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Abstract

Recently, B. Gerganov et al. [Phys. Rev. Lett. 86 (2001) 4753] have proposed an “exact” (all-
orders) B-function for 2-dimensional conformal field theories with Kac—Moody current-algebra
symmetry at any level, based on a Lie grouf, which are perturbed by a current—current interaction.
This theory is also known as the non-Abelian Thirring model. We check this conjecture with an
explicit calculation of the8-function to 4-loop order, for the classical grougs= SUN), SON)
and SAN) at levelk = 0. We find a contribution at 4-loop order, proportional to a higher-order
group-theoretical invariant, which is incompatible with the propogefinction in all possible
regularization schemes.

0 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Perturbations of conformal field theories (CFT) in two dimensions (2D) have been a
very active topic of study for a long time. The focus of this paper are 2D conformal field
theories possessing Kac—Moody current algebra (or: “affine Lie algebra”) symmetry [1] as-
sociated with a Lie groug, which are perturbed by a bilinear in the Noether-current (i.e.,
by a “left-right current—current bilinear interaction”). Non-Abelian Thirring models [2,3]
and Gross—Neveu models [4] are much studied examples, see, e.g., [5-9]. Typically, such
perturbations are (marginally) relevant and generate a mass scale; in these cases the long-
distance (infrared) behavior of these theories is that of a massive field theory. However,
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generalizations of these theories may exhibit [10] massless long-distance fixed points in a
certain zero species (“replica”) limit, or, which can be seen to be equivalent [11], when the
symmetry group; is replaced by a certain supergroup. Such theories are of great interestin
condensed matter physics, since the mentioned “zero-species”, or equivalently, supersym-
metry generalizations describe (de-)localization transitions known to occur in dirty, i.e.,
disordered, non-interacting electronic systems in two spatial dimensions, subject to static
random impurities. Indeed, the aim of [10] was to study the integer quantum Hall plateau
transition! and to provide an alternative to the formulation given by Levine, Libby and
Pruisken [12—15] in terms of a strongly coupled non-linear sigma model with a topological
term (see also [16]). More recently it was recognized [17—-19] that disordered superconduc-
tors (and other systems) provide an entire new arena capable of exhibiting (de-)localization
transitions of a similar kind (albeit in entirely new universality classes). Since then, the
study of (de-)localization transitions in non-interacting quantum systems in 2D has seen
an immense surge of research activity (see, e.g., [20—27] and references therein). A general
understanding of the strong-coupling (long-distance) behavior of 2D Kac—Moody current
algebras perturbed by current—current interactions would be a valuable tool to describe a
number of such transitions. Indeed, a good understanding of such perturbations has been
achieved in a few cases [10,28-30]. However, in general, this is not the case, to date.

An intriguing conjecture has recently been advanced by Gerganov, LeClair and
Moriconi [31], who consider, as above, a general Kac—Moody current algebra conformal
field theory with symmetry grou@ at any levek, perturbed by right—left current bilinears.

(The perturbations they discuss may also be anisotropic, or involve a supergroup, but this
will not be important for the arguments presented in this article, which focuses entirely on
the isotropic situation and bosonic groups.) Their paper builds on earlier work by Kutasov
[32], who computed the renormalization group (R&junction for the isotropic cadeof

a (bosonic) symmetry group to leading order in the large levilof the current algebra.

The authors of [31] argued that Kutasov’s result be exact@aforvalue of the levek,

in a particular regularization scheme. Specifically, for the isotropic case, the authors of
Ref. [31] conjecture that thexactB-function for the coupling be given by

plo =1 _c
870 T 2t ke a2

whereCs is the eigenvalue of the quadratic Casimir operator in the adjoint representation
of the symmetry groug;. Clearly, the notion of aexact-function is delicate due to

its dependence on the regularization scheme. (The contributions gaftimection beyond

2-loop order are scheme dependent.) Ref. [31] appears to be working in some scheme
related to the left-right factorization of the underlying CFT. However, an explicit cut-off
procedure, within which Eq. (1.1) is to be valid, is not specified in more detail in [31]. The
authors indicate that certain checks to 3-loop order were performed. Checks beyond three-
loop order have never been performed, to our knowledge. The 3Aefomction within
dimensional regularization has also been discussed in Refs. [33,34].

(1.1)

1 In the absence of long-range electron—electron interactions.
2 This theory is renormalizable with a single coupling constant.
31:= In(a/L) is the RG-flow parameter, andand L are the UV and IR cutoffs, respectively.
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For the case where a symmetgy= SU(2) is broken down toU(1) by a purely
imaginary easy-axis anisotropy, and for leket 1, the above conjecture (more precisely,
an appropriate generalization) reproduces [35] known exact results [36—38]. The massless
RG flow of the resulting non-unitary theory interpolates between ultraviolet (UV) and
massless infrared (IR) fixed points. (Both lie on the line of free scalar field theories with
central charge = 1 but with different compactification rad)i In this case, the conjectured
B-function reproduces correctly the exactly known universal relationship between the exact
scaling exponents (i.e., the slopes of fhéunction) at the IR and the UV fixed points. This
is the only universal information contained in afyfunction describing this flow.

On the other hand, the conjectured form of tiefunction, when appropriately
generalized to supergroups, and to the anisotropic case, has recently been applied [40]
to theories describing disordered systems, of the kind mentioned above. Here, however,
certain problems were encountered: integration of the conjectured RG equations led to
flows which reached a singularity after a finite scale transformation, which appears to be
an unacceptable result.

Motivated by these inconclusive results concerning the validity of the conjecture, we
were led to check the conjectured form of #idunction by explicit computation to high
loop order. We consider the classical symmetry grotips SU(N), SON), andSRAN),
and the special case @btropiccurrent—current interactions at levek 0. Our results are
summarized in the following section. For all the classical groups, we find a contribution
to the 8-function at 4-loop order which is incompatible with the conjecturalirpossible
regularization schemes. The discrepancy is caused by an extra logarithmic divergence in
perturbation theory, proportional to an additional group theoretical invariant (besides the
guadratic Casimir), which first appears at 4-loop order. This divergence is not accounted
for by the conjectured form of thg-function. Implications of our results, obtained for
level k = 0, for thek-dependence of thg-function in any scheme are discussed in the
conclusion, Section 5. In this section, we also come back to, and comment on the special
case of the anisotrop8U(2) model mentioned above. The reader who wishes to skip the
technical details of our calculation, which are presented in Sections 3 and 4, will find a
self-contained exposition of our results in Sections 2 and 5.

2. Presentation of results

In order to check the conjecture, we consider, as mentioned above, the specific case
of an isotropic perturbation with symmetry grogp and levelk = 0. The conjectured
B-function (1.1) then becomes

1
B(g) = 5Cag”. (2.1)

Here C, denotes the eigenvalue of the quadratic Casimir invariant in the adjoint
representation ofj. For the classical groups; = SU(N), SO N), and SRN), these
are listed, in our normalizations, in Fig. 1. In Sections 4.1-4.7 we present an explicit

4 Due to the non-unitarity of the theory, this is not in conflict with Zamolodchikevtaeorem [39].
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3
SU(N): Cp=N, dz:ENZ’
45 3
SON): Co=N-2,  dp=24— 5N+ezv2_§zv3,
N+2 3 45 3 , 3 4
SRAN): = — do=—4+ —N+—N = N3,
AN): Co=——. =5+ N+gN"+ 18

Fig. 1. Group theoretical numbers for the classical groups, used in the main text.

Fig. 2. Chain-diagrams up to 4-loop order. The number of bubbles is the number of loops.

perturbative calculation of thg-function up to 4-loop order. This calculation proceeds
in three steps:

(i) use the current-algebrato calculate the diagrams;
(i) simplify the diagrams using elementary algebra;
(iif) evaluate the integrals, which represent the (“Feynman”) diagrams.

After step (i), we encounter a great number of (rather complicated looking) diagrams.
However, after step (ii), we are left with only two classes of diagrams:

(1) chain diagrams (“bubble” diagrams);
(2) non-chain diagrams.

Chain-diagramsappear at loop-order 1, 2, 3 and 4. They have the form depicted in
Fig. 2. Each bubble comes with a factor gf(the coupling-constant), with a group-
theoretical factor ofC2, and the whole chain with anM-independent) integral,,, at
n-loop order ¢ bubbles in the chain). The integrg] depends on the cutoffs (infrared)
anda (ultraviolet), and is a polynomialof degreen in [In(%)], plus terms which are
finite for L /a — oco. (The fact that am-loop integral is bounded bg{ln(%)]" with some
constantc is a necessity to ensure renormalizability.) Only the leading terf), jrwith
the highest power of I(nf;), is universal. This applies, e.g., to the diverging part of the
1-loop integralZ;. Thus the contribution of the chain diagrams to the renormalization of
the couplingg is, atrn-loop order (up to a combinatorial factor)

8(C29)"I,. (2.2)

Non-chain diagraméirst appear at 4-loop order. They are proportional4pwhich is an
additional group-theoretical invariant (in the adjoint representation), independent of the
guadratic CasimilCy. Its value for the classical groups is given on Fig. 1. This invariant
can be constructed by drawing a cube, where one puts a facﬁl"an‘n each corner, with

one of its three indices on each adjoining edge, see Fig. 3. Finally, indices on the same
edge are contracted.

5 See (A.7) for concreteness.
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a fabc

Fig. 3. The group-theoretical invariar and its graphical representation.

Each non-chain diagram has a global divergence proportiorﬁhi(tg)] (“single log™),
and subdivergences (higher power$|o’(§)]). However, it turns out that to the order con-
sidered here, one can always group non-chain diagrams together into classes, such that
each class has only a global divergence nmusubdivergenc& his means that the integral
(over positions) is proportional to dlif) + finite, and that the prefactor in front ﬂh(%)]
is againuniversal

Let us recall here that a diagram proportionaﬂltc(%)], i.e., a“single log”, gives a fi-
nite contribution to thgd-function. Using the above information, we thus find the following
B-function at 4-loop order

1 T
Blg) =g |:§C28 + az(C28)? + az(C28)® + aa(C29)* — dzm(G + ﬂz)g“}

+0(g%. (2.3)

Here, the numbersz andas depend on the regularization scheme (but notNoor the
value of the cutoffs). In contrast, the remaining three terms are universal. The first term
comes from the “single log” of the 1-loop chain (giving the contribut%ﬂjzg) and the
last term from that of the non-chain diagrams (givingp 575(6 -+ 7%)g*). Furthermore, we
havea, = 0 since we consider levél= 0; this is a consequence of the universality of the
B-function up to 2 loops, and will be checked for a specific scheme in Appendix A.1. Note
that to arrive at the resultin (2.3)o specific form of the cut-off procedure has to be chosen

We are now in a position to answer the question, of whether the conjecture is compatible
with our explicit calculation, in some given cut-off scheme. To see this, consider, for
example, the grouy = SU(N), where we have”; = N, andda = %NZ (see Fig. 1).
Thus at 4-loop order, we have the following contributions

4.4 BN? 2\ 4
g|:a4N > 240(6~|—7T )g i| (2.4)

SinceC, anddz contain all the dependence dh and sincer4 is independent oV, there is
no possible choice af4, and thus no cutoff procedure, which cancels this teonall N.
This proves, that the conjecture is incorrect for all possible cut-off procedures, for level
k = 0. The same conclusion is arrived at for the other choices of groups.



582 A.W.W. Ludwig, K.J. Wiese / Nuclear Physics B 661 [FS] (2003) 577-607

Let us finally give the result in a specific scheme, namely, in the scheme in which an
n-loop chain diagram is proportional ftn(%)]", with no subleading term in (#):
1
B() = 5Cag? —dZ%)(G—HTZ)gS—I— 0(s°). (2.5)
Indeed, this is the scheme used in the lajexpansion of the Gross—Neveu model,
where thes-function becomes quadratic [41], to leading order jiv1 Note that this is
compatible with our result (2.5), since (upon rescalingy N), the first (1-loop) term is
orderO (1), whereas the second (4-loop) term is ordgfl/N?).

In conclusion, we have found that the conjecture is violated at 4-loop order, and at order
1/N? for SU(N). For SON) andSRN) corrections appear at ordef /i, as can be seen
from the table in Fig. £.

Let us now outline the organization of the article; the reader wishing to skip the technical
details of our paper can proceed directly to Section 5: in Section 3 we introduce the model,
the current-algebra and basic notations. Our calculations are presented in Section 4: we
show in Section 4.1 how the Kac—Moody current-algebra is used to successively eliminate
interaction vertices from expectation values, and how this can be used to evaluate OPE-
coefficients. This is a non-trivial task. Indeed, the raw result of this reduction procedure
depends on the order of the successive reductions and is highly asymmetric, whereas the
OPE-coefficient should be symmetric. To obtain a more symmetric result, the raw result
can be simplified by using algebraic relations which we have baptized “magic rules”, for
their efficiency. This will explicitly be demonstrated in Section 4.2 on the example of
the 2-loop diagrams. In Section 4.3 we proceed to 3-loop order, and show again how the
initial highly asymmetrically looking OPE-coefficient is simplified. As in 2-loop order, all
resulting diagrams are chain-diagrams which in a suitable scheme factorize, and thus do not
give a new contribution to thg-function. Proceeding to 4-loop order in Section 4.4, one
finds diagrams which the magic rules are no longer able to simplify to chain-diagrams. Due
to the sheer number of initial diagrams, namely 576, this approach is not very illuminating.
In Section 4.5 we, therefore, pursue a different route: we first calculate OPE-coefficients for
“adjoint” perturbationgp® = f¢b¢ J> j¢. We then show in Section 4.6 how adoop OPE-
coefficient can be expressed as a simple algebraic function times an OPE-coefficient at
ordern — 1, involving two adjoint perturbations. This allows us to identify at 4-loop order a

6 One expects additional group theoretical invariants to appear ig-fluaction also at higher loop orders.
We have found that the group theoretical invariant associated with the generalization of the cube to a “chain”
of ¢ square plaquettes will appear &toop order. ForSU(N) it scales likeN2 when ¢ is even, and likev3
when ¢ is odd, asN — 0. If the sum of the corresponding integrals is diverging, then this term cannot have
a counter-term at even loop orders. It would thus represent, in this case, a new contributiors tfuticton
at £-loop order. This may suggest that additional group theoretical invariants, beyond the one discussed in this
paper, appear in thé-function at least at all even orders, exceptéer 2. (As an example, consider 6-loop order:
the above mentioned chain build out of 6 plaquettes scalesvitkéor small N. Suppose there are counter-terms
to the corresponding diagrams, then these must be products of diagrams at lower order, e.g., a 4-loopxdiagram
a 1-loop diagranx a 1-loop diagram. This would scale for smallat least avZx N x N ~ N4 (and actually as
NS, if one were to use only 1-loop counter-terms), thus has a higher powettian the chain of six plaquettes.
Therefore, it cannot be a counter-term of the former diagram, and the former can—due to renormalizability—not
have a subdivergence. Thus its integral is universal (see the discussion in Section 4 and Appendix B), and there
is a priori no reason that it should vanish.
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combination of eight diagrams, which cannot be factorized as chains (non-chain diagrams).
Their contribution to the 4-loop-function is calculated analytically in Appendix B. All

these ingredients are collected in Section 4.7, where we obtain the 4lfapction. We

have relegated some basic group-theoretical relations to Appendices C.1-C.3. Conclusions
and further perspectives are offered in Section 5.

3. Mode and method

We study the Non-Abelian Thirring Model (NATM) in two dimensions. The model
may be defined as a perturbation of a 2D conformal field theory, with astpmwhich
is invariant under a symmetry group acting in the standard way [1,42]. The chiral
components of the conserved Noether curresitsz) and J%(z), depend (as indicated)
only onz =x 4+ iy andz = x — iy, and satisfy the defining operator product expansion
(OPE) of the Affine Lie algebra (Kac—Moody algebra) at level

Eaab 1
J@IPO =5 + [ O+
_ _ E ab 1 _
J @O = + S fET O+ (3.1)

where 4% are the structure constants@f(Repeated indices are summed throughout this
paper, unless stated otherwise.) The model we study is defined by the’ action

d2
5=So+go/¢(z,2), /=/2—7TZ (3.2)

Z

where the perturbing operator
?(z,2) =TI Q@) (3.3)

is invariant under global transformations of the symmetry grguphis theory is known
to be renormalizable with a single couplipgThe conjectured form [31] of the-function
for the renormalized coupling is quoted in (1.1).

We compute thes-function explicitly to 4-loop order. To this end, consider the
perturbative evaluation of the expectation value in the fully interacting theory of some
guantity©®, which may represent an operator, or a product of operators at different spatial
positions,

_ Z(0) (Oe—gofZ d)(z,i))o. (3.4)

Z(go)

Here, the expectation valug--)o is taken in the unperturbed CFT with actid,
normalized such thafl)o = 1. Z(go) is the fully interacting partition functiof.

A cut-off (regularization) procedure, depending on short- and large-distance cut-offs
andL, is required to render all terms in this expansion finite, and is specified below. The

(Ogo

7 The partition function isZ (gg) = J Difields| exp(—S).
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renormalized coupling (which depends ogop anda/L) is found by computing how the
coefficientgg of the first order term in the expansion of the exponential

(~-~1)0+<-~-< /¢(11,11)>> < ( //¢(21,11)¢(12,22)>>
< : ( ///¢(Zl,z1)¢(zz,z2)¢(z3,z3)>> (3.5)

212273

is modified by the higher order expansion terms. This modification is independent of
the potential presence of any operatfrin this expectation value, indicated by the
ellipses® The required calculation can be conveniently expressed in terms of multiple OPE-
coefficients of the perturbing operatdr(z, 7), evaluated in the unperturbed theory. The
product of(n 4+ 1) such operators at different positions may be expanded into a “complete
set” of operatorsp? sitting at the position of, say, the last operator. The expansion
coefficients depend on therelative coordinates,

D(z1,21) - P (20, Zn) P (2041, Znr1)

=Y CalGz1—zn11). G1=Zn41)i @0 — 2ut2)s Gn — Znp1) ]
A

X (DA(ZrH—l, Zn+1)- (3.6)

The non-vanishing expansion coefficients are exactly known in any CFT. In the present
case they are especially simple, and can be obtained by successive use of the OPE of
the currents, (3.1). In particular, the perturbing operatois the most relevant operator
(besides the identity whein£ 0) appearing amongst tte?; all others are irrelevant. We

find it convenient to denote the needmdiltiple OPE-coefficienvhere®4 = &, by the

symbol

(@(21,20) -+ P (20> Z20) P (20415 2ot D P (Znt 1, Znt1)
=Co [(Zl = Zn+1), (21 — Zn+1)s -+ 5 (@n — Zn+1)s (Zn — Zn+1)]- 3.7

The renormalization process is now easily understood by inserting (3.6) into (3.5).
Explicitly, denote the relevant integrals over the multiple OPE-coefficientspy(for
“Feynman”-diagram):

Fni= / ((p (z1,21) - P(Zn+1, Znr DD (Znr 1, ZnJrl))
21,225---:2n
X C(ZJJ 219 ooy Zn41l,s Zl’h‘rl)' (38)

These integrals are regularized by a cut-off prescription, which is achieved by inserting
a cut-off functionC(z1, Z1, . . ., Zu+1, Zn+1) in the integral, as indicated. There are many

8 The operator itself requires an analogous treatment, which, however, can be discussed independently; this
will not be needed here.
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possible choices. In this article we choose a (circular) hard cut-off implemented by
CQ1, 21,2 2) =] | Ofa < lzi — 2l < L), (3.9)
i#]
where® is the usual step function. This cut-off procedure restricts the distances between
any pair of integration variables to lie between the short- and the long-distance cut-offs

andL. All integrals F, are thus finite functions af/L. As usual, inserting (3.6) in (3.5),
and using (3.8) gives:

2
o[ (o f 200)) + [ (85 [ o0c.9)
(---Do goZ/ (z,2) . o 1! (z,2) .
3
_g )
+<"'<3—!0.7:2/¢(Z,Z))>0+'“

Z

~ettor (e !¢(Z,z)>>o+...=<...<egm,z)»o_

Following standard reasoning we have re-exponentiated in the last line. One can now read
off the renormalized coupling:

g(go, %) =go|:1— %]—'1(%> + i—‘?ﬁ(%) —. } (3.10)

The B-function is obtained as the changegin response to changing(or 1/L), while
keeping the bare coupling fixed:

2. (3.11)
g0g<go 7)

In the remaining sections of the paper we will obtain the integfals . ., F4. This gives
us the result for the 4-loop-function written in (2.3) above.

. d
B(g) '_aa_a

4, Calculation

In this section we present in detail the evaluation of the integfalslefined in (3.8)
(“Feynman”-diagrams), needed to obtain {dunction, as explained in Section 3. The
core of this calculation consists in obtaining the OPE-coefficients defined in (3.7), by
repeated use of the current-algebra OPE (3.1). We start with the simplest case, i.e., with
the 1-loop integralFi, and proceed successively to the more involved cases, up to 4-loop
order.

4.1. 1-loop order

At 1-loop order, we need the OPE-coefficient

(®(z, )@ (w, 0)|® (w, D). (4.1)
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To evaluate it, we have to eliminad&(z, z) from & (z, 2)® (w, w), using (3.1). This is done
as follows

D(z, )P (w, w) = J(2)J* @) I (w)Jb (W)

— ST T ), : 7 = CaJ W)J* (@) (4.2)

w—z lw — z|?

We have used that?>c f@b4 = C,5¢, with the second Casimif». (This and more group
theoretical relations are derived in Appendix C.1.) We denote (4.1) in short by

Co
5.

— (4.3)
|lw—z|

(2(2, )@ (W, W)| P (W, w)) = (ol n = o0y, =
The arrows show the direction in which the elimination has been made. This defines the
sign. To be specific, an arrow fromto w represents A(z — w). A dashed such arrow
represents Az — w). When a solid and a dashed arrow (with the same direction) connect
the same two points, one can drop the arrows for simplicity of notation; seeing a solid and
a dashed line thus means that when adding the arrows, both arrows are pointing in the same
direction.

The OPE-coefficient (4.3) yields the 1-loop diagram

C L
f1=/©=/72@(a<lw—zl<L)=C2In =) (4.4)
lw — z|2 a
V4 V4

4.2. 2-loop order and the magic rule

At 2-loop order, we have threg’s. Denoting®; := J%(z;)J*(z;), we need to calculate
(D1D2@3|P3). Straightforward use of the current-algebra (3.1) with 0, eliminating the
currents one by one, starting with point 1, and continuing with point 2, yields

(P1D2P3|P3)
1 2 2 1 1
= —cz[ + ] (4.5)

2 - — = =
2 “llz121%1z231%  |z13Plz231%  |z23l%z13212 17232212713

where we have abbreviateg := z; — z;. Here, and throughout this article, we use the
labeling of points as indicated in Fig. 4. The result is graphically presented in Fig. 5
(top). Eq. (4.5) apparently contains a new diagram, which renders the OPE-coefficient
asymmetric upon exchange of point 1 with point 2, or of point 1 with point 3. However,
there is a simple algebraic identity, the “magic” rule for the real paof ziw

1 Zw Zw i 1 1 Z- mz}
R — =R ——7=|= 555 | ==l + =5 — =535 | 4.6
[Zw] [IZIZIwIZ} [IZIZIwIZ] 2[IZI2 W[z Z1?|w|? (4.6)
The most useful application is in the presence of an additional fagiar 4 7|2, which
cancels the numerator in the last term. This leads to the decomposition of the new diagrams

9 Recall that summation over repeated indices is implied, and that we work aklevel
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e3 o4 3e ®4

°l 2e o] 20 ol 'Y

Fig. 4. Labeling of the points in Figs. 5-7, and diagrams in the main text.

Fig. 5. 2-loop diagrams after reducing the structure-constants to numbers. To be multi[%elg byhe numbers
given are the weight. The first line is the raw result, as obtained by using the reduction algorithm. Arrows indicate
the direction of the reduction. The second line after using magic relations.

in (4.6) into chain-diagrams (drawn below rotated-b¥2@ as compared to Fig. 5 (top))

4.7)
The OPE-coefficient (4.5) simplifies to
1, 1 1 1
(P1D2P3|P3) = C [ + + } 4.8
! 22| Jz12Plzaal T e2lPlzzal? T IzaalPlzaal 55

which is manifestly symmetric, as it should be. The resulting expression for the OPE-
coefficient in (4.8) is graphically represented in Fig. 5 (bottom). One sees that after
using the “magic” rule, the OPE-coefficient, and hence the intefpalcan be written

in terms of chain diagrams. This suggests, that the corresponding diagrams (i.e., the
“Feynman” integralF») factorize, are of order Kr%)2 without a pure Img) and thus give

no contribution to thes-function at 2-loop order. This is indeed correct, as checked in
Appendix A.1 for the cut-off procedure introduced in Section 3.

For the model at hand, the cut-off procedure is subtle. The reason is that one cannot
put a cut-off on the lines, as would be most convenient to immediately prove factorization
of chain-diagrams: in constructing the diagram, we have used magic rules to move around
the lines, and if we leave behind a cut-off function, then the resulting diagram will not be
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Fig. 6. 3-loop diagrams after reducing the structure-constants to numbers. To be multip%elfbvhe numbers

given are the weight. The first 4 lines are the raw result, as obtained by using the reduction algorithm. Note that
4 diagrams have weight 0. Arrows indicate the direction of the reduction. The last two lines after using magic
relations, dropping the redundant arrows.

totally symmetric, as it should and as it is in our construction. The only way out of the
above dilemma, is to put cut-offs between any pair of points, regardless of whether the two
points are connected with a line or not (compare (3.8)). However, then the factorization
is no longer a trivial statement, and has to be checked. This has been done for the 2-loop
chains in Appendix A.1. As we have argued in Section 2, this is not essential for our
arguments, and the conclusions remain valid in any scheme. Let us, however, mention, that
in order to recover the larg®-limit of SU(N), factorization is needed, and is sufficient to
uniquelyfix the RG-procedure up to 4-loop order; but not necessarily beyond.

4.3. 3-loop order

At 3-loop order, 36 diagrams appear, presented on top of Fig. 6. These diagrams all
contain six structure-constants, and have two free indicesd b, which are contracted
with the remaining/¢J”. Since the only invariant object with two indicess®¥’, one can
contract the last lines to obtain the algebraic factor; the final result has of course to be
divided by the dimension of the adjoint representation. One can then convince oneself by
drawing pictures, that all objects which can be constructed, contain at least one loop made
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out of two or three verticé$, i.e., objects of the form

b

facbfbcd —a : > d — —CZ(Sad, (49)

faedfbgefcdg — (4.10)

which we give together with a group-theoretical identity (derived in Appendix C.1), which
is sufficient to reduce the number ¢fin any given diagram. Repeatedly using (4.9) and
(4.10) thus allows to eliminate ajf. This procedure is performed using a computer, and
the reader would have a hard time verifying it by hand. We have thus shown that all 3-loop
diagrams are proportional uﬁg, thus no additional group theory invariants, besides the
second Casimir, appear at this order.

The diagrams are given with their combinatorial factor on top of Fig. 6, to be multiplied
by %C%. Applying magic rules leads to chain-diagrams, presented graphically at the bottom
of Fig. 6. Algebraically, the result is

(P1DP2P3P4|P1)
3
_ 2 1 1 1
4

+ +
|z12121z14122231%  |z131%17141212231%2  |z12|2]213]2|22412
1 1 1

+ +
|z13121z141212241%2  |z131%122312122412  |z1412]223]%|224]2
1 1 1

+ +
|z1212|z13/2|z3412  |z12121214/2]23412  |z12|2]223]2]234]2
1 1 1

+ +
|z141%12231212341%2  |z121%1224l212341%2  |z1312]224]|234]2

]. (4.12)
4.4. 4-loop order, direct approach

Let us now continue to 4-loop order. After using the current-algebra, there are 576
diagrams, which again we generate computer-algebraically. The group theoretical factors
appearing with these diagrams are much more involved. An example is a cube, where each
corner represents a structure-facféf¢ and each link identifies a pair of common indices
between twof’s. This is drawn on Fig. 3 and detailed in Appendix C.1. Itis at this loop-
order that an additional group theoretical invariant besides the quadratic Casimir arises.
After reducing the algebra, one finds that 380 terms are proportior@g.tmsing magic
rules, these diagrams can be reduced to 60 chains; these are in fact all the chains which can
be drawn through 5 points. Each chain comes with a weight éCé. For the remaining

10 The simplest object without such a loop would be a cube, which indeed appears at 4-loop order, see Fig. 3.
11 |n general, there is a total (%n - (n — 1)! chains that can be drawn througtpoints.



590 A.W.W. Ludwig, K.J. Wiese / Nuclear Physics B 661 [FS] (2003) 577-607

Fig. 7. 4-loop diagrams not proportional([tg.

diagrams not proportional tdg, presented in Fig. 7, our reduction-algorithm based on
magic rules is incapable of further simplifying it. In Section 4.6 we will present a simple
calculation, reducing the task to calculating a combination of eight diagrams. To this aim,
we need correlation functions involving operators which we call “adjoint” perturbations,
defined below.

4.5. OPE for adjoint perturbations

Define the “adjoint” perturbation at positidp;, z;) as
(zi,%) = Bf = fI )T @), (4.12)

We now apply the same procedure as in the previous sections: eliminate currents one by
one using (i) the current-algebra, (ii) evaluation of the group theoretical factors, and (iii)
simplifications with the magic rule. After some lengthy calculations (done again computer-
algebraically), we find up to 3-loop order:
c: 1
PLPY b)) = 2 , 4.13
( 1 2| ) 2 |212|2 ( )

(@] D205 | ®3) Cg[ t 1 ] (4.14)
2 3) = — ) .
17mems 4 | |z12121z13% * |z131?] 2232
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(@1 ®5 P3D4|P4)
cg[ 1 N 1 N 1
|2121212141212231%  |z121%17131212241%2  |z12|2]213]2|23412

1 ]
+ + +
|z121%121412|2341%2  |z121%1223/212341%2  |z12/2]224]%|234]2

(4.15)

The additional group-theoretical invariattis defined? in Appendix C.1. FOSU(N) this
readsd, = 3 N2 compared to the leading ter@§ = N2. The results foSQN) andSRN)
are listed in Fig. 1, see also Appendix C.3. For these groﬂ@s,v N* and againd; is
subdominant, withis ~ N3.

4.6. 4-loop order simplified

We have seen in Section 4.4 that a direct 4-loop calculation is quite cumbersome.
Instead, we use here a different approach, inspired by the original work by Kutasov [32].
We start by eliminatingp, from the multiple OPE-coefficient (3.7). Let us first give the
result and then explain how we have obtained it:

(PnP1P2- - Dy_1|Py—1)

1 1
T Z .Zn_ZiZn_Zj(¢l-“¢ia-.-(p7.-.¢n_ll(pn_1)

+ Z |Z — Z (¢1 Dp—1|Pp-1). (416)
We have ellmlnated all currents at pointUsing the current-algebra (3.1) again witk: 0,
there is a contribution from each pair of poifftsj} with i, j # n. The first line of (4.16)
contains the contributions with£ j, for which we have listed below the corresponding
current-algebraidentities in (4.17) and (4.18). The last line of (4.16) is the eage and
is obtained by using the current-algebra both for the holomorphic and antiholomorphic
current, as given in (4.19) below.

B abc _ 1
I @)@ @) — I @) T G = - ——— 9], (4.17)
abc
Tz Iz I () — - JC(Zj)Jb(Zj)ZZ —2], (4.18)
n—Zj n —<j
_ _ abc rabd C
J“<zn>J“(zn)J”<zi)J"<zl-)—>|f _le JC(zl)J%)—'Z _Zz.la-. (4.19)

12 constructing a symmetrized tensgf?<? out of the trace of 4 structure-constant§?, do is the non-
dominant contribution (irV) of the square ofi*<? (as defined in (C.13)).
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o] °

Fig. 8. The combination of 8 diagrams contributing at 4-loop order. Note the different labeling of points given in
the inset, as compared to the labels of Fig. 4, used in Fig. 7.

Note that eliminating point (instead of point 1 as we were used to do) is for later
calculational (and representational) convenience only.

We now turn to the 4-loop calculation, i.e., et 5. One can check that starting from
(4.16), using (4.11) and (4.15), one reconstructs all the 60 chains connecting 5 points, as
found in Section 4.4. The remaining terms are obtained from the first term in (4.16) times
the term proportional t@ in (4.15). There aré”’l)zﬂ = 6 such terms, each being a
combination of 8 diagrams depicted in Fig. 8. Since each of the 6 terms gives the same
contribution upon integration, we only have to calculate the integral over one of them.
Analytically, this is most easily written as (we have chogento be the pair 12 and the
starting point is 5)

BT FRE Y ER
) \z14713 714213/ \ 224723 724723/ |23412 \ 215725 = Z15225

x C(z1,71, -+, 25, 25)s (4.20)

where the integral is over all but one point, and the cut-off funafion-) was introduced
in (3.9). This integral is evaluated in Appendix B to be

T L
I=—1—2(6+n2) In(;). (4.21)

4.7. Theg-function up to 4-loop order
Now we are ready to put everything together to obtaingkenction. In a scheme in

which the chains factorize, we obtain by collecting the results (4.4), (4.8), (4.11), and the
paragraph below (4.16), and upon use of (3.10):

= 1—i CIn£ +E§ CIn£ 2_&1_2 CIn£ ’
g=280 o| 80¢2In| — 312/ 80¢2!n| — 27 | 8oc2inl -

o) oo rn()] e
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Note that the factors /! are from the exponential, then for the chains the next factor is
the number of chains times their dependence@rntimes the group-theoretical factdr
Cg/Z"‘l. The last term (which comes from the non-chain diagrams) has a factor of 6 from
combinatorics as discussed in the previous section and the minus signs from the integral
(4.21) and from (4.16) cancel.

Inserting (4.22) into (3.11) leads to the 4-loggunction in terms of the renormalized
couplingg:

1

n
B(g) = §C2g2—d2m(6+n2)g5+ 0(g°), (4.23)

with do = 3N2 for SUN), dp = 24— N + 6N2 — 3N° for SQN) anddz = 3 + 33N +
3N2 4 35N° for SRIN), as calculated in Appendices C.2 and C.3.

In schemes in which the chains do not factorize, there are additional terms, see (2.3)
and the discussion below that equation.

Some comments on the procedure are in order. Readers used to the Wilson-scheme, will
recover that procedure by studying the changg iof (4.22) under an infinitesimal change
of a, corresponding to the integration over an infinitesimal shell facma + a. The only
difference is that this is a shell in position space, and not in momentum space.

Second, to our knowledge this is the first 4-loop calculation with a hard cutoff, or
equivalently the first 4-loop calculation in a Wilson scheme.

5. Conclusion and further per spectives

In this article we have performed an explicit perturbative calculation oftffienction
for the non-Abelian Thirring model a = 0 up to 4-loop order. We have found that
the conjectured form of thg-function [31], Eq. (1.1), is incompatible with our result in
all regularization schemes. The discrepancy arises from an extra logarithmic divergence,
which appears first at 4-loop order, and which is proportional to a higher group-theoretical
invariant (evaluated in the adjoint representation of the symmetry group) which is
different from the quadratic Casimir invariant. This divergence is not accounted for by
the conjecture@-function.

It is worth pointing out that our explicit 4-loop result at level= 0 does not only
rule out the particular conjectured form of the (isotroggejunction Eq. (1.1), but a more
general class of conjectures for tBefunction. This way of presenting our 4-loop result
emphasizes the dependence on the levehereas in Section 2 only the special case0
was discussed. Such forms which we can rule out arise by attempting to “scale” with the
level k. Specifically, for any one of the classical groups= SU(N), SON) andSRAN),
the g-function (of the isotropic theory) will in general be a function of three variables, the
coupling constang, the levelk, as well asN, or equivalentlyC, = C2(N), the second
Casimir invariant in the adjoint representation:

dg

13 sSee (4.4), (4.8), (4.11), and the paragraph below (4.16).
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It was argued in [35] that by rescaling the Kac—Moody curréfits> vk J¢ (as suggested
by the largek calculations done in [32]), the (isotropig}function should satisfy (perhaps
in a suitable scheme) the “scaling form”

11 /Co k

B(g. k,C2) = kF< Z ,kg) —gH<ng, C2>. (5.2)
The conjectureB-function of Ref. [31], i.e., Eg. (1.1), is a special case of this. The
second equation above gives an equivalent way of writing the scaling form, useful when
considering the limik — 0 for ¢ = fixed, whereas the form in the first equation is useful
in the largek limit where 1/k — O for kg = fixed. Since we know that the perturbative
B-function must have a finite limit d@&s— 0, the second equationin (5.2), when specialized
to k = 0, leads to a form of thg-function, whoseg-dependence is only through the
combinationgC> (apart from an overall factor of). Comparison with Eq. (2.3) shows
that this is incompatible with the explicit 4-loop result that we have found in any possible
scheme. Hence, our result implies that ghdunction must have an explicit dependence
on the levek, and that the latter can in no scheme be “scaled out” in the way indicated in
(5.2).

Finally, a point which deserves clarification is why in the case where a symmetry

G = SU(2) is broken down toU (1) by a purely imaginary easy-axis anisotropy, and
for level k = 1, the conjecture reproduces [35] known exact results [36—38]. (This was
mentioned in the introduction, Section 1.) Indeed, Ref. [35] proposes that this agreement
should provide a strong check of the conjecture. Here we would like to point out, however,
that this agreement is not surprising, because the theory is very special. It possesses a
hidden quantum group symmetry (or, “fractional supersymmetry”) [43], present for all
values of the levek. This symmetry imposes strong constraints on theependence
of the relationship between the slopes of #unction, i.e., the RG eigenvalugsof
the perturbation, at the UV and IR fixed points. As a consequence of the symmetry, this
relationship is [44]:

L + 1 =1 (5.3)

kyr ~ kyuv
For the remainder of our argument, we only need the result in (5.3) about the exact
relationship betweemyy andyr. First, we note that the same result can also be obtained
by using the conjecturefi-function of [31], see [35]. Now since, following Kutasov [32],
the conjecture is just the leading term in gkiexpansion of the beta function, it should
yield a relation betweemr andyyy, which is valid at leading order in/%, but will not
contain information about corrections to this of ordgk4 or higher. However, due to
Eg. (5.3), theexactrelation betweeryr andyyy has no such higher order corrections at
all. Thus the leading order term iry & happens to give already the whole, i.e., the exact
result for these quantities. This explains why the conjecture reproduces the exact result
even for levek = 1. We end our discussion by noting that it would be interesting to obtain,
generalizing Kutasov’s work, who computed (as mentioned)gHanction of the non-
Abelian Thirring model to first order in/k in the largek expansion, higher order terms
in this largek expansion. These will not in general be absent, as our work presented in this
paper shows. Work along these lines is in progress.
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Appendix A. Factorization of chain-diagrams

In this appendix, we show how chain-diagrams factor, restricting ourselves to 2-loop
order. This is done in Appendix A.1. As a tool, we need the “conformal mapping
technique”, which was introduced in [45,46], reviewed in [47], and which we present here
for completeness, and since in contrast to the cited references we here work exactly at the
critical dimension, where we need both an ultraviolet and an infrared cutoff.

A.1. Factorization of chain-diagrams at 2-loop order

At 2-loop order, everything can with the help of the magic relation be reduced to the
bubble-chain. The subtracted 2-loop diagram, i.e., the 2-loop diagram minus the square of
the 1-loop diagram is (we denote ythis subtraction-operator, which also contains the
integration and the cut-off functions)

T

= / m[@(a <zl lwl, lz—w| <L) —O(a <|z],lw| < L)]. (A.1)

Z,w
The first term on the r.h.s. represents the 2-loop integral, the second term the subtracted
1-loop integrals (where integration overandz factorizes). Applying—a% to the above

gives

1
/ W[@(tl= |zl <|wl, |z —w| <L)
w

+0(a=w| <zl lz—w| <L)
+0(a=z—w| <|w||z| <L)
—Oa=lzl<lwl<L)-Oa=w|<lzl<L)]. (A2

Using the conformal mapping technique of [45-47], which is summarized in Appen-
dix A.2, all terms can be mapped onfg| = a; with the result (we have used that
21,12 .

a®/lz|*=1):

da
=a
Z

0 1 max L

545 (e =atu =) <
- ( max L A3
— min(a,|w|)<g . (A.3)

The functionm?ri((al, ...,a,) is defined as
max ma.)((l]_, ey (ln)

‘ ey = A.4
min (41 ") min(at, ..., ap) (A-4)
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The above is a function df /a, and can be bounded fér/a > ¢1 by

(A.5)

with ¢2 = c2(c1). Taking c¢1 > 3 allows the bound:2 = 2. The important thing is that

the integral is not diverging: this means we have subtracted the right 1-loop counter-
term. Moreover, the limit of largd./a can be taken; since it is zero, there is no single
In-contribution in the 2-loop integral. We can denote symbolically the result as

(A.6)

A.2. Conformal mapping

As a tool to prove factorization of chains (see Appendix A.1), we need the “conformal
mapping” technique, which was introduced in [45,46], reviewed in [47], and which we
present here for completeness, and since in contrast to the cited references we here work
exactly at the critical dimension, where we need both an ultraviolet and an infrared cutoff.

Note that a generadV-loop integralZy will behave as

2 N
IN(a,L)=a0+a1|n§+a2(ln§> +~--+aN(|n§) , (A.7)

where we dropped terms which vanish in the limitZlgfa — oco. Deriving w.r.t.a leads to

3 L LAV
—a—7TI,(a,LYy=a1+2a2In—+---+ Nay| In— . (A.8)
da a a

On the level of the integral, this operation amounts to fixing the smallest distance:to be
Due to our normalizations, this is equivalent to fixing the both endpoints of this smallest
distance. The integration over the remaining points has then to be done.

We now state a very important theorem for the integral over a fungtiahorderN — 1
loops: if f(z1, 71, - - -, 2N, Zn) IS @ homogeneous function of dimensie@(N — 1) (z and
z have dimension 1), then the integral oxer. .., zy—1 (the relative coordinates between
points)

Iy(a,L):= / f(z1,21, - 2N, ZN)C(21, 21, - - - NS ZN) (A.9)
21,-:2ZN-1

has dimension 0. Consider a secfb(ordering of the distances). Bg := |z; — z;|, with
l1<a<m:=N(N-1)/2.ThenS :={z1,...,2Zn}, S.t.x1 < x2 < --- < xp,. (Actually, we
have chosen the labeling of the distaneg$o account for the ordering. This is not always
the most practical thing to do.) Also define the characteristic fungtietxy, ..., x,,,) of
a sectorS as being 1 if all distances satisfy the inequalities of the sector and 0 otherwise.
Thea-derivative of the integral restricted to the secfois

0
TS = —agf;g(a, L)= / [z, ..., ZN)|Xl=a@(xm <L)xs(x1,...,Xn).
(A.10)
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The conformal mapping theorem [45—-47], whose proof we reproduce below for complete-
ness, now states thitthe integral (A.10) is Riemann-integrable everywhere, then

78 E/fm,...,zm!xi:a@(xm/xl < LIa)xs(X1, -, X)), (A.11)

In words: the above integral can be evaluated by fixing any of the distancesatddre

1 equivalently). The constraint on the smallest and largest distances is captured by the
condition that the ratio of largest to smallest distance is boundeltl/by as it is in the
original integral, which is thus just a special case of the expression (A.11).

Proof. First of all, sincex; = a, and introducing @-function to enforce it.7S becomes

jS=/f(21,...,ZN)S(xl—a)@(xm/xl<L/a))(3(x1,...,xm). (A.12)

We now aim at integrating over distances,..., x,, instead of coordinates with an
arbitrary functiong

/d211-~-d2zzv—1g(X1, ceey Xm)

=/dx1~-~dxmu(x1,...,xm)g(xl,...,xm). (A.13)
The measure is easily constructed as
nw(x1, ..., xm)
- f Py oy 18(x1— 21 — zal) -8 (om — lan—1 — 2w]). (A.14)

where thes-distributions enforce the;’s to be the distances between thés.
We now want to map ontg, = a. To achieve this, we can always do the integration over
x; last. This gives fot7S

j‘s = / dx; /dx1~ ey dxgpr e Ay (g, ..., xm)8(x1 — a)
X f (X1, .00y Xm)O (/X1 < L/a)xs(X1, ...\ Xm). (A.15)
We now make a change of variables. Foridut/, set
Xi:=Xjx/a. (A.16)
We also defing; := a, and introduce this into (A.15) as=1 [ dx; § (x; — a):

j‘s=/dx1/dil-~-dim,u(i1,...,)Em)(S()E,—a)

X f(X1,..., Xm)OXm/X1 < L/a)xs(X1, ..., Xm)
a

x 8(X1x; — a) (A.17)

Xl

Note that the factor ofi/x; consists of(x;/a)NN—D/2-1 from the terms &; but di;;
a factor of (x;/a) N ~D@=N/2 from the measure; and a factor @f /a) =2V —D from f.
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Using that

/ dy §Gix —a) = =1, (A.18)
X1
we obtain
J$=f iy i 4G )3 — )

X f(X1, ..., Xm)O (X /X1 < Lja)xs(X1, ..., Xm). (A.19)

Dropping the tildes, this is nothing but (A.15) with replaced by; which completes the
proof. O

Appendix B. The 4-loop integral
In this appendix we evaluate analytically the integral (4.20) needed in Section (4.6) to

obtain theuniversalpart of the 4-loop contribution to the-function (i.e., the last term in
(2.3)), with the result quoted in (4.21). The integrand of the integral (4.20) in question is

1 1 1 1 1 1 1
PPN T I T S T S T
214213 214213/ \ 224223 724223/ |z34|“ \ 215225 = 715225

Graphically, this is depicted in Fig. 8. We observe that we can make the following
simplification (due to the “second magic rule”):

1 1 wu—wi w X U w—ulh
wu  wu wwuu |w|4|u| |w|4|u|

wherer is the height of the triangle spanned®yandu; if the angle is larger tham, then
h is negative (see Fig. 9).

Note that the first two factors of the integrandl both contribute a termzzsl,
thus canceling the third term/[k34/2. This allows us to see that the integral has no
subdivergences; it will contain only a “global divergence”, i.e., it will be proportional to
a single power of I(L/a) (L anda are the IR and UV cutoffs, respectively). We now
proceed to check this by explicit calculation and to compute the precise coefficient of the
single logarithmic divergence. Let us now introduce distances as depicted in Fig. 10.

Here all distances are measured from 0 excepkfandz which are measured from
their intersection point. In these convention§,and —z in the figure are negative. The
integrand can then be written'ds

= (2i 2 y —Z
M=) (72 4+ x2)(y2 4+ (x' +b)2) (22 4+ x'2) (22 + (x + b)?)
><< 1_ + = 1 ), (B.3)
7153225 715225

14 There are four complex integration variables, equivalent to eight real integration variables. We make use of
this equivalence whenever convenient.
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1W- il

Fig. 9.

Fig. 10.

where all variables are to be integrated over. Let us first do the integrals oveb, z and

75 = N(z5) +i(z5), i.e., all distances except fer which is kepfixed and positiveAt the

end, we integrate over the vectprboth overits magnitude and directior{This fixes the

coordinate system.) We note that choosing |y| <« L, boundary terms can be neglected,

since the integrals do not contain subdivergences, neither in the UV nor in the IR.
Doing first the integral over point 5, we obtain using (D.1) from Appendix D

1 1
/dzzs,( — + - ) = —27In(|z12/%) + const.
715225 215225

= —27In[(y +2)* + b?] + const (B.4)

where the constant depends on the IR-cutoffiowever, one easily sees that it drops from
the above calculation due to the asymmetry e —z of the remaining terms in (B.3). We
finally have to integrate:
—8m J <
(2 +x2) (2 + (' +5)?) 2+ 22 + (x + b))
The simplest integrals are those oweandx’. We use

In[(y +2)*+b%]. (B.5)

[e.e]

/ 1 1 7|yl +lz])

= , B.6
X2+ y2(b+x)2+22 vzl + Iyl +1zD?) (B.6)

—00
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which can be done by residue-calculus. Integrating (B.5) ovandx’ thus gives:

(Iy] + Iz)? 2, 42
—8r3 In[(y + 2)% + b?]. B.7
Y202+ Q1+ p2e LY ] (B7)
To continue, we recall that bgonstructiony (which is the module of a vector) is positive.
(B.7) can thus be written as the integral over positivinly

3 (y +2)? > 2 .
—8r yz(b2+(y+z)2)2(|”[(Y+z) + 62— In[(y — 2)% + b?]). (B.8)

The easiest integral to do is that owemwhich nevertheless is a little bit tricky. We need

o0
Inp?+d>» = -=m mIn(ld| + Is)
(b2+522 7 s2(|d] + s e

—00

(B.9)

which can be verified with the help of the residue-theorem. To do so, one splits the
In(b? + d?) = In(b + i|d|) + In(b — i|d|) which both have branch-cuts. But the integral
can be closed either in the upper or lower domain, and we close it in the domain where
there is no branch-cut. This leaves us with

8”4/dz(y+z>2{[ 1 |n(2|y+z|):|
0 e

G +22@y+z) (G +2)°

_[ 1 _|n(|y—z|+|y+z|)}}
(y+22(y—zl+1y+z ly +2zI3 '
(B.10)

Scaling outy, and splitting the integral into domains where the absolute values have a
definite sign gives

84 °°d 1 1 In@2l+z)
7[ ZZ{[2|1+z|_ 1+2) }
0 1 In(|1—z| +1+z))
_[(Il—zl+ll+z|)_ 11+2] ]}

_8i4/1d {[ 1 _In(2(1+z)):|_|:i_ In(2) “
. Nzza+a ~ za+o 22 z(1+2)
+8l4]°d {[ 1 _In(2(1+z))}_[i_ In(22) ”
y2 J ¢ 2z(1+7) z(1+7) 222 z(1+72)
1

2
= —§n4(6+n2)?. (B.11)
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The final integral ovey contains the integral over the modulusycdnd its direction, which
contributes a factor of2:

L
/dy&n{—gn%6+n2k%]:—g %6+n)m<§>. (B.12)

To conform to the normalizations used in the main text, see Eq. (3.2), this still has to be
divided by (27)4, yielding the final result (with the integral running over all but one of the
points, and normalizations according to Eq. (3.2))

/M_—— 6+ )In(%) + finite. (B.13)

We have indicated an additional finite term in the result, which depends on the specific
regularization prescription, and which is either a constant or decays to 0 in the limit of
L/a — oo.

Appendix C. Someremarkson group theory

In this appendix, we collect a number of useful group-theoretical identities, first in C.1
for a general Lie-groug, then in C.2 forSU(N), and finally in C.3 for the other classical
groups,SQ(N) andSRN).

C.1. Group theoretical invariants

In this appendix we discuss the additional group theoretical invariant, referred to in the
main text. Since we are using the current-algebra, only the adjoint representation of the
symmetry grouf$; appears in our calculations. Therefore, all group-theoretical invariants
that can possibly appear, can all be constructed out the structure constants. The simplest
such invariant is of course the eigenvalue of the quadratic Casimir invatiain the
adjoint representation, which is of second order in structure consifits Here we
consider invariants which are of higher order in the structure constants.

Notation The zero modeg‘ := J§ = §(dz/2ri).J*(z) of the Kac—-Moody currents [1]
are the generators of the Lie-grodpsatisfying the commutation relations

[ja,jb] chab i, (C.l)
which are represented in the adjoint representation by matrices
(T9). = £ (C.2)

We work withantihermiteargeneratorg?, so that the structure constants? are real.
The G-invariant Killing form n??, and its inversey,., defined by

-1
nl .= Vtr(T“Tb), 7 npe = 82 (C.3)
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may be used to raise and lower adjoint indiees, . .. . Here\ is a suitable normalization
constant. Then, (C.1) and (C.3) imply that the structure consigfits= £ are totally
antisymmetric. Throughout this subsection, we choose a basis of the Lie algebra for which
n?? = §9? Hence, no distinction between upper and lower adjoint indices has to be made.
(The matriceg7%).” in (C.2) are then antihermitean.)

We now proceed to discuss various group-theoretical invariants, needed in the main
text, which can be constructed out of products of structure constants. Our discussion is
organized according to the number of factgféc appearing.

Quadratic Casimir The eigenvalu€™, of the quadratic Casimir invariant in the adjoint
representatiofh?

(Ta Ta)cd — fcabfbad — _CZ(Scd : fabc‘fabd — CZ(Scd (C4)

is of 2nd order in the structure constants. Eq. (C.4) is graphically depicted in (4.9).
“Triangle rule”: The Jacobi-identity implies the following relation for the structure
constants:

feadfdbc + febdfdca + fecdfdab — 0 (C5)
which is just (C.1):
([Ta’ Tb])ec — fdub(Td)ec- (CG)

Multiplying (C.5) with f38,;, yields
0= fgab[feadfdbc + febdfdca + fecdfdab]
=—tr(T8TT) —tr(T°TT8) + Co f8. (C.7)

Using the cyclic invariance of the trace, this yields the “triangle rule”
-1
tr(T8T°T¢) = 7szg“. (C.8)

Eqg. (C.8) is graphically depicted in (4.10).
Invariant 4-index tensor/’<¢: Next we consider the following totally symmetrized
trace of four (adjoint) representation matrices

4abed . tl’(T{aTbTCTd}), (C.9

which isG-invariant by construction. This invariant arises when considering traces of four
matricesT, Eq. (C.2). The result is given in (C.12) below. To derive it, observe that for
traces of more than three generat@rswhich cannot be reduced using (C.8), one can
permute twoT’s, with the aim of creating a loop of 3 with the remainifi¢s, which, in

turn, can then be reduced using (C.8). For a trace of Tdsirthis reads

, 1 , .
w(TT0TTY) = = SCof " f (TP TOTTY). (C.10)

15 As usual, all repeated indices are summed.
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This also tells us that
(7T TeTY) =t (TP T TITC) = tr (7T TP TY), (C.11)
where the second relation is obtained using the cyclic invariance of the trace. We now want
to calculate a general trace of folifs. First, by using (C.11), and the cyclic invariance
of the trace, we find that of the 6 possible permutations, which leave the first index
unchanged only 3 are independent. These Kge= tr(T¢T T<T?) = te(T*TTCT?),
Ko =tr(TeTCTT?) = tr(TeTPTT°), andK3 = tr(TTATPT¢) = tr(TTT?T9). The
totally symmetrized trace, defined in (C.9), can now be expressed in terms &f the
d®bed = 3(K1+ K2 + K3). Writing K1 = d***? + 3[(K1 — K2) + (K1 — K3)], and using
(C.6), we can rewrite each of these terms with the hel?8% and f’s as

, . C ) )
tr(TaTchTd) — qebed g[fadhfbch _ fabhfcdh]_ (C.12)
The invariantds is now defined by
1 Ccs
_dabcd dabcd _ 2 do, C.13
Nad 24 T2 (C.13)

whereNyq is the dimension of the adjoint representation. Note that (C.12), (C.13), (C.8)
imply

C4
(1T T T r (T TP T TY) =Nad<§2 + d2>. (C.14)
The I.h.s. can graphically be viewed as the “cube”-invariant, discussed in Section 2, and
depicted in Fig. 3 of the same section (recall (C.2)).

In Section C.2, we show that f@U(N)

do= gNz. (C.15)

(The quadratic Casimir i§2 = N in our conventions.) This is in agreement with the results
of Ref. [34]. Hence, foiISU(N), the termd, in (C.13) is subleading iV, as compared
to the first term. This subleadiny-dependence af, is also true for all the remaining
classical groups, which follows from (C.13) and (C.27).

C.2. SUN)

In this section we present a derivation of the value of the invarahbr G = SUN),
i.e., of (C.15), which provides an independent check of this result given in Refl§34].
We start by recalling the generators in the (complexified) Lie algeb&UgiV) in the
fundamentatepresentation
X = X3 := {matrix with 1 in columnx, row &; 0 elsewherg
(¢,@a=1,...,N), (C.16)

16 This method can also be used to calculate higher invariants [48].
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where the adjoint index = {}. These satisfy

a vB ayB _ Bya
[XG. X5]=085X5 — 8 X3, (C.17)
which yields the structure constants in this basis
b J/aﬁ Y oB VB
el = fls = 858085 — 8,8%55. (C.18)
The Killing form is given by
-1 1
7) _ not,:‘; Wtr.(Ta Tb) (fdaL‘bed) (8;85 _ N(sol(sﬂ)
= —2( projector onto the adjomlt (C.19)
and its inverse
afg —1(.z 1
Nab =1 = - (555/3 - Na“aﬁ) (C.20)

One easily finds
nabnb“ = (N — 1)(N + 1) = Nag= dimension of adjoint representation (C.21)

Since we use to raise and lower indices= {3} of structure constants which are traceless
(see (C.18)), one can also use the simplified form

1 - -
Nab — nopP = 755(3% (C.22)
instead ofyy,;, for calculational convenience. Writing¢) > = £.4* we obtain?’
1
ATdtr(T“T“ JNaar = —N, (C.23)
a
1 ! /
mtr(T“T W (T T ) e = N2, (C.24)
a
1 / / / 1
mtr(T“TbT W (T TP T Y naarpy nee = 21N3, (C.25)
1 1 3
= tr(TT T T (T T T T Y My Meer aar = ZN* + SN2, (C.26)
Nad 8 2

Comparison of (C.26) with (C.14) yields = %NZ, in agreement with (C.14), and (C.15).
C.3. Other groups
BesidesSU(N) we also consideBQN) andS P (N). The results of Ref. [49] yield:
3.2

SUN): Co=N, dyr = EN ,

17 Again we use a computer to do the algebra.
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45 3
SQN): C2=N -2, d2=24—7N+6N2—§N3,

SAN): Ca= NTJ’Z dp = g + g—;’N + gNZ + %N? (C.27)
We have already quoted these values for the group theoretical invariants on Fig. 1, but
repeat them here for the convenience of the reader. Note that one can always normalize the
1-loop coefficient in thed-function for g (the terme g2 in (2.3)) to 1/2, by rescaling
by a constant. This means that the normalization-invariant quantity which enters at 4-loop
order iSdz/Cg. This allows us to perform the following checks on (C.27), by using well
known isomorphism between the corresponding Lie algebras:

d d 3

2 =21 =3 (C.28)
Cylsuz Cilsos 8

2 _ ) _13 (C.29)
C3lsos) C3lsmay 72

d d 3

2 =2 ==, (C.30)
Crlsua Cilsas 32

dy _ & _ 332+ N(14+ N)] 1)
C3lsa-m  C3lsmw) 8(2+ N)®

Appendix D. Some elementary integrals

In this appendix, we consider some elementary integrals, quoted in the main text.
Consider two pointg, andz;, in the complex plane, which are well inside a circle of
(large) radiusk centered at the origin. It is then elementary to establish the following
result:

1 a2}
- = Nz — 2+n|nR2+n|n[1— ”}. D.1
/ -G —1) 2 = 2l zz | O
[3I<R
Furthermore, fot; — z4| < a < |zq — zp|
1
/ @~ —o (D.2)
G —z0)(G3* —2z3)
[3—zal<a
Finally, this implies upon taking the limit a® — oo,
Za —2b

(D.3)

1 1
d23|: — 2] =—-27In
G—2)G" —2z) 13— 2zdl

l3—zal,l3—2p|20a

as long asz, — z»| > 2a (up to terms of ordes? which are neglected).
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