singular for
D = 2, it is possible to perform an analytical continuation in the inner dimension for
0 < D < 2. Itis now possible to make an e-expansion, where

. 2—D
e=2D —vod, withyg= — (5.2)

about any point (D, d) for which e = 0 (see Fig. 3). (Thefinal results are then evaluated
forD=2o0r1)
We shall re-write the Hamiltonian as

H=L/3<Vr<x>>2+bmzb//5"<r<x> () + 12,0, (5.3)
2—D 2
X X y

where the normalization of the integration measure has been chosen for convenience
such that

157

0.57

0o 5 10 15 20
d

Fig. 3. The critical curve (D,d) = 0. The dashed line corresponds to the standard polymer perturbation
theory, critical in d = 4.
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1 2
/ = /de, where Sp = <7 (5.4)

For radial symmetric functions, the integration is then smply

[d
[ = [ S o, (55)

0

and the volume of the membrane is

ﬂ:/de:SD/. (5.6)

Note that for D = 1, normalizations agree with those used for polymers in the preceding
sections.
The factor 1/(2 — D) isintroduced in Eq. (5.3) in order to obtain

Co(x —y) = % <% (r(x) — r(y))2> = |x — y[>~P + subleading terms. (5.7)

To calculate the next to leading term in the free correlator of Eq. (5.7), note that for
any function Co(x) defined on a closed compact manifold

/ACo(x) =0. (5.8)
For the correlator to satisfy the above condition, the usual Laplace equation, ACo(x) ~
8P (x), has to be modified to

1 D 1
mACO(X) =6 ()C) - 0, (59)
where (2 is the volume of the compact manifold. The numerical prefactors come from
our choice of normalizations in Eq. (5.3). In the infinite-volume limit, the correction
term disappears, and the usual equation is regained. It is easy to deduce that

_@‘

2 .
- subleading terms.
Do X y©+ g

1/1
Co(x) = 7 <§(F(X) - r(y))2> =lx—yf?
(5.10)
The coefficient of the correction term clearly agrees for D = 1 with the exact result for
closed polymersin Eq. (3.4).
The considerations of Section 3 can now be generalized to the case of membranes.

The free partition function for a single polymer, i.e. the sum over al sizes of a non-
interacting polymer, Eq. (3.9), is generalized to

20 D) (A2 o ip o
1 D n
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_ C(D) 2 g/D—1
==-r (5 — 1) /01, (5.11)

We have chosen to integrate over a logarithmic scale, dx/x = (1/D)d@2/0. To em-
phasize the arbitrariness of this choice, we have included an additional factor of ¢(D),
which is further discussed in the next section. This factor is important, as it also ap-
pears in the ratio of divergences due to self-interactions of one membrane, and those of
interactions with other membranes. The factor 2 in the integrand of the above equation
originates from the possible choices of a point xo on the membrane, while the factor

27~ (§(r(x0)) )

is the probability that at this point the membrane is attached to a given point in space. As
usual, we have introduced a chemical potential proportional to the size of the membrane.

Let us now generalize Eq. (3.12) for the effect of one &?-insertion from the expansion
of the interaction. For the time being, we fix the size of the membraneto (2, and evaluate

//<5d(r(x) —r(y))>o. (5.13)

This integral is (see Eq. (3.7))

: (5.12)
0

Q
— [ Co(x)7/2, (5.14)
Sp

X

and we have to remove all UV-divergent contributions. To do so, we expand Co(x) ~4/?
for small x. Up to UV-convergent terms, thisis (using Eq. (5.10))

0 dx ,( _ od . AV0SD p_yea
— | — v - Y o). 5.15
sp) x" <x 2Dt T (515)

The first term is strongly UV-divergent and has to be subtracted by a finite part pre-
scription, while the second is (up to terms of order °) equal to

1
1w (5.16)
&

Note that we have cut off the integral at the upper bound xmax = 2%/°. This procedure
may appear rather crude, but the residue of the pole in 1/¢ is not affected [43].
Upon integrating over all scales, the partition function (to first order) reads

(D dn b
AR c(D) / == 0O i/Dg1 {1+ ~()*P .|, (5.17)
D 0 £
which upon integration over (2 results in
b
2P =2 {1 ot } . (5.18)

Note the difference in the factor of 2 between Egs. (5.16) and (5.18), which is due to
a subtlety known to result from nested integrations in standard field theories. This factor
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of 2 can aso be interpreted as being geometric. The counter-term is only needed in the
half-sector x < 2% and not in the half-sector x > 2Y?. (See aso the calculations in
Refs. [20,25].) Introducing now a counter-term for ¢ yields

Z, =14 % (5.19)
The bare and renormalized quantities are now related by generalizing Eq. (3.14) to

ro= \/Zr,

to = Z;t,

bo=u*Z%7,b, (5.20)

leading to the renormalization group functions (compare with Egs. (3.25) and (3.26))
—eb

dJ
by=pu—| b= , 5.21
PO =T 152 nz, + b2z (520
_2—D 1 dJ (2-D)/D
v(b) =" fzﬂ(b)abln(ZZ, ) (5.22)

(The derivation is given in Appendix A.)
The combinations zZ> ?/" and Zz,Z¢/2, which enter the renormalization group
calculations, are left invariant by changing the Z-factors to

7! =7,/Z.,
7! = 77(2-D)/D
. ,
7} =27,75/P2, (5.23)

For a derivation of this property as a conseguence of the rescaling-invariance of the
underlying Hamiltonian, see Appendix B.
In order to eliminate the renormalization of ¢, we chose

Zo = Z,, (5.24)
resulting in

7/ =1,

7' =772 PP,

7] =27,7:"72, (5.25)

and the renormalization group functions

—&b
b = b
Ab) 14+ b2InZ) + 4b&Inz’
2-D 1 d

With this change of variables, Eq. (5.19) isreplaced by Z/ =1, and
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2-Db
Z' =1+ ——-. 5.27
+ =5 s (5.27)

The above result is precisely that obtained by using the multilocal operator product
expansion technique for infinite membranes (see Appendix D and Ref. [25]), where
the renormalization factor is calculated from

1-(2-D)- Res<<>’+> WlthRes<<>’+>——— (5.28)

The interpretation of this formulais simple, as

<Q’*> (5.29)

is just the diverging contribution form the MOPE, of one 5?-insertion. For N = 0, the
renormalization of the coupling constant in the massless scheme is analogoudly (see
Section 3, Appendix D, and Ref. [25])

zl=14" Res< oy ’.—.> (5.30)
with
2
r
Res< o ‘ >: ZlDrEZZ%, (5.31)

Alternatively, in the massive scheme (Z =1),
Z, = <1 n éRes< “/\ ‘ .- . >) x Z2
&

=1+9<R&s< < ‘ >+1). (5.32)
&
Let us now study the generalization to N components in the massive scheme. Taking

care of the additional factor of ¢(D) introduced in the definition of the free partition
function in Eq. (5.11), Eq. (5.19) is modified in the same manner as Eq. (4.4) to

c(D)N
)

Z=1+2 <1+ (5.33)

2e
There are severa possibilities to derive the modification to the renormalization factor of
the interaction. For a direct derivation generalizing Eq. (4.7) we calculate the diagram
Q for membranes, as

O: C(D) /d_‘-(z 02 Q—Vode—lﬂ. (534)
D £
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We dready have given the derivation of a similar integral in Eqg. (5.11). The only
difference is that now a second factor 2 appears to take into account the additional
point which moves on the membrane. Integration over (2 yields

O= 2L (2) 1710 = e(D) 27 4 O(e2). (5.35)

This term again appears with a relative combinatorial factor of N/4 compared to the
other contributions, as discussed in the polymer case. The renormalization factor Z,
therefore becomes

Y c(D)N
T (. FPRLL 5%

It is now easy to derive the renormalization group functions

B(b) =—eb+ b2 <R$<("‘:/\(“j;’._.> 1 c(D)N)

a2 4
+0O(b%) + O(b%) (5.37)
and
_2-D b c(D)N )
v(b)—T<l+5<l+ > ))+(’)(b ). (5.38)

At the non-trivial (IR-stable) fixed point, this yields the critical exponent to order

. 2-D e 1+ c(D)N/2
Res< Q ’ > +1+c(D)N/4

representing our central result for the generalized O(N) model, also discussed in the
introduction in Eqg. (1.1).

, (5.39)

6. The arbitrary factor ¢(D)

In calculating the free partition function in Eqg. (5.11), we introduced an arbitrary
factor of ¢(D). In principle, any function of D which satisfies

e(1) =1, (6.1)

reproduces the correct result for linear objects. The additional freedom (or ambiguity)
is apparently areflection of the non-uniqueness of the generalization to manifolds. Even
after restricting to the class of hyperspheres, there is a remaining ambiguity in the choice
of the measure for the size of these manifolds. This arbitrariness carries over to our
generalization of the O(N) model to N-colored membranes. (Note aso that ¢(D) is
independent of the introduction of factors like the ﬁ in Eq. (5.3).)
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We shall focus on two natural choices for ¢(D). The first possibility is to demand
that the free partition function in Eq. (5.11),

0) — c(D) e s/D—1
2= (5 - 1) e (6.2)

has the simplest possible form in the sense of depending on only one parameter besides
t, namely ¢/D. This implies

c¢(D) =D, (6.3)

which is our favorite choice, and equivalent to the measure d2/12 over all scales.
Another reasonable choice is to demand that the ratio of the probability that one
membrane touches itself, to the probability that two membranes touch, which is

4/Nc(D), (6.4)
be independent of D. This leads to
c(D) =1, (6.5)

and is equivalent to the measure dx/x over scales. We shall study both choices in the
next section.

7. Extrapolations

This section is devoted to extracting the information about the exponent v in physica
dimensions, from the general result in Eq. (5.39). (We shall use v, rather than v*, to
denote the fixed point value.) As will become apparent, various extrapolation schemes
are possible, and choosing the best one is ailmost an art; we shall rely heavily on the
methods developed in Ref. [25] to which the interested reader is referred to for further
details and discussion. The general ideais of course to expand about some point ( Do, do)
on the critical curve e( Dy, dp) = 0. The simplest scheme is to extrapolate towards the
physical theoriesfor D =1,2and d =2, 3,.. ., using the expansion parameters D — Dy
and d — dp. However, as shown in Ref. [25], this set of expansion parameters is not
optimal, and better results are obtained by using D.(d) = 24 and &(D, d) = 2D—%2d.
Furthermore, it is advantageous to make expansions for quantities such as vd or v (d+2)
rather than ».

We shall mention three such extrapolation schemes which are based on the remarkable
fact that three different expressions for v coincide with o = (2 — D) /2 on the critica
linee=2D — dvy=0.

(1) The mean-field result
2D

7,
which in the context of polymers and membranes is known as the Gaussian
variational approximation [8,44-46]. Eq. (5.39) can then be re-organized as

VMF = (7.0)
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vd =2D + a(D)e, (7.2)

leading to an expansion about the mean-field result, which can be plotted as a
function of the expansion point D.
(2) The Flory expression
2+ D
24+d
can similarly be used as the basis for the expansion of the quantity »(d + 2).

(3) Thelarge N limit of the theory can be solved exactly, as will be demonstrated in
the next section. The corresponding exact result

(7.3)

VFlory =

D
UN—oco — - p (74)

2—-D

is adso equal to vy for ¢ = 0, and can be used as a basis for expansion of the
quantity v(d — 2D/(2— D)).
After selecting one of these schemes, the next step is to re-express Eq. (5.39) in
terms of D.(d) = 7% and & = 2D — %52d. For example, for v(d + 2), the final result
is

v(d+2)=2+ D.(d)

_ lrebonz Do) 24D, g

+

(7.5)

If we are interested in the field theory (D = 1) in d = 3, we have to evaluate the
above expression for ¢ = 1/2. However, we are till free to choose the expansion
point along the critical curve, which then fixes Dy. As the expansion point is varied,
different values for v(d + 2) (i.e. 5v for d = 3) are abtained, as plotted in Fig. 4. The
criterion for selecting a value for » from such curves is that of minimal sensitivity to
the expansion point Dgy. We thus evaluate » at the extrema of the curves. The broadness
of the extremum provides a measure of the goodness of the result, and the expansion
scheme. The robustness of this choice in the case of N = 0 was explicitly checked in
Ref. [25], by going to the second order. (For additional discussions of such “plateau
phenomena’ see Section 12.3 of Ref. [25].)

While we examined several such curves, only a selection is reproduced in Figs. 4-6.
We start by checking the method for polymers (N = 0) and the Ising model (N =1)
in d = 2, where the exact values are known (v = 3/4 and 1 respectively.) The results
are given in Table 1. Only the extrapolation for vd yields acceptable results; that of
v(d+2) isbad for N =1, and » is even worse in both cases. Furthermore, we observe
that ¢(D) = D gives exponents closer to the correct value. Based on this experience,
we focus on the expansions for vd in d = 3, with ¢(D) = D, shown in Fig. 6 for N =0,
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0.7

0.651

0.551

0.50 0.5 15 2

1
D

0
Fig. 4. Extrapolations for » from the expansion of v(d + 2) to (D =1,d = 3), for N =0 (lower curve) and
N =1 (upper curve). The straight lines are a guide for the eye and represent the known results of 0.59 and
0.63, respectively.

Table 1
Results of the extrapolations for » for polymers and the Ising model in two dimensions

Expanded quantity c(D) N v

vd — 0 0.76
vd 1 1 0.87
vd D 1 091
vd (lin. in N) D 1 0.96
exact — 0 0.75
exact — 1 1

Table 2
Results of the extrapolations for » for the O(N) model in three dimensions

Expanded quantity c(D) N v, our result v, from [2]
vd D 0 0.601 0.589
vd D 1 0.646 0.631
vd D 2 0.676 0.676
vd D 3 0.697 0.713

Table 3
Results of the extrapolations for » for the O(N) model in three dimensions, linearized in N

Expanded quantity c(D) N v, our results v, from [2]
v(d+2) D 0 0.593 0.589
v(d +2) (lin.in N) D 1 0.637 0.631
v(d +2) (lin.in N) D 2 0.681 0.676
v(d +2) (lin.in N) D 3 0.721 0.713
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0.041

0.031

0.021

0.017

0o 05 1 15 2

Do

Fig. 5. Extrapolations for %V(N) from the expansion of vd to D =1, d = 3. This yidlds the flattest plateau
encountered in all extrapolations, and there is no difference to calculations in higher loop order (see Ref. [2]).

0.8T

0.5T

040 0.5 1 15 2

D,

Fig. 6. Extrapolations for » from the expansion of vdto D=1, d =3, N=0,..., 3, ¢(D) = D. The dashed
lines are marks for the eye and represent the exact values.

1, 2 and 3. The values of v extracted from the maxima are given in Table 2, aong
with their best known estimates from Ref. [2]. Our results are clearly better than the
standard 1-loop expansion of
1 N+2
== i 7.

Y3 an+e) (7.6)
There are, however, systematic differences in the trends. In particular, we make the
observation that the “exact” exponents in the range 0 < N < 3 approximately fall on
a dtraight line with slope 0.042 + 0.003; while our results have a perceptible down-
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0.8
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D,

Fig. 7. Extrapolations for » after linearization in N from the expansion of v(d +2) to (D =1,d = 3) for
N=0,..., 3, with ¢(D) = D. The dashed lines are marks for the eye and represent the exact values.

ward curvature. It may be that the 1-loop results are somehow most suited to give the
exponents at small N. A similar suggestion was made in Ref. [47] in the context of
the non-linear sigma model. Based on these observations, we now pursue an aternative
expansion, that searches for the dope of »(N) a N = 0. Fig. 5 shows the result for
dv(N)/dN|n=0 as afunction of the expansion point. A very flat and well defined plateau
is obtained, with a value of 0.042 in excellent agreement with the slope quoted earlier.
Of course, to get the absolute value of the exponents, we also need to specify v(N =0).
As discussed in Ref. [25], the best expansion quantity for this purpose is v(d + 2)
leading to (N = 0) = 0.59 at the 1-loop order. (This exponent is also obtained if one
demands the 1- and 2-loop results to be equal.)

8. Thelimit N — oo and other approximations

As in the O(N) model, it is possible to derive the dominant behavior for large N
exactly. In the standard ¢*-theory, one starting point is the observation that

(($H2(r)) = (S2(")°, (8.1)

sincein the limit N — oo, spin-components of different colors decouple [2,48,49]. This
is aso known as the random phase approximation (RPA).

Here, we pursue a slightly different approach, based on the diagrammatic expansion.
Note that for N — oo, only simply connected configurations survive. (The vertices are
made out of membranes, the links out of 5¢-interactions.) For example, the diagram

which is doubly connected, and the diagram Q which includes
a sdlf-interaction, each have one factor of N less than the simply connected graph
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OQO The leading diagrams for the membrane density at the origin are then
given by

fo= </Sd(r(x))> = O +O-O+O-O0 +QO+

X

(8.2)

The above sum can be converted into a self-consistent equation for f by noting the
following: Successive diagrams can be obtained from the first (bare) diagram by adding
to each point of a manifold a structure that is equivalent to f itself. This is equivalent
to working with a single non-interacting manifold for which the chemical potential ¢ is
replaced by an effective value of ¢ + bof. Calculation of f for this manifold proceeds
exactly asin Eqg. (5.11), and results in the integral

— an 1—vod/D o— Q(to+bo f)

f= / 5 2 e . (8.3)
The above integral is strongly UV-divergent, and leads to a form

f=B(to+bof) 741 + 4, (8.4)
where

2-D
B=r(1—-——d|. .
( D d) (8.5)

The strong UV divergence, controlled with an explicit UV cutoff, is absorbed in the con-
stant A. It is usualy dropped in a dimensional regularization scheme, as in Eq. (5.11).

The radius of gyration R is now related to f as follows: From Eg. (8.3) we note
that 7o+ bo f is the physical chemical potential conjugate to (2, thus leading to a typical
volume of 2 ~ 1/(tp+ bof). Since there are no self-interactions in the effective
manifold introduced above, its radius can be related to the volume by R ~ 2%°/P. Thus,
up to a numerical factor which is absorbed into the definition of R, we obtain

R 75 =19+ bof. (8.6)
Eliminating f in Eqg. (8.4) with the help of Eq. (8.6) yields

R™ZD = (1o + boA) + boB RZ0 . (8.7)
Identifying the difference in temperature to the critical theory as

t=to+ boA, (8.8)

the critical theory is approached upon taking r+ — 0 and R — oco. This occurs if and
only if d is larger than the lower critical dimension

2D

If d isin addition smaller than the upper critical dimension, i.e.
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4D

2-D’

the left-hand side of Eq. (8.7) vanishes faster than the R-dependent term on the right-

hand side, and we obtain the scaling relation

d<d, = (8.10)

R~ V=25, (8.11)
In the large N limit, the exponent v* is therefore given by

D

P = T (842

2—D
We can verify that the standard result [2] is correctly reproduced for D =1 as

1

Note that for d > d,, the leading behavior from Eq. (8.7) is
R~i1 27, (8.14)

implying the free theory result

2-D
2 (8.15)

It is interesting to cast the other approximation schemes introduced in the previous
section in the language of renormalization factors. The Flory approximation assumes
that the elastic energy and the contribution due to self-avoidance scale in the same way.
This enforces for the renormalization factors Z and Z, (in the massless scheme with
Z; = 1) the constraint

vo

Knowing such a relation, the critical exponent v can be calculated explicitly [25].
Suppose that

Z, =277, Z, =1 (8.17)
From the definition of the g-function in Eq. (5.21), we aobtain

B(b)
Ty
The second term on the r.h.s. can be neglected upon approaching the critical point
b*, where the B-function vanishes. Inserting Eq. (8.17) into Eq. (8.18), solving for
B(b) £ InZ, and substituting the result into Eq. (5.22) yields

p
Bb) - IN(Z,Z72) = —& (8.18)

_2-D n e
) d+20’
For the Flory approximation, o = 1 from Eqg. (8.16), and the above expression evaluates
to

*

14

(8.19)
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2+ D
2+d’

The last approximation scheme that we shall discuss is a mean-field limit. As is well
known from the mean-field approximation to ¢*-theory, minimizing an expansion of the
order parameter (e.g. by a saddle point method) results in an exponent @ = 0 describing
the singularity in the heat capacity. Assuming that the singular part of the free energy
scales as

(8.20)

VFlory =

fong ~ R™4 ~ =7/ 3" /P (8.21)
leads to a generalized heat capacity exponent for manifolds given by

v*d
=2 ) 22
a D (8.22)

A discontinuous (but non-diverging) heat capacity then leads to

2D
d k4
which coincides with the result obtained by considering large d and N = 0 [44-46]. In

such a limit, and in a massless scheme, corrections due to self-avoidance are strongly
suppressed [25], and we have

oE = (8.23)

Z,=1,  z=1  Z=+1l (8.24)

This is equivalent to o = 0 from Egs. (8.17) and (8.18), and again yields Eq. (8.23).

9. Low temperature expansions of the Ising model

In Section 2 we demonstrated that the high temperature expansion of the O(N)
spin model naturally leads to a sum over N-colored loops (D = 1); motivating the
later generalization to manifolds (arbitrary D). For the Ising model (N = 1), a related
description can be obtained from a low-temperature expansion. Excitations to the uniform
(up or down pointing) ground state are in the from of droplets of spins of opposite
sign. The energy cost of each droplet is proportional to its boundary, i.e. again weighted
by a Boltzmann factor of the form

e '

Thus a low-temperature representation of the d-dimensiona Ising partition function is
obtained by summing over all closed surfaces of dimension D = d — 1. For d = 2,
the high- and low-temperature series are similar, indicating the self-dual nature of the
model. For d = 3, the low-temperature description is a sum over surfaces, which is also
the high temperature expansion of an Ising lattice gauge theory [11], establishing the
duality between these two models.
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The non-trivial question is regarding the type of surfaces which dominate the above
sum. There is certainly no constraint on the internal metric, in contrast to the tethered
surfacesin D = 2 which have a flat metric. Since the sum includes droplets of all shapes,
it may be more appropriate to examine fluid membranes. However, there is currently
no practical scheme for treating interacting fluid membranes, and the excluded volume
interactions between the membranes are an essential ingredient to avoid overcounting
configurations. We shall argue that, at least in low dimensions, the sum over tethered
membranes captures the appropriate physics of the problem. This may appear quite sur-
prising at first glance, as for N = 0, surfaces generated from plaquettes on a lattice are
very different from tethered surfaces. The former are dominated by configurations that
resemble branched polymers. The large entropy gain of branches is responsible for this,
and appears as an instability towards formation of spikes in a string theory [50]. How-
ever, it is possible that for N > 0, the above instability is replaced by a string of bubbles.
(Reminiscent of the Raleigh instability of a stream in hydrodynamics.) The collection of
bubbles is then satisfactorily described by a set of fluctuating hyperspherical (tethered)
manifolds which is the basic ingredient of our model. The appropriate question may be
whether tethered membranes sweep out phase space, i.e. form a complete set of basis
functions in the configuration space of our problem.

Another issue is whether the sum may be restricted to spheres, or if objects of other
topologies must also be included. We argue in Appendix E that the dominant contribution
(and the only one included in perturbation theory) is the one from spheres.

We shall now test the validity of the above conjecture. As discussed before, our
generalization to the sum over manifolds is defined only up to the factor ¢(D). For the
remainder of this section we make the “least number of variables’ choice ¢(D) = D,
for the partition function. Singularities of the partition function are characterized by the
critical exponent «(D, d, N), through

IN Zeinguiar ~ |t — 1|7 (9.1)

The equality of the singularities on approaching the critica point from the low- or
high-temperature sides, requires

a(l,d,1)=a(d—1,d,1). (9.2)

From the scaling relation

D.d. 1)d
a(D.d1y =2 2P:dDd (9.3)
D
we obtain
1.d.1) = ~1.d.1). 4
v(1.d.1) = ——5v(d—-1d.1) (9.4)

A more general identity is obtained by considering a generalized class of Ising models,
whose interactions are defined on D-dimensional primitive elements of alattice [11]. In
the standard Ising model the interactions occur on bonds (D = 1), while in Ising lattice
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Fig. 8. Test of the relation in Eq. (9.4) for the Ising model ind =225, d =25, d =275 and d = 3.
The upper curves are from the high temperature representations of the Ising model (D = 1), while the lower
curves are from the low-temperature expansion (D = d — 1) as explained in the text. The exponent v is
extrapolated from the maximum of each curve. These curves are based on the scheme in which we extrapolate
vd, linearize in N, and to divide the result by dD. This choice is determined through the quality checks of
Section 7.

gauge theory interactions are placed on plaquettes (D = 2). Equating the singularities
from the high- and low-temperature expansions of such models, and assuming a single
continuous phase transition, yields

v(D,d,1) =

d_Dv(d—D,d,l). (9.5)

The conjectured identity in Eq. (9.4) was tested numerically, and the results are
presented in Fig. 8. The extrapolated exponents (the maxima of the curves) from the
dual high- and low-temperature expansions are in excellent agreement. Indeed, one could
hardly expect better from a 1-loop calculation. Nevertheless, higher-loop calculations
would be useful to check this surprising hypothesis. One of the peculiarities of the
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Fig. 9. Extrapolations for the Ising model and itsdual in D =1, d = 3, using ¢(D) = D, and as extrapolation
variables 1/D and d.

1-loop extrapolations presented in Fig. 8 is that any crossing of the curves from the
dual models occurs at the mean-field value of 2D/d from Eq. (8.23). This is accidental,
but present for al of our “good” extrapolation variables. An explicit counter example is
given on Fig. 9, where we used the “bad” extrapolation variables 1/D and d. They are
bad, as there is no pronounced maximum to estimate ». Nevertheless, the intersection
of the two dual models occurs at » = 0.6, not too far from the exact result of 0.6315.

10. Cubic anisotropy

Up to now, we assumed that the interaction between manifolds is independent of
their color. This is a consequence of the rotational invariance of the underlying spin
model introduced in Section 2. This equality of interactions does not have to hold
in a system of polymer loops. In the context of the ¢*-theory, unequal interactions
result from the breaking of rotational symmetry, e.g. through the introduction of cubic
anisotropy, as discussed in Refs. [49,51-53]. In the microscopic spin model of Section 2,

the independence of the interactions between loops from their colors emerges as a
consequence of the normalization condition

yosE=1

(10.1)
If we replace this by the constraint

Z\Si\” =1,

(10.2)

with a # 2, which breaks rotational symmetry, this is no longer the case.

The model in the absence of full spherical symmetry is described by two interaction
parameters. In addition to b, which indicates the interaction between any two membranes
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u

u+Nb<O

u+b<0

Fig. 10. Regions of stability for the bare model with cubic anisotropy (the white portions are stable): The
bare model is unstable if u + Nb < O for u > 0, and if u + b < 0 for u < 0. Note that this diagram changes
upon renormalization.

irrespective of their color, there is a new anisotropic coupling constant # which acts only
between membranes of the same color. Physically, not all combinations of u and b are
alowed, as some of them induce a collapse of the membranes. The following two cases
can be distinguished:

(i) If u is negative, for a single membrane to avoid itself and not to collapse, the
condition

u+b>0 (10.3)

has to hold. This implies that 5 is positive, and the repulsive interactions between any
pair of membranes ensures mutual stability. The same condition is obtained in the O(N)
model by requiring the stability of the minimum energy state [49].

(ii) If u is poditive, the stability condition in the O(N) model is [49]

u+ Nb> 0. (10.4)

This places a lower bound on » which is, for more than one color (N > 1), more
restrictive than Eq. (10.3), but still admits negative values for b (see Fig. 10). For b <
0, membranes of different color attract; in the extreme limit becoming glued together
to form a “super-membrane” out of N differently colored membranes. In this limit, the
theory reduces to an Ising-like system, where the effective number of colorsis one. (The
corresponding RG flows, as discussed below, do indeed tend to an Ising fixed point.)
For this “super-membrane” not to collapse, we again find the condition in Eq. (10.4).
However, this picture is quite schematic, and real physical systems are governed by
many more parameters, and may well behave differently. Studies in polymers [54,55]
indicate that the precise competition of the attractive and repulsive parts of the interaction
potential plays a crucia role, sometimes leading to non-universal behavior.

The above stability arguments are based on energetic considerations, and are expected
to be modified upon the inclusion of fluctuations, say through a renormalization group
procedure. In the studies of critical phenomena, a well-known example is the Coleman-
Weinberg mechanism [49,56], where the RG flows take an apparently stable combination
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of b and u into an unstable regime, indicating that fluctuations destabilize the system.
In the flow diagrams described below, we also find the reverse behavior in which an
apparently unstable combination of » and u flowsto a stable fixed point. We interpret this
behavior as indicating that fluctuations actually stabilize the model, a reverse Coleman-
Weinberg effect, which to our knowledge has not been discussed before. To decide
whether a system with a given combination of couplings is stable, we first follow the
renormalization group flow. As perturbative renormalization does not say anything about
the strong coupling regime, we regard run-away-trajectories in the flow as indicating an
unphysical situation. If, on the other hand, the renormalization group flow tendsto afinite
and completely IR-stable fixed point, we use the “classic” stability analysis discussed
above, since renormalization has eliminated all fluctuations. Using this criterion we have
shaded in grey the unphysical regions in the following flow diagrams.

The derivation of the generalized renormalization group functions is most easily
carried out in a mixed scheme, in which we absorb contributions due to self-avoidance
into Z, and those due to interactions with another membrane (proportional to N) into
Z,. For the origina model, this scheme leads to the renormalization factors

b Ne(D)
Z(b) =1+ —
(D) +28 >
2-Db
Z(h) =1+~ (10.5)

The presence of the additional interaction u between membranes of the same color
modifies the above result to

bNc(D) n uc(D)

Zl(b3 u) = 1+

4e 4e

2—Db+u
Z =1+ —— . 10.
(b,u) =1+ D & (10.6)

To derive the renormalization of the coupling constants, we note that with this choice
of Z and Z, we have eliminated all divergent configurations which in the polymer picture
and in the MOPE are denoted by

:}C and H@ (10.7)

respectively. The diagrams that renormalize the interactions are of two classes

)2( and 3 YA - (108)
In calculating the contribution to the renormalization of b, the inner loop of the latter

diagram contributes a factor of N if both interactions are b, and 1 for the two cases
when one of the interactionsis u, resulting in

R N PV _ Ne(D) e(D)

4e 2¢e
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(Note that because of the choice of the mixed RG scheme, the above relation does not
reduce for u = 0 to the corresponding one derived earlier.) For the anisotropic coupling
u, the first class of diagrams can be constructed from two interactions u (1 way), or
one u and one b (two ways). The second class gives a single contribution proportional

to u?, for the overall result
ut2b Res< T > _ u"(4D ) ) .  (10.10)
t] N €

The renormalized parameters yield the B-functions at 1-loop order, as

>+1+N"(D))

u=,uf‘9Z7% X <1

i

4
+bu <1+ C(f)) o)
and
o £ ) 1052)
+bu <1 + 2Res< g ’ — >> . (10.12)

Finally, the exponent » is obtained from Eq. (10.6) as

v(bu) = Z—TD <1+ % {b <1+ NC(ZD)) tu <1+ d?)D . (10.13)

For D — 1, these equations reduce to the renormalization-group functions reproduced
in Ref. [49]. (In Ref. [49] there is an additional factor of 2/3 due to the choice of
numerical constants.)

As in their standard counterpart, these flow equations admit four fixed points:
(1) The Gaussian fixed point

b =0, ul=0, (10.14)

which is aways unstable below the upper critical line d,(D). (The following
discussions of stability all pertain to this region.)
(2) The Heisenberg fixed point

&

by = — , uy=0 (10.15)
EETEI o —
is aways stable along the u = 0 axis, and is completely stable as long as
Ne(D) Tl e
7 < Res< \/,‘ >€1. (10.16)

This certainly applies to single polymers and membranes with N =0, but is also
the case for the O(N) model aslong as N < 4.
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(3) The lsing fixed point

&

by =0, u;= (10.17)
14«2 +R&s<{\®}’-—->

is stable if

Res< O‘._.> < 4D (10.18)

4

For the standard O(N) model with D = 1 the Ising fixed point is unstable.
However, since for large d., the left-hand side of the above inequality decays
rapidly as 2~%/2, the Ising fixed point is stable if the expansion point is sufficiently
closeto D = 2.

(4) The cubic fixed point is located at

B (A(D) — <22)

= e,
* 7T NPT AD)) (ACD) — ) + (11 92 (N A(D))

* (242 A(D))

= g,
T MU AD)) (AD) - ) + (11 20) (P A(D)

>. (10.19)

u

where  A(D) = R&s< Q ‘

The stability of this point under RG flows depends on the parameters D and N, and
this dependence is not simple. The physical stability of this fixed point according
to the criteria of Egs. (10.3) and (10.4) should also be verified. Interestingly, we
find (at least at 1-loop order) that whenever the fixed point is IR-stable, it falls
in the physically stable region. Note that there are combinations of D and N, for
which the cubic fixed point is at infinity in the 1-loop approximation. An explicit
example is for D =1 and N = 0, a scenario relevant to the random bond Ising
model discussed in the next section.

The two RG equations admit six different flow patterns, the last four of which do not
occur in the standard field theory. The domains of the (N, D) plane corresponding to
each of the following scenarios is plotted in Fig. 11:

(i) For D =1, i.e. in the case of the O(N) model, and for 0 < N < 4, only the
Heisenberg fixed point is stable, as indicated in Fig. 12. This is the fixed point
that is usually studied in the context of critical phenomena.

(i) For D =1 and N > 4, the Heisenberg fixed point is unstable and the system is
governed by the cubic fixed point (Fig. 13).

(iii) An interesting phase diagram is obtained for N = 0 and 1 < D < 1.29. Then,
as shown in Fig. 14, the Heisenberg and cubic fixed points are both stable, their
domains of attraction being separated by the axis b = 0.

(iv) Another phase diagram with two completely stable fixed points is obtained for
N =0 and D close to 2. Then, as shown in Fig. 15, the Heisenberg and Ising
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(vi)

(ii)

05+

N

Fig. 11. Regions with different RG flow patterns in the (N, D)-plane, as discussed in the text. The do-
main-boundaries are obtained from ¢(D) = 4A(D) for the line separating (iii) and (iv) as well as (ii) and
(vi); Ne(D) =4A(D) for the line separating (i) and (ii) aswell as (iv) and (v). A third boundary is given
by the vanishing of the denominator in Eq. (10.19).

—l
7

Fig. 12. RG flow from Egs. (10.11) and (10.12) in domain (i), eg. D =1 and N < 4; shaded regions are
unstable.

ﬂ

N A4ve

=
N

fixed points are both stable, and there is a phase separatrix passing through the
Gaussian and the cubic fixed points.

(v) For D closeto 2 and N > N., where N, vanishes exponentialy for D — 2, the
cubic fixed point is in the lower right sector. Both the cubic and Ising fixed points
are stable as indicated in Fig. 16.

(vi) Yet another possibility is that both the Heisenberg and the cubic fixed points are
unstable, as in Fig. 17. This is the case for D close to 2 and N large. Then only
the Ising fixed point is attractive and controls the critical behavior.

We may inquire as to how the above flow diagrams, with different stable points and
stability regions, can occur by continuously moving around in the (N, D) plane. To
demonsgtrate this, let us examine the sequence of flow diagrams for N = 0 and differing
D. The appropriate flow diagram for D < 1isthat of Fig. 12, with the cubic fixed point
going to infinity as D — 1. For D > 1 this fixed point reappears in the upper left sector,
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Fig. 13. RG flow from Egs. (10.11) and (10.12) in domain (ii), eg. D =1 and N > 4; shaded regions are
unstable.

JIL

N

Fig. 14. RG flow from Egs. (10.11) and (10.12) in domain (iii), eg. N =0and 1 < D < 1.29, shaded
regions being unstable.

Fig. 15. RG flow from Egs. (10.11) and (10.12) in domain (iv), eg. N = 0 and D close to 2; shaded regions
are unstable.
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Fig. 16. RG flow from Egs. (10.11) and (10.12) in domain (v), eg. N = 0.2 and D = 1.8, shaded regions

NS
N/

Fig. 17. RG flow from Egs. (10.11) and (10.12) in domain (vi), eg. lasge N and D close to 2; shaded
regions are unstable.

as in Fig. 14. Along the way, it coincides with the stable fixed point at infinity, and
they exchange stability. This mechanism of changing stability from one fixed point to
another is quite general, and occurs again when the cubic and Ising fixed points merge
a D ~ 1.29. For 1.29 < D < 2, the appropriate flow diagram is that of Fig. 15. The
cubic fixed point continues to approach the Heisenberg one as D — 2, resulting in very
slow approaches to the fixed points in this limit.

We may ask whether the expanded picture presented here provides any new insight
into the behavior of tethered self-avoiding membranes (D = 2, N = 0). The perturbative
expansion predicts a crumpled phase with an exponent of » = 0.85 < 1ind = 3 [25,26].
Yet many simulations of this system using models of beads and springs [27-29,36,57]
seem to suggest a flat phase with » = 1. It is thus important to ask whether there are
additions to the standard description of such membranes in Eq. (5.3), which can lead
to a flat configuration. The most natural candidate is a bending rigidity «, which is
automatically generated in models of strings and beads as pointed out in Ref. [58].
However, it is expected that a finite «. is needed in a flat phase, while the absence
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of a crumpled phase in simulations may suggest «. = 0. Our modified Hamiltonian
with cubic anisotropy indicates that the presence of even small u for D — 2 places
the system within the domain of attraction of the Ising fixed point in Fig. 15. (The
separatrix through the cubic fixed point approaches the horizontal line as D — 2.) The
exponents that we calculate for the Ising fixed point (v > 1ind=3,4and » =0.9in
d=51r=08ind=6,and v = 0.6 in d = 8) are tantalizingly close to those found
in the simulations of Grest [33]. Yet it is hard to justify the inclusion of a finite u,
which is meaningless for a single membrane at N = 0. While the presence of additional
membranes does limit the bending of the membranes around it, the net effect is much
more than just a simple bending rigidity, as related constraints appear on all length
scales.

11. The random bond Ising model

In this section we analyze in greater detail the model for N = 0. The N — O limit is
interesting, not only because of its relevance to self-avoiding polymers and membranes,
but also for its relation to the Ising model with bond disorder. To show the latter
connection, we start with the field theory description of the random bond Ising model,
with the Hamiltonian

H:/E(VS(r))2+%(t+n(r))Sz(r)+uS4(r) : (111

where 7(r) is a quenched random variable (with 5(r) = 0). Expectation values with
quenched disorder can be calculated from a partition function that is replicated N times,
in the limit N — 0 (for a review see e.g. [59]). Averaging the replicated weight
over the Gaussian random variable n(r), with n(r)n(+') = 208%(r — #'), induces an
interaction between different replicas with an effective Hamiltonian

HN:/Z E(VSa(r))eréSi(r) +usi(r)] fUZBSi(r)Sé(r)- (11.2)

The replicated system is thus controlled by a Hamiltonian with positive cubic anisotropy
u, but negative b = —o-.

A key result in the study of random bond systems is the "Harris criterion” [60], which
states that randomness is relevant as long as the heat capacity exponent « is positive.
This is the case for the Ising model, and therefore new critical behavior is expected
for the random bond system. In the usua field theory treatments [59,61-63], there is
no fixed point at the 1-loop order. This is due to the vanishing of the denominator in
Eqg. (10.19) for D = 1. However, we now have the option of searching for a stable
fixed point by expanding about D # 1. Indeed, for N =0 and 1 < D < 1.29, the
cubic fixed point lies in the upper left sector (v > 0 and b < 0) and is completely
stable, see Figs. 14 and 18. The extrapolation for » at the cubic fixed point is plotted in
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Fig. 18. Renormalization group flow for D = 1.1 and N = 0. The cubic fixed point can be seen in the upper
left sector, and the Heisenberg one on the b axis for positive 5. The length of the arrows is scaled with the
square root of the speed of the flow, as otherwise the flow around the cubic fixed point would be invisible.

Fig. 19, where it is compared to the results for the Heisenberg and Ising fixed points.
The divergence of v, upon approaching D = 1 from above, is a result of the cubic fixed
point going to infinity as mentioned earlier. Upon increasing D, the Ising and cubic
fixed points approach each other, and merge for D = 1.29. For larger values of D, the
cubic fixed point is to the right of the Ising fixed point (b > 0) and only the latter
is stable. Given this structure, no plateau can be found for a numerical estimate of the
random bond exponent »po, and we can only pose the inequality

VDO > Vlsing- (11.3)

While Eq. (11.3) was derived at 1-loop order, it should hold at higher orders, if no
drastic subleading corrections appear; since it merely depends on the genera structure
of the renormalization group flow.

Higher loop calculations of the random bond Ising model can be used to expand the
exponent » in powers of \/e. Eg. (11.3) can then be compared to the 2-loop result [63],
which in d = 3 reads

1 /61
=z —_ ~0.584. 11.4
DO 2-1— 534 0.584 ( )

Thisis dightly larger than the corresponding Ising value at 1-loop order (v = 0.583), but
smaller than the best known Ising result (v ~ 0.631). Three- and four-loop calculations
were performed in Refs. [64] and [65], respectively; the latter gives » = 0.6714
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Fig. 19. Extrapolations of » from the expansion of vd with ¢(D) = D, for the O(N) model in three
dimensions. The values of the Heisenberg fixed point for N = 0 are compared to those of the Ising and cubic
fixed points. The crossing of the latter two curves yields an estimate of » = 0.6315 for the d = 3 Ising model.

and v = 0.6680 depending on the resummation-method used. Five-loop calculations
in [66] however seem to indicate that the /¢ is not even Borel-resummable. Two-loop
calculations in fixed dimension d = 3 [67] yield v = 0.678. A similar result is obtained
within a modified Padé-Borel approximation of 3-loop results in Ref. [68], yielding
v = 0.666. We also note that Ref. [68] stresses the existence of very dow transients
in the renormalization group flow for small . The extremely retarded crossover to the
random bond fixed point may quantitatively explain the Monte Carlo data which seem to
suggest a disorder-dependent, and thus non-universal, behavior for the critical exponents.
The same characteristic flow is also present at 1-loop order for our random bond fixed
point candidate, e.g. for D = 1.1 asin Fig. 18, further validating our approach. Within
error bars, al these results are consistent with a = 0, i.e. the border-line value of the
Harris criterion [60], corresponding to
2

=2 (11.5)

There is also an exact result [69,70] that the exponent v in any random system must
be greater than or equal to 2/d. Generalizing the “Harris criterion” bound to manifolds
yields a limiting value of 2D/d, which is also the mean-field value discussed earlier.
The duality between the high- and low-temperature expansions of the Ising model
remains valid in the presence of random bonds. As discussed above, the high temperature
expansion can be presented geometrically as a theory of loops with self-avoidance (1 >
0), and mutual attraction (b < 0). We can develop a related low-temperature expansion
as follows: Starting with an ordered ground state, the partition function Z[{J}] can be
expanded as a sum over contributions of droplets of the opposite spin; each element of
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Fig. 20. Extrapolations of » from the expansion of »d with ¢(D) = D, for the random bond Ising model
in d = 3, from the high- and low-temperature descriptions. Note that the intersection of the curves (from

these dual descriptions) at the mean-field value of 2/3 is a property of the 1-loop expansion, as discussed in
Section 9.

the droplet surface crossing a local random bond J makes a contribution of exp(—28J).
A replicated description is obtained for Z[{J}]" as a sum over droplets of N different
colors. The next step is to average over al the random bonds {J}: A specific bond
may be crossed m =0, 1,..., N times for a given term in Z[{J}]1". Assuming that the
random bonds are independently chosen from a Gaussian distribution of width o, each
random bond contributes a factor of

m(m—1)

exp(—2BmJ) =exp |—2p (] — Bo) m + 4% >

(11.6)
The first term in the exponent on the right-hand side can be regarded as a shift in
the bond energy due to randomness. The second term represents a pairwise attraction
between the m manifolds of different colors. Thus the quench averaged low-temperature
description is of a set of D = d — 1 dimensional self-avoiding droplets, with mutual
attractions between droplets of different colors. (This is easily generalized to models
with interactions defined on other elementary manifolds.)

We can now make the conjecture that the low-temperature sums are not drastically
modified by restricting the droplets to tethered membranes. This will again lead to
the exponent identity in Eq. (9.5). The extrapolations from the dual descriptions of the
random bond Ising model (at the cubic fixed point) are presented in Fig. 20. Because of
the absence of a plateau, there are no clear points where these curves can be compared.
The intersection of the two curves provides a specific point for extracting exponents of
the random bond model. However, as discussed in Section 9, at the 1-loop level this
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occurs at the mean-field value of 2/3.

In the previous sections we relied on a plateau in the extrapolation curves to obtain
numerical values of the exponents. Another method for selecting a specific point of these
curvesis to look at intersection points. For example, in Fig. 19 the curves corresponding
to the cubic and Ising fixed points intersect at D = 1.29. Since the intersection occurs
when the two fixed points coalesce on the b = 0 axis, they both have Ising symmetry at
this junction. We may hope that this point yields precise exponents as all ambiguity in
the expansion point is removed. The actual numerical prediction of

v* = 0.6315, (11.7)

is indistinguishable from higher-order calculations [2]. However, the method is not
insensitive to the extrapolation variables used, and it is thus unclear if more precise
results are obtained in higher order calculations.

Finally, we note that the above considerations are easily generalized to multi-com-
ponent spins subject to random bonds. We shall denote the number of components of
the field by p, reserving the symbol N for the number of replicas, as in the random
bond Ising model (corresponding to p = 1). Starting asin Eqg. (11.1) from

P p
HP :/Z E (VSi(r)® + % (t+n(r))5i(r)2} +uy S(N’S'(n? (118
=l

i,j=1

yields, in analogy with Eq. (11.2), after replicating and averaging over n,

N p
HPN=/ZZ E (VSL(1)’ + 5 S,(r) ] +MZZS’ (r)28%(r)?

a=1i,j=1

N p
— Z ZS’ (r)285(r)2. (11.9)

a,B=1i,j=1

In the resulting O(N) x O(p) model, rotational symmetry is broken in the O(N) sector,
but remains intact in the O(p) sector. We can next develop a geometrical description
of the high temperature expansion of this field theory in the language of self-avoiding
polymer loops, which are then generalized to membranes. It is then easy to see that in a
perturbative expansion, each closed loop contributes an additional factor of p (asin the
standard O(N) model, where every closed loop is accompanied by a factor of N). All
previous results are thus simply generalized by replacing ¢(D) in the renormalization
group expressions with p x ¢(D). Since, according to the Harris criterion [60], non-
trivial random bond exponents are obtained in the physical dimensions of d = 2 and
d =3, only for p < 2, we shall not pursue this analogy further.
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Appendix A. Derivation of the RG equations
In this section we give a derivation of the renormalization group functions. Starting
from
b=boZ, 27 e, (A.1)
the B-function is given through the variation of the renormalized coupling, at fixed

values of the bare coupling and bare chemical potential, as

b. (A2)
0

From the derivative of Eqg. (A.1) with respect to u, we obtain

J
B(b) = Ko

B(b) (1+b% |n(z,,zd/2)) = —gb, (A.3)

which, solving for B(b), yields
—eb
1+ b2 In(Z,Z29?)

The scaling exponent » relates the chemical potential ¢+ and radius of gyration R
through

B(b) = (A.4)

R~1t"/7P, (A5)

2—

To obtain v, we first observe that the dimensionless combination RZtTD, is a function
of b and ¢t/uP only, i.e.

R%5" = f(b,t/uP). (A.6)

Since in addition, ¢ can be expressed as a function of ¢, and » only, Eq. (A.6) implies
that

M% [RZIZ’TD} = <,8(b)% Dt%) [RZIZ’TD} . (A7)

2—D
Next observe that R3,” is independent of the renormalization scale u. Replacing bare
by renormalized quantities, we obtain a relation for the total derivative with respect to
M, 8
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2—D

“di [RZITZ(b)Z,(b)Z’T”} = 0. (A.8)
y7
Combining the latter relation with Eq. (A.7) gives
i 9 9 20\ [ 2,527
(DtE—B(b)%—,B(b)%In (zz, )) [Rz }_o. (A.9)
The scaling function of the field, describing the scaling of the membrane at the critical

point with B8(b) — O, is thus

2-D 1 J 2-D
v(b) = == = SB(b) -1 (zz, > ) . (A.10)

(Note that the last term cannot be dropped, as the vanishing of the B-function is canceled
by the divergence of the derivatives of the Z-factors at this point.)

Appendix B. Reparametrization invariance

In this appendix we shall explore the consequences of a reparametrization
x — x' =xz;YP (B.1)

on the Hamiltonian

H=L/3<Vr<x>>2+bmzb//5"<r<x> () + 12,0, (B.2)
2—D 2
X Xy

for a self-avoiding membrane (D = 1 for polymers). (The notation for the rescaling
factor anticipates renormalization factors that we shall introduce next.) The Hamiltonian
in Eq. (B.2) isin fact not invariant under this rescaling because of the cutoff implicit
in the interaction. In order to achieve scale invariance, the cutoff, or equivaently the
renormalization scale u, must also be rescaled to

,LL—>,LL/:,LLZ;'/D. (83)

The Hamiltonian then changes to

2—D
72,7 1 oD . _
2-D /Q(Vr(x))z-Fb,u 22" 2//5d(r(x)_r(y))+tztza 0.
x Xy

H=

(B.4)

Comparing to the origina Hamiltonian then identifies the new renormalization group
factors

2-D
Z'=277," ,
z =771

—2+¢/D

Z= 7,7, (B.5)
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As discussed in the main text, see Egs. (3.29) and (5.25), the renormalization group-
functions are left unchanged by the transformations in Egs. (B.5), the most useful case
being Z, = Z,.

Appendix C. Structure of the divergences and the MOPE

In this appendix we present a more intuitive description of the structure of the
divergences, and the multilocal operator product expansion (MOPE) used to prove
renormalizability [ 23,24] and for explicit calculations [ 26,25] . This presentation already
appears in French in Ref. [71], but is reproduced here for completeness, and for the
reader’s convenience.

We first remark that with our choice of normalizations, the free propagator

1/1
7 <§ (r(x1) — V(Xz))2> = |xy — x|*7P (C.1)

0

is the Coulomb potential in D dimensions. This analogy with electrostatics will help us
analyze the structure of the divergences. The interaction part of the Hamiltonian H is
reminiscent of a dipole, and can be written as

H=b [ [5 0 —rGan=s [ [ / ghrtn stz (c2)

X1 X2 X1 X2

The next step is to analyze the divergences appearing in the perturbative calculation of
expectation values of observables. To simplify the calculations, we focus on the partition
function

z= > eM=(em). (C3)
al states

To exhibit the similarity to Coulomb systems, consider the second order term

2
% |nt b ////// ezk(r(n) r(/\z))ezp(r(yl) r()z))>

X1 X2 y1 y2
S/ []]]] ©
X1 X2 y1 y2

where E. is the Coulomb energy of a configuration of dipoles with charges +k, and
+p, respectively. More generaly, for any Gaussian measure we have

<e: Zi kir(x;) >0 - e*% Zu kikj<(r(xi)*r(xi))2>o. (C5)

Since for any configuration of dipoles, specified by their coordinates and charges, the
total charge is zero, the Coulomb energy is bounded from below, i.e.
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Es > 0. (C.6)
This implies that

e Fo 1, (C.7)

and that the configurations which contribute most are those with minimal charge.

Let us apply the above observation to evaluating the integralsin Eqg. (C.4). The basic
idea is to look for classes of configurations which are similar. The integral over the
parameter which indexes such configurations is the product of a divergent factor, and a
“representative” operator. For the case of two dipoles, one with charge k and the other
with charge p — k contracted together, one only sees a ssimple dipole with charge p from
far away, i.e.

k ./\\. —k ~» » X e—k2(|S‘27D+|I|27D).
p—k "X 2 —ptk
(C.8)
The second factor on the r.h.s. contains the dominant part of the Coulomb energy
= k?(|s|>=P 4 |#|>~P) of the interaction between the two dipoles; s and ¢ are the

distances between the contracted ends. The integral over k is now factorized, and we
obtain

2 2—D 2—D
/efk (P40 = (152D 4 (2P —d/2, (C9)
k

We define the MOPE coefficient, as

(F ) = (oo o). (c10)

The MOPE therefore gives a convenient and powerful tool to calculate the dominant
and all subdominant contributions from singular configurations.

For the sake of completeness, let us till calculate the two other MOPE coefficients
used in the text. The first is for small [x — y| (vo = 552),

AQy :/ sk ek ()

k

:/ - @hr()=r(y) .« o=k |x—y|*0
k

/{1— ) =) } e Kl
k

1
\x—yl‘”"" [(x—y)Vr< —; )} ;‘x_y|—uo(d+2)+m
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=[x —y|771 — \x U S (C.11)
(The norma ordered operator :O: indicates that all self-contractions of O have been

subtracted.) We also have to show the factorization property of @ which is

the product of two &%-interactions

@ / ghr . g=ikr(x) . @pr(y) .- @=ipr(z) . (C.12)
u xvz”

We want to study the contraction of x, y, and z, and look for all contributions which
are proportional to

R :/ gk - gk (G +2)/3) (C.13)
k

The key-observation is that in Eq. (C.12) no contraction with : e=*"*) : contributes.
All such contractions yield a factor of k, which after integration over k results in
derivatives of the 5¢-distribution. Thisis equivalent to stating that as long as contributions
proportional to «——— are studied, the following factorization property holds:

H@ DR Q (C.14)

This is the reason why, in the massless scheme, divergences proportional to @

are aready eliminated through a counter-term for Q i.e. by the renormalization

factor Z.

Appendix D. Renormalization for infinite membranes

In this appendix we give a short summary of the renormalization procedure for
infinite membranes, and derive the one-loop counter-terms. This is a simplified version
of the corresponding section in Ref. [25], which is included here again mainly for
completeness.

Let us start with a single dipole. When its end points (x, y) are contracted towards a
point (taken here to be the center-of-mass z = (x + y)/2), the MOPE is

The first MOPE coefficients are given explicitly by

)++... (D.1)
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<XQ‘ 1) =[x —y| 7,
— 1 D —wvod
(e

2D
and where -¢- denotes the local operator

1
+ = E(Vr(x))z. (D.3)

The integral over the relative distance x — y for

is, at ¢ =0, logarithmically divergent.
The simplest contraction resulting in a dipole is when two dipoles coalesce. The
corresponding MOPE coefficient is

(23]

where x and y are now the relative distances inside the two subsets. Another possibility

) = ([x|?° + Iy\z”")*d/z, (D.4)

is to consider the contraction O But as we have shown in Appendix C, this

does not give a new divergence.

In the next step, counter-terms are introduced to subtract these divergences. We
have to distinguish between counter-terms for relevant operators and those for marginal
operators. The former can be defined by analytic continuation, while the latter require a
subtraction scale. Indeed, the divergence for 1 is given by the integral

[ (L)) e

A=< x—y|<L h AL
=1 (AP=e — L1577, (D.5)
D —¢
where A is a high-momentum UV regulator, and L a large-distance regulator. For ¢ =~ 0,
this is UV-divergent but IR-convergent. The simplest way to subtract this divergence is
therefore to replace the dipole operator by

x.—.y N x.—.y - oy, (D6)

where e o = |x — y|=*¢. This amounts to adding to the bare Hamiltonian, the
UV-divergent counter-term

b
AH[r] =5 //\x—yr”od, (D.7)
x oy
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which is a pure number, and thus does not change the expectation value of any physical
observable.

We next consider marginal operators. In the MOPE of Eq. (D.1), the integral over
the relative distance of

/Q§2y+)+

x—y

is logarithmically divergent at € = 0. In order to find the appropriate counter-term,
we use dimensional regularization, i.e. set € > 0. An IR cutoff L, or equivaently a
subtraction momentum scale u = L™, has to be introduced in order to define the
subtraction operation. As a general rule, let us integrate over all distances appearing in
the MOPE coefficient, bounded by the subtraction scale L = w1, giving

QI [ (9

[x—y|<L

+):Uﬂ&m. (D.8)

Following Refs. [23-26,43], we use a minimal subtraction scheme (MS). The interna
dimension D of the membrane is kept fixed, and Eqg. (D.8) is expanded as a Laurent
series in e, which here starts at e~. Denoting by Res( | ), the residue of the term
of order ¢! of the Laurent expansion of ( | ), for L = 1, the residue of the pole in
Eqg. (D.8) is found to be

R&s<@‘+>=%. (D.9)

It is this pole that is subtracted in the MS scheme by adding to the Hamiltonian a
counter-term

Mﬂﬂ=§R6«g2‘+>/"+y (D.10)

Similarly, the divergence arising from the contraction of two dipoles into a single
dipole is subtracted by a counter-term proportional to the residue of the single pole of

()= [ [ ()

lx|<L |y|<L
= X + |y - . .
[ [ e (D.11)
lx|<L |y|<L
Integrating the above yields
2
I (52
R6<5\xv‘ >‘2_D,(gg)' (B2
2—-D
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As a result, the model is UV-finite if we use the renormalized Hamiltonian

2-D

X

z 1 .
Helr] = =—— E(Vr(x))z—l—bzbus//&d(r(x)—r(y)), (D.13)

instead of the bare Hamiltonian H[r]. Here, r and b are the renormalized field and
coupling constant, and . = L~ is the renormalization momentum scale, and the renor-
malization factors at one-loop order are

z=1(2D)R<s<@‘+>§, (D.14)

_ ‘T TN b
Z,=1+R el lgi|e——e )—. D.15
b=1+ ‘5< D) ’ >a (D-15)
The renormalized field and coupling constants are re-expressed in terms of their bare

counterparts through
ro(x) = ZY?r(x), bo=bZ, Z? u°. (D.16)

Following the analysis of Refs. [23-26], the renormalization group B-function and »
(the anomalous scaling dimension of r) are obtained from the variation of the coupling
constant and the field with respect to the renormalization scale w, keeping the bare
couplings fixed. They are written in terms of Z and Z, as

d —&b
b)y=pu—| b= : D.17
PO =t DT T4 b2 inz, + 262 1nz (&40
2-D 1 9 2-D 1 4
by=S22 —Sp—| InZ=""2 - ZB(h)~Inz D.18
V=257 =G 3= (D.18)

Appendix E. Other topologies

Throughout the manuscript we have generalized polymer loops at D = 1 to closed
hyperspheres at D # 1. Natural questions are whether other topologies may aso be
used, or if it is possible to sum over al topologies with appropriate weights. The only
equation where the topology enters is that of the partition function for a single polymer
or membrane in Eq. (5.11). Following David et a. [24], this is generalized to

21(83 _c(D) /%Q (Y+xd/6D—v0d/D o122

D
_ c(D) € /\/d g/D+X4 1
=55 F<D+6D 1) /o1, (E.1)

where y is the Euler characteristics of the membrane; y = O corresponds to a sphere,
x = 1to a l-torus, and so on. Note that this equation is strictly correct only for D = 2,
but that we make an analytic continuation for arbitrary D in order to keep the anomalous
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contribution from the topology. (Topological anomalies, related to trace anomalies in
conformal field theory [72], occur only in integer dimensions.) Expanding now for
e = 0, the 1-torus gives an additional contribution a&¢ D = 4/3, and d = 8. Thus for
D > 4/3, the torus is irrelevant, higher topologies are even more irrelevant, and their
neglect is justified. In principle, for D < 4/3, we can perform a double e-expansion
about this point. The second expansion parameter is

5:8+%—D. (E.2)

We can then introduce four different couplings. One coupling » on the same object (be
it atorus or a sphere), a second coupling g between spheres, a third coupling « between
spheres and tori, and a fourth coupling between tori. We leave such calculations for the
future.
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