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Abstract. We introduce a generalization of the O(N) field theory to N-colored membranes of arbitrary
inner dimension D. The O(N) model is obtained for D → 1, while N → 0 leads to self-avoiding tethered
membranes (as the O(N) model reduces to self-avoiding polymers). The model is studied perturbatively
by a 1-loop renormalization group analysis, and exactly as N → ∞. Freedom to choose the expansion
point D, leads to precise estimates of critical exponents of the O(N) model. Insights gained from this
generalization include a conjecture on the nature of droplets dominating the 3d-Ising model at criticality;
and the fixed point governing the random bond Ising model.

PACS. 05.70.Jk Critical point phenomena – 11.10.Gh Renormalization – 64.60.Ak Renormalization-group,
fractal, and percolation studies of phase transitions – 75.10.Hk Classical spin models

Field theories have strong connections to geometrical
problems involving fluctuating lines. For example, sum-
ming over all world-lines representing the motion of parti-
cles in space-time, is the Feynman path integral approach
to calculating transition probabilities, which can also be
obtained from a quantum field theory. Another example is
the high-temperature expansion of the Ising model, where
the energy-energy correlation function is a sum over all
self-avoiding closed loops which pass through two given
points. Generalizing from the Ising model to N compo-
nent spins, the partition function of a correspondingO(N)
“loop model” is obtained by summing over all configura-
tions of a gas of closed loops, where each loop comes in
N -colors, or has a fugacity of N . In the limit N → 0, only
a single loop contributes, giving the partition function of
a closed self-avoiding polymer [1].

There are several approaches to generalizing fluctuat-
ing lines to entities of other internal dimensions D; it is
important to note that such extensions are not unique.
The most prominent generalizations are string theories
and lattice gauge theories, both describing D = 2 world
sheets [2]. The low temperature expansion of the Ising
model in d-dimension also results in a sum over surfaces
that are (d−1)-dimensional. Each of these extensions has
its own strengths, and offers new insights on field theory.
Here we introduce a generalization based on a class of
D-dimensional manifolds called “tethered” (or polymer-
ized) membranes, which have fixed internal connectivity,
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Fig. 1. Schematic description of the model, and its limits.

and are the simplest generalization of linear polymers [3].
The resulting manifold theory depends on two parameters
N and D, with limiting behaviors related to well-known
models as depicted in Figure 1. The model is defined by its
perturbation series, and as in string theory not obviously
derivable from a local Hamiltonian.

We start with a brief review of the high temperature ex-
pansion for an N -component (spin) field s. Corrections to
the infinite temperature partition function Z, set to unity
for convenience, can be represented diagrammatically by
closed graphs. The terms contributing to the free energy
are then grouped as
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The first term is the sum of all closed random walks.
There is a trivial factor of volume V , since the same walk
can start at any point. Having divided by this factor, the
black indicates that the walk starts from a specific point.
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A walk of length ` is weighted by e−t`, where e−t is the
high temperature expansion parameter. Since the prob-
ability that a walk of ` steps returns to its origin in d-
dimensions is proportional to `−d/2,
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The final equality indicates the connection between ran-
dom walks and propagators of free field theory. Each loop
carries a factor of N , for the number of field components.

The graphs in the high temperature series are distinct
from random walks, in that their intersections are either
forbidden or penalized. Subsequent terms in equation (1)
correct for this by subtracting random walks with intersec-
tion points indicated by dashed lines. The second term in
this expression indicates two intersecting loops (factor of
N2), and the third one a single loop with a self-intersection
(factor of N). In the standard field theory, with “interac-

tion” b (s · s)
2
, each dashed line carries a factor of −b. The

high temperature expansion thus provides a geometrical
representation of field theory as a grand canonical gas of
non-intersecting N -colored loops.

It is natural to attempt a generalization of the
above description in which the basic entities are higher-
dimensional manifolds of internal dimension D. Such ex-
tensions are not unique, and we shall outline the steps
that lead to our choice: (a) regard the manifold as a col-
lection of points, whose locations are the basic degrees
of freedom. In a fluid manifold the relative positions of
these points can change. Summing over all particle loca-
tions consistent with a given shape is a difficult problem.
Encouraged by its success in polymer theory, we study
instead tethered manifolds, in which particles are perma-
nently linked as in a net. The surface is now described by
a d-dimensional vector r(x), with a flat metric. (b) The
fixed local connectivity is still consistent with many pos-
sible global shapes. As the simplest extension of loops we
select hyper-spherical manifolds. (We have confirmed that
surfaces of other genus are at least perturbatively irrele-
vant [4].) (c) A manifold of volume Ω is now weighted by
a factor e−tΩ, where t is a chemical potential per particle.
The probability that a tethered manifold is attached to a
given point in space is [5]〈

δ̃d(r(x0))
〉

0
∼ Ω−

2−D
D d . (3)

As any one of ω points can be attached to the origin,
equation (2) is generalized to
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c(D)
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Note that the final step is an integration over all manifold
sizes. Should we weigh each size according to its linear di-
mension X, or volume Ω ∝ XD, with dΩ/Ω = DdX/X?
The arbitrariness of this choice is the origin of the pa-
rameter c(D) introduced in equation (4). Any choice of
c(D) which reproduces the polymer partition function
with c(1) = 1, is acceptable. In the remainder, we will
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Fig. 2. Extrapolations for the exponent ν of the O(N) model
in d = 3, using the expansion of νd with c(D) = D. The dashed
lines represent the best known values from reference [6].

mainly focus on c(D) = D, equivalent to the integral dΩ
over all scales. The same result is obtained by demanding
that equation (4) only depend on one parameter, namely
2− d(2−D)/2D.

Higher order terms in equation (1) have similar inter-
pretations as intersecting manifolds. By construction, the
perturbative series reduces to that of the O(N) model for
D→ 1, while the leading diagrams in the limit of N → 0
describe a single tethered manifold (see Fig. 1). What can
be learned from this generalized theory? We can actually
take advantage of the non-uniqueness of the generaliza-
tion to obtain good estimates of the critical exponents
of the standard field theory! Simple power counting indi-
cates that intersections are relevant only for dimensions
d < dc = 4D/(2−D). This is reflected in divergences in
the perturbative series which are removed by renormaliza-
tion (for details see Ref. [4]). For example, the divergence
of the correlation length at a critical point is described
by the exponent ν(D,N, d), which has an expansion in
ε = 2D − d(2−D)/2 ∼ (dc(D)− d), as

ν(D,N, d) =
2−D

2
(5)
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This expression reduces to the well-known ε-expansion [6]
around d = 4 for lines (D = 1), while the N → 0 limit re-
produces the result for self-avoiding manifolds [7], recently
generalized to 2-loop order [8].

To extract the physically relevant O(N) exponent for
D = 1, one has the freedom to expand equation (5) about
any point (D0, d0) on the critical curve ε(D0, d0) = 0 [9].
As depicted in Figure 2, the resulting extrapolation for ν
varies with the extrapolation point. (For technical reasons,
this figure is obtained by reorganizing the expansion as
νd = 2D+a(D)ε, before extracting ν.) Guided by previous
results for polymers and membranes [8], the criterion for
selecting a particular value from such curves is that of
minimal sensitivity to the expansion point, and we thus
evaluate ν at the extrema. The broadness of the extremum
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Fig. 3. Test of equation (6) for Ising models in d=2.5 and 3.
The upper curves are from the high temperature representation
(D= 1), while the lower curves are from the low temperature
description (D=d− 1). The exponent ν is estimated from the
maximum of each curve, which are obtained by extrapolating
νd with c(D) = D, linearizing in N , and dividing the result
by dD.

then provides a measure for the goodness of the result,
and the expansion scheme. Although we examined several
such curves, only a selection is reproduced in Figure 2.
Our results are clearly better than the standard 1-loop
expansion of ν = 1/2 + (N + 2)/[4(N + 8)].

In analogy to tethered membranes [10], we expect the
above expansion scheme to be better controlled than the
traditional ε-expansion. (The ε-expansion should become
quasi-convergent for D → 2.) However, since the expo-
nents of the O(N) model are already known to high accu-
racy, the generalization to M(N,D) is valuable if it offers
insights beyond the standard field theory. Furthermore,
the scheme will have limited appeal, if cannot be extended
to other types of field theories. In the rest of the article we
shall demonstrate that: (a) The model provides insights
about the boundaries of droplets at criticality in Ising
models. (b) A generalized manifold model is constructed
with cubic anisotropy, which exhibits a reverse Coleman-
Weinberg mechanism not present in standard field theory.
Furthermore, it provides us with a 1-loop fixed point for
the random bond Ising model.

For the Ising model (N = 1), a different geometrical
description is obtained from a low temperature expansion:
excitations to the uniform ground state are droplets of
spins of opposite sign. The energy cost of each droplet
is proportional to its boundary, i.e. again weighted by a
Boltzmann factor of e−tΩ. Thus, a low temperature series
for the d-dimensional Ising partition function is obtained
by summing over closed surfaces of dimension D = d− 1.
For d = 2, the high and low temperature series are simi-
lar, due to self-duality. For d = 3, the low temperature
description is a sum over surfaces. What types of sur-
faces dominate the above sum? Since there is no con-
straint on the internal metric, it may be appropriate to
examine fluid membranes. However, there is no practical
scheme for treating interacting fluid membranes, and the
excluded volume interactions are certainly essential in this
case. Configurations of a single surface for N = 0, self-
avoiding or not, are dominated by tubular shapes (spikes)
which have very large entropy [11]. Such “branched poly-
mer” configurations are very different from tethered sur-
faces. However, for N 6= 0, it may be entropically advan-
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Fig. 4. Regions with different RG-flow patterns in the (N,D)-
plane (top), and the corresponding RG-flows (bottom); shaded
regions are unstable.

tageous to break up a singular spike into a string of many
bubbles. If so, describing the collection of bubbles by fluc-
tuating hyper-spherical (tethered) manifolds may not be
too off the mark [12]. To test this conjecture, we compare
the predictions of the dual high and low-temperature de-
scriptions.

Singularities of the partition function are characterized
by the critical exponent α(D, d,N), or (using hyperscal-
ing) through lnZsingular ∼ |t−tc|νd/D. The equality of the
singularities on approaching the critical point from low or
high temperature sides, leads to a putative identity

ν(1, d, 1) =
ν(d− 1, d, 1)

d− 1
· (6)

Numerical tests of the conjecture in equation (6) are pre-
sented in Figure 3. The extrapolated exponents (the max-
ima of the curves) from the dual expansions are in ex-
cellent agreement. Nevertheless, higher-loop calculations
would be useful to check this surprising hypothesis.

The simplest extension of the O(N) model breaks the
rotational symmetry by inclusion of cubic anisotropy [13].
In the field theory language, cubic anisotropy is repre-
sented by a term u

∑
i s

4
i , in addition to the usual in-

teraction of b
∑
ij s

2
i s

2
j . In the geometric prescription of

high temperature expansions, the anisotropic coupling u
acts only between membranes of the same color, while
the interaction b acts irrespective of color. Stability of the
system of colored membranes places constraints on pos-
sible values of b and u. To avoid collapse of the system,
energetic considerations imply that if u < 0, the condi-
tion u + b > 0 must hold, while if u > 0, we must have



190 The European Physical Journal B

21.510.50

0.7

0.65

0.6

0.55

0.5

cubic

Heisenberg

Ising

cubic

ν

D0

Fig. 5. Extrapolations of ν from the expansion of νd with
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u+Nb > 0 [4,13]. These stability arguments may be mod-
ified upon the inclusion of fluctuations: in the well-known
Coleman-Weinberg mechanism [13], the RG flows take an
apparently stable combination of b and u into an unstable
regime, indicating that fluctuations destabilize the system.
In the flow diagrams described below, we also find the re-
verse behavior (see (iii) to (v)) in which an apparently
unstable combination of b and u flows to a stable fixed
point. We interpret this as indicating that fluctuations
stabilize the model, a reverse Coleman-Weinberg effect,
which to our knowledge is new. We have shaded in grey,
the unphysical regions in the flow diagrams of Figure 4.
As in their O(N) counterpart, the RG equations admit 4
fixed points: the Gaussian fixed point with b∗G = u∗G = 0;
the Heisenberg fixed point located at b∗H 6= 0, u∗H = 0;
the Ising fixed point with b∗I = 0, u∗I 6= 0; and the cubic
fixed point at b∗c 6= 0, u∗c 6= 0. Furthermore, as depicted in
Figure 4, there are six different possible flow patterns. In
the O(N) model, the flows in (i) and (ii) occur for N < 4
and N > 4, respectively. The other patterns do not ap-
pear in the standard field theory, as is apparent from their
domain of applicability in the (N,D) plane in Figure 4.
Note that there are two stable fixed points in three out of
these four cases.

The N → 0 limit of the above models is interesting,
not only because of its relevance to self-avoiding polymers
and membranes, but also for its relation to the Ising model
with bond disorder. The latter connection can be shown
by starting with the field theory description of the random
bond Ising model, replicating it N times, and averaging
over disorder [14]. The replicated system is controlled by
a Hamiltonian with positive cubic anisotropy u, but nega-
tive b = −σ (σ is related to the variance of bond disorder).
From the “Harris criterion” [15], new critical behavior is
expected for the random bond Ising system. But in the
usual field theory treatments [14], there is no fixed point
at the 1-loop order. In our generalized model, this is just
the borderline between cases (i) and (iii). However, we
now have the option of searching for a stable fixed point
by expanding about any D 6= 1. Indeed, for N = 0 and

1 < D < 1.29, the cubic fixed point lies in the upper left
sector (u > 0 and b < 0) and is completely stable, as in
flow pattern (iii).

The extrapolation for ν at the cubic fixed point is plot-
ted in Figure 5, where it is compared to the results for
the Heisenberg and Ising fixed points. The divergence of
ν on approaching D = 1 from above, is due to the cubic
fixed point going to infinity as mentioned earlier. Upon in-
creasing D, the Ising and cubic fixed points approach, and
merge for D = 1.29. For larger values of D, the cubic fixed
point is to the right of the Ising one (b∗c > 0), and only the
latter is stable. Given this structure, there is no plateau
for a numerical estimate of the random bond exponent
νDO, and we can only posit the inequality νDO > νIsing .
While this is derived at 1-loop order, it should also hold
at higher orders since it merely depends on the general
structure of the RG flows. One may compare this to four
loop calculations of the random bond Ising model [16],
which are consistent with α = 0, i.e. at the border-line of
the Harris criterion [15], with ν = 2/3.
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