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Abstract

Recently, B. Gerganov et al. [Phys. Rev. Lett. 86 (2001) 4753] have proposed an “exac
orders)β-function for 2-dimensional conformal field theories with Kac–Moody current-alg
symmetry at any levelk, based on a Lie groupG, which are perturbed by a current–current interact
This theory is also known as the non-Abelian Thirring model. We check this conjecture w
explicit calculation of theβ-function to 4-loop order, for the classical groupsG = SU(N), SO(N)

and SP(N) at level k = 0. We find a contribution at 4-loop order, proportional to a higher-o
group-theoretical invariant, which is incompatible with the proposedβ-function in all possible
regularization schemes.
 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Perturbations of conformal field theories (CFT) in two dimensions (2D) have be
very active topic of study for a long time. The focus of this paper are 2D conformal
theories possessing Kac–Moody current algebra (or: “affine Lie algebra”) symmetry [
sociated with a Lie groupG, which are perturbed by a bilinear in the Noether-current (
by a “left–right current–current bilinear interaction”). Non-Abelian Thirring models [2
and Gross–Neveu models [4] are much studied examples, see, e.g., [5–9]. Typicall
perturbations are (marginally) relevant and generate a mass scale; in these cases t
distance (infrared) behavior of these theories is that of a massive field theory. Ho
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generalizations of these theories may exhibit [10] massless long-distance fixed poin
certain zero species (“replica”) limit, or, which can be seen to be equivalent [11], whe
symmetry groupG is replaced by a certain supergroup. Such theories are of great inte
condensed matter physics, since the mentioned “zero-species”, or equivalently, sup
metry generalizations describe (de-)localization transitions known to occur in dirty
disordered, non-interacting electronic systems in two spatial dimensions, subject to
random impurities. Indeed, the aim of [10] was to study the integer quantum Hall pl
transition,1 and to provide an alternative to the formulation given by Levine, Libby
Pruisken [12–15] in terms of a strongly coupled non-linear sigma model with a topolo
term (see also [16]). More recently it was recognized [17–19] that disordered superco
tors (and other systems) provide an entire new arena capable of exhibiting (de-)local
transitions of a similar kind (albeit in entirely new universality classes). Since then
study of (de-)localization transitions in non-interacting quantum systems in 2D has
an immense surge of research activity (see, e.g., [20–27] and references therein). A
understanding of the strong-coupling (long-distance) behavior of 2D Kac–Moody cu
algebras perturbed by current–current interactions would be a valuable tool to des
number of such transitions. Indeed, a good understanding of such perturbations ha
achieved in a few cases [10,28–30]. However, in general, this is not the case, to dat

An intriguing conjecture has recently been advanced by Gerganov, LeClai
Moriconi [31], who consider, as above, a general Kac–Moody current algebra conf
field theory with symmetry groupG at any levelk, perturbed by right–left current bilinear
(The perturbations they discuss may also be anisotropic, or involve a supergroup, b
will not be important for the arguments presented in this article, which focuses entire
the isotropic situation and bosonic groups.) Their paper builds on earlier work by Ku
[32], who computed the renormalization group (RG)β-function for the isotropic case2 of
a (bosonic) symmetry groupG to leading order in the large levelk of the current algebra
The authors of [31] argued that Kutasov’s result be exact forany value of the levelk,
in a particular regularization scheme. Specifically, for the isotropic case, the auth
Ref. [31] conjecture that theexactβ-function for the couplingg be given by3

(1.1)β(g) := dg

dl
= 1

2

C2g
2

(1+ kg/4)2 ,

whereC2 is the eigenvalue of the quadratic Casimir operator in the adjoint represen
of the symmetry groupG. Clearly, the notion of anexactβ-function is delicate due to
its dependence on the regularization scheme. (The contributions to theβ-function beyond
2-loop order are scheme dependent.) Ref. [31] appears to be working in some s
related to the left–right factorization of the underlying CFT. However, an explicit cu
procedure, within which Eq. (1.1) is to be valid, is not specified in more detail in [31].
authors indicate that certain checks to 3-loop order were performed. Checks beyond
loop order have never been performed, to our knowledge. The 3-loopβ-function within
dimensional regularization has also been discussed in Refs. [33,34].

1 In the absence of long-range electron–electron interactions.

2 This theory is renormalizable with a single coupling constant.
3 l := ln(a/L) is the RG-flow parameter, anda andL are the UV and IR cutoffs, respectively.
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For the case where a symmetryG = SU(2) is broken down toU(1) by a purely
imaginary easy-axis anisotropy, and for levelk = 1, the above conjecture (more precise
an appropriate generalization) reproduces [35] known exact results [36–38]. The m
RG flow of the resulting non-unitary theory interpolates between ultraviolet (UV)
massless infrared (IR) fixed points. (Both lie on the line of free scalar field theories
central chargec= 1 but with different compactification radii4). In this case, the conjecture
β-function reproduces correctly the exactly known universal relationship between the
scaling exponents (i.e., the slopes of theβ-function) at the IR and the UV fixed points. Th
is the only universal information contained in anyβ-function describing this flow.

On the other hand, the conjectured form of theβ-function, when appropriatel
generalized to supergroups, and to the anisotropic case, has recently been appl
to theories describing disordered systems, of the kind mentioned above. Here, ho
certain problems were encountered: integration of the conjectured RG equations
flows which reached a singularity after a finite scale transformation, which appears
an unacceptable result.

Motivated by these inconclusive results concerning the validity of the conjectur
were led to check the conjectured form of theβ-function by explicit computation to hig
loop order. We consider the classical symmetry groupsG = SU(N),SO(N), andSP(N),
and the special case ofisotropiccurrent–current interactions at levelk = 0. Our results are
summarized in the following section. For all the classical groups, we find a contrib
to theβ-function at 4-loop order which is incompatible with the conjecture inall possible
regularization schemes. The discrepancy is caused by an extra logarithmic diverg
perturbation theory, proportional to an additional group theoretical invariant (besid
quadratic Casimir), which first appears at 4-loop order. This divergence is not acco
for by the conjectured form of theβ-function. Implications of our results, obtained f
level k = 0, for thek-dependence of theβ-function in any scheme are discussed in
conclusion, Section 5. In this section, we also come back to, and comment on the
case of the anisotropicSU(2) model mentioned above. The reader who wishes to skip
technical details of our calculation, which are presented in Sections 3 and 4, will
self-contained exposition of our results in Sections 2 and 5.

2. Presentation of results

In order to check the conjecture, we consider, as mentioned above, the specifi
of an isotropic perturbation with symmetry groupG, and levelk = 0. The conjectured
β-function (1.1) then becomes

(2.1)β(g)= 1

2
C2g

2.

Here C2 denotes the eigenvalue of the quadratic Casimir invariant in the ad
representation ofG. For the classical groups,G = SU(N),SO(N), and SP(N), these
are listed, in our normalizations, in Fig. 1. In Sections 4.1–4.7 we present an e
4 Due to the non-unitarity of the theory, this is not in conflict with Zamolodchikov’sc-theorem [39].
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SU(N): C2 =N, d2 = 3

2
N2,

SO(N): C2 =N − 2, d2 = 24− 45

2
N + 6N2 − 3

8
N3,

SP(N): C2 = N + 2

2
, d2 = 3

2
+ 45

32
N + 3

8
N2 + 3

128
N3.

Fig. 1. Group theoretical numbers for the classical groups, used in the main text.

Fig. 2. Chain-diagrams up to 4-loop order. The number of bubbles is the number of loops.

perturbative calculation of theβ-function up to 4-loop order. This calculation procee
in three steps:

(i) use the current-algebra to calculate the diagrams;
(ii) simplify the diagrams using elementary algebra;
(iii) evaluate the integrals, which represent the (“Feynman”) diagrams.

After step (i), we encounter a great number of (rather complicated looking) diag
However, after step (ii), we are left with only two classes of diagrams:

(1) chain diagrams (“bubble” diagrams);
(2) non-chain diagrams.

Chain-diagramsappear at loop-order 1, 2, 3 and 4. They have the form depicte
Fig. 2. Each bubble comes with a factor ofg (the coupling-constant), with a grou
theoretical factor ofC2, and the whole chain with an (N -independent) integralIn, at
n-loop order (n bubbles in the chain). The integralIn depends on the cutoffsL (infrared)
and a (ultraviolet), and is a polynomial5 of degreen in [ln(L

a
)], plus terms which are

finite for L/a →∞. (The fact that ann-loop integral is bounded byc[ln(L
a
)]n with some

constantc is a necessity to ensure renormalizability.) Only the leading term inIn, with
the highest power of ln(L

a
), is universal. This applies, e.g., to the diverging part of

1-loop integralI1. Thus the contribution of the chain diagrams to the renormalizatio
the couplingg is, atn-loop order (up to a combinatorial factor)

(2.2)g(C2g)
nIn.

Non-chain diagramsfirst appear at 4-loop order. They are proportional tod2, which is an
additional group-theoretical invariant (in the adjoint representation), independent
quadratic CasimirC2. Its value for the classical groups is given on Fig. 1. This invar
can be constructed by drawing a cube, where one puts a factor off ab

c on each corner, with
one of its three indices on each adjoining edge, see Fig. 3. Finally, indices on the
edge are contracted.
5 See (A.7) for concreteness.
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Fig. 3. The group-theoretical invariantd2 and its graphical representation.

Each non-chain diagram has a global divergence proportional to[ln(L
a
)] (“single log”),

and subdivergences (higher powers of[ln(L
a
)]). However, it turns out that to the order co

sidered here, one can always group non-chain diagrams together into classes, s
each class has only a global divergence, butno subdivergence. This means that the integr
(over positions) is proportional to ln(L

a
)+ finite, and that the prefactor in front of[ln(L

a
)]

is againuniversal.
Let us recall here that a diagram proportional to[ln(L

a
)], i.e., a “single log”, gives a fi

nite contribution to theβ-function. Using the above information, we thus find the follow
β-function at 4-loop order

β(g)= g

[
1

2
C2g + a2(C2g)

2 + a3(C2g)
3 + a4(C2g)

4 − d2
π

240

(
6+ π2)g4

]
(2.3)+O

(
g6).

Here, the numbersa3 anda4 depend on the regularization scheme (but not onN or the
value of the cutoffs). In contrast, the remaining three terms are universal. The firs
comes from the “single log” of the 1-loop chain (giving the contribution1

2C2g) and the
last term from that of the non-chain diagrams (giving−d2

π
240(6+π2)g4). Furthermore, we

havea2 = 0 since we consider levelk = 0; this is a consequence of the universality of
β-function up to 2 loops, and will be checked for a specific scheme in Appendix A.1.
that to arrive at the result in (2.3),no specific form of the cut-off procedure has to be cho.

We are now in a position to answer the question, of whether the conjecture is comp
with our explicit calculation, in some given cut-off scheme. To see this, conside
example, the groupG = SU(N), where we haveC2 = N , andd2 = 3

2N
2 (see Fig. 1).

Thus at 4-loop order, we have the following contributions

(2.4)g

[
a4N

4g4 − 3N2

2

π

240

(
6+ π2)g4

]
.

SinceC2 andd2 contain all the dependence onN , and sincea4 is independent ofN , there is
no possible choice ofa4, and thus no cutoff procedure, which cancels this termfor all N .

This proves, that the conjecture is incorrect for all possible cut-off procedures, for level
k = 0. The same conclusion is arrived at for the other choices of groups.
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Let us finally give the result in a specific scheme, namely, in the scheme in whi
n-loop chain diagram is proportional to[ln(L

a
)]n, with no subleading term in ln(L

a
):

(2.5)β(g)= 1

2
C2g

2 − d2
π

240

(
6+ π2)g5 +O

(
g6).

Indeed, this is the scheme used in the large-N expansion of the Gross–Neveu mod
where theβ-function becomes quadratic [41], to leading order in 1/N . Note that this is
compatible with our result (2.5), since (upon rescalingg by N ), the first (1-loop) term is
orderO(1), whereas the second (4-loop) term is orderO(1/N2).

In conclusion, we have found that the conjecture is violated at 4-loop order, and a
1/N2 for SU(N). For SO(N) andSP(N) corrections appear at order 1/N , as can be see
from the table in Fig. 1.6

Let us now outline the organization of the article; the reader wishing to skip the tech
details of our paper can proceed directly to Section 5: in Section 3 we introduce the m
the current-algebra and basic notations. Our calculations are presented in Sectio
show in Section 4.1 how the Kac–Moody current-algebra is used to successively elim
interaction vertices from expectation values, and how this can be used to evaluate
coefficients. This is a non-trivial task. Indeed, the raw result of this reduction proc
depends on the order of the successive reductions and is highly asymmetric, wher
OPE-coefficient should be symmetric. To obtain a more symmetric result, the raw
can be simplified by using algebraic relations which we have baptized “magic rules
their efficiency. This will explicitly be demonstrated in Section 4.2 on the examp
the 2-loop diagrams. In Section 4.3 we proceed to 3-loop order, and show again h
initial highly asymmetrically looking OPE-coefficient is simplified. As in 2-loop order,
resulting diagrams are chain-diagrams which in a suitable scheme factorize, and thus
give a new contribution to theβ-function. Proceeding to 4-loop order in Section 4.4, o
finds diagrams which the magic rules are no longer able to simplify to chain-diagram
to the sheer number of initial diagrams, namely 576, this approach is not very illumin
In Section 4.5 we, therefore, pursue a different route: we first calculate OPE-coefficie
“adjoint” perturbationsΦa = f abcJ bJ̄ c. We then show in Section 4.6 how ann-loop OPE-
coefficient can be expressed as a simple algebraic function times an OPE-coeffic
ordern−1, involving two adjoint perturbations. This allows us to identify at 4-loop ord

6 One expects additional group theoretical invariants to appear in theβ-function also at higher loop order
We have found that the group theoretical invariant associated with the generalization of the cube to a
of � square plaquettes will appear at�-loop order. ForSU(N) it scales likeN2 when � is even, and likeN3

when � is odd, asN → 0. If the sum of the corresponding integrals is diverging, then this term cannot
a counter-term at even loop orders. It would thus represent, in this case, a new contribution to theβ-function
at �-loop order. This may suggest that additional group theoretical invariants, beyond the one discusse
paper, appear in theβ-function at least at all even orders, except for�= 2. (As an example, consider 6-loop orde
the above mentioned chain build out of 6 plaquettes scales likeN2 for smallN . Suppose there are counter-term
to the corresponding diagrams, then these must be products of diagrams at lower order, e.g., a 4-loop d×
a 1-loop diagram× a 1-loop diagram. This would scale for smallN at least asN2×N×N ∼N4 (and actually as
N6, if one were to use only 1-loop counter-terms), thus has a higher power inN than the chain of six plaquette
Therefore, it cannot be a counter-term of the former diagram, and the former can—due to renormalizabili

have a subdivergence. Thus its integral is universal (see the discussion in Section 4 and Appendix B), and there
is a priori no reason that it should vanish.
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combination of eight diagrams, which cannot be factorized as chains (non-chain diag
Their contribution to the 4-loopβ-function is calculated analytically in Appendix B. A
these ingredients are collected in Section 4.7, where we obtain the 4-loopβ-function. We
have relegated some basic group-theoretical relations to Appendices C.1–C.3. Conc
and further perspectives are offered in Section 5.

3. Model and method

We study the Non-Abelian Thirring Model (NATM) in two dimensions. The mo
may be defined as a perturbation of a 2D conformal field theory, with actionS0, which
is invariant under a symmetry groupG acting in the standard way [1,42]. The chir
components of the conserved Noether currents,J a(z) and J̄ a(z̄), depend (as indicated
only on z = x + iy and z̄ = x − iy, and satisfy the defining operator product expans
(OPE) of the Affine Lie algebra (Kac–Moody algebra) at levelk

J a(z)J b(0)=
k
2δ

ab

z2 + 1

z
f ab
c J c(0)+ · · · ,

(3.1)J̄ a(z̄)J̄ b(0)=
k
2δ

ab

z̄2
+ 1

z̄
f ab
c J̄ c(0)+ · · · ,

wheref ab
c are the structure constants ofG. (Repeated indices are summed throughout

paper, unless stated otherwise.) The model we study is defined by the action7

(3.2)S = S0 + g0

∫
z

Φ(z, z̄),

∫
z

:=
∫

d2z

2π
,

where the perturbing operator

(3.3)Φ(z, z̄)≡ J a(z)J̄ a(z̄)

is invariant under global transformations of the symmetry groupG. This theory is known
to be renormalizable with a single couplingg. The conjectured form [31] of theβ-function
for the renormalized couplingg is quoted in (1.1).

We compute theβ-function explicitly to 4-loop order. To this end, consider t
perturbative evaluation of the expectation value in the fully interacting theory of s
quantityO, which may represent an operator, or a product of operators at different s
positions,

(3.4)〈O〉g0 =
Z(0)

Z(g0)

〈
Oe−g0

∫
z Φ(z,z̄)

〉
0.

Here, the expectation value〈· · ·〉0 is taken in the unperturbed CFT with actionS0,
normalized such that〈1〉0 = 1. Z(g0) is the fully interacting partition function.7

A cut-off (regularization) procedure, depending on short- and large-distance cut-a
andL, is required to render all terms in this expansion finite, and is specified below
7 The partition function isZ(g0)=
∫
D[fields]exp(−S).
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renormalized couplingg (which depends ong0 anda/L) is found by computing how th
coefficientg0 of the first order term in the expansion of the exponential

〈· · ·1〉0 +
〈
· · ·

(
−g0

∫
z1

Φ(z1, z̄1)

)〉
0
+

〈
· · ·

(
g2

0

2!
∫
z1

∫
z2

Φ(z1, z̄1)Φ(z2, z̄2)

)〉
0

(3.5)+
〈
· · ·

(−g3
0

3!
∫
z1

∫
z2

∫
z3

Φ(z1, z̄1)Φ(z2, z̄2)Φ(z3, z̄3)

)〉
0
+ · · ·

is modified by the higher order expansion terms. This modification is independe
the potential presence of any operatorO in this expectation value, indicated by t
ellipses.8 The required calculation can be conveniently expressed in terms of multiple
coefficients of the perturbing operatorΦ(z, z̄), evaluated in the unperturbed theory. T
product of(n+ 1) such operators at different positions may be expanded into a “com
set” of operatorsΦA sitting at the position of, say, the last operator. The expan
coefficients depend on then relative coordinates,

Φ(z1, z̄1) · · ·Φ(zn, z̄n)Φ(zn+1, z̄n+1)

=
∑
A

CA

[
(z1 − zn+1), (z̄1 − z̄n+1); · · · ; (zn − zn+1), (z̄n − z̄n+1)

]
(3.6)×ΦA(zn+1, z̄n+1).

The non-vanishing expansion coefficients are exactly known in any CFT. In the p
case they are especially simple, and can be obtained by successive use of the
the currents, (3.1). In particular, the perturbing operatorΦ is the most relevant operato
(besides the identity whenk �= 0) appearing amongst theΦA; all others are irrelevant. W
find it convenient to denote the neededmultiple OPE-coefficient, whereΦA = Φ, by the
symbol(

Φ(z1, z̄1) · · ·Φ(zn, z̄n)Φ(zn+1, z̄n+1)|Φ(zn+1, z̄n+1)
)

(3.7)= CΦ

[
(z1 − zn+1), (z̄1 − z̄n+1); · · · ; (zn − zn+1), (z̄n − z̄n+1)

]
.

The renormalization process is now easily understood by inserting (3.6) into
Explicitly, denote the relevant integrals over the multiple OPE-coefficients byFn (for
“Feynman”-diagram):

Fn :=
∫

z1,z2,...,zn

(
Φ(z1, z̄1) · · ·Φ(zn+1, z̄n+1)|Φ(zn+1, z̄n+1)

)
(3.8)× C(z1, z̄1, . . . , zn+1, z̄n+1).

These integrals are regularized by a cut-off prescription, which is achieved by ins
a cut-off functionC(z1, z̄1, . . . , zn+1, z̄n+1) in the integral, as indicated. There are ma
8 The operator itself requires an analogous treatment, which, however, can be discussed independently; this
will not be needed here.
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possible choices. In this article we choose a (circular) hard cut-off implemented by

(3.9)C(z1, z̄1, . . . , zn, z̄n) :=
∏
i �=j

Θ
(
a < |zi − zj |<L

)
,

whereΘ is the usual step function. This cut-off procedure restricts the distances be
any pair of integration variables to lie between the short- and the long-distance cut-a

andL. All integralsFn are thus finite functions ofa/L. As usual, inserting (3.6) in (3.5
and using (3.8) gives:

〈· · ·1〉0 +
〈
· · ·

(
−g0

∫
z

Φ(z, z̄)

)〉
0
+

〈
· · ·

(
g2

0

2! F1

∫
z

Φ(z, z̄)

)〉
0

+
〈
· · ·

(−g3
0

3! F2

∫
z

Φ(z, z̄)

)〉
0
+ · · ·

= 〈· · ·1〉0 +
〈
· · ·

(
−g

∫
z

Φ(z, z̄)

)〉
0
+ · · · =

〈
· · ·

(
e−g

∫
z Φ(z,z̄)

)〉
0
.

Following standard reasoning we have re-exponentiated in the last line. One can no
off the renormalized coupling:

(3.10)g

(
g0,

a

L

)
= g0

[
1− g0

2!F1

(
a

L

)
+ g2

0

3! F2

(
a

L

)
− · · ·

]
.

Theβ-function is obtained as the change ofg in response to changinga (or 1/L), while
keeping the bare couplingg0 fixed:

(3.11)β(g) := a
∂

∂a

∣∣∣∣
g0

g

(
g0,

a

L

)
.

In the remaining sections of the paper we will obtain the integralsF1, . . . ,F4. This gives
us the result for the 4-loopβ-function written in (2.3) above.

4. Calculation

In this section we present in detail the evaluation of the integralsFn defined in (3.8)
(“Feynman”-diagrams), needed to obtain theβ-function, as explained in Section 3. Th
core of this calculation consists in obtaining the OPE-coefficients defined in (3.7
repeated use of the current-algebra OPE (3.1). We start with the simplest case, i.e
the 1-loop integralF1, and proceed successively to the more involved cases, up to 4
order.

4.1. 1-loop order

At 1-loop order, we need the OPE-coefficient
(4.1)
(
Φ(z, z̄)Φ(w, w̄)|Φ(w, w̄)

)
.
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To evaluate it, we have to eliminateΦ(z, z̄) fromΦ(z, z̄)Φ(w, w̄), using (3.1). This is don
as follows9

Φ(z, z̄)Φ(w, w̄)≡ J a(z)J̄ a(z̄)J b(w)J̄ b(w̄)

(4.2)−→ f ab
c f ab

d J c(w)J̄ d(w̄)
1

|w− z|2 = C2J
c(w)J̄ c(w̄)

1

|w− z|2 .

We have used thatf abcf abd = C2δ
cd , with the second CasimirC2. (This and more group

theoretical relations are derived in Appendix C.1.) We denote (4.1) in short by

(4.3)
(
Φ(z, z̄)Φ(w, w̄)|Φ(w̄,w)

)= z w = z w = C2

|w− z|2 .
The arrows show the direction in which the elimination has been made. This defin
sign. To be specific, an arrow fromz to w represents 1/(z − w). A dashed such arrow
represents 1/(z̄− w̄). When a solid and a dashed arrow (with the same direction) con
the same two points, one can drop the arrows for simplicity of notation; seeing a sol
a dashed line thus means that when adding the arrows, both arrows are pointing in th
direction.

The OPE-coefficient (4.3) yields the 1-loop diagramF1

(4.4)F1 =
∫
z

=
∫
z

C2

|w− z|2Θ
(
a < |w− z|<L

)= C2 ln

(
L

a

)
.

4.2. 2-loop order and the magic rule

At 2-loop order, we have threeΦ ’s. DenotingΦi := J a(zi)J̄
a(z̄i), we need to calculat

(Φ1Φ2Φ3|Φ3). Straightforward use of the current-algebra (3.1) withk = 0, eliminating the
currents one by one, starting with point 1, and continuing with point 2, yields

(Φ1Φ2Φ3|Φ3)

(4.5)= 1

2
C2

2

[
2

|z12|2|z23|2 + 2

|z13|2|z23|2 − 1

|z23|2z13z̄12
− 1

|z23|2z12z̄13

]
,

where we have abbreviatedzij := zi − zj . Here, and throughout this article, we use
labeling of points as indicated in Fig. 4. The result is graphically presented in F
(top). Eq. (4.5) apparently contains a new diagram, which renders the OPE-coef
asymmetric upon exchange of point 1 with point 2, or of point 1 with point 3. Howe
there is a simple algebraic identity, the “magic” rule for the real part� of 1

zw̄
:

(4.6)�
[

1

zw̄

]
=�

[
z̄w

|z|2|w|2
]
=

[ �z �w
|�z|2| �w|2

]
= 1

2

[
1

|�z|2 + 1

| �w|2 − |�z− �w|2
|�z|2| �w|2

]
.

The most useful application is in the presence of an additional factor 1/| �w − �z|2, which
cancels the numerator in the last term. This leads to the decomposition of the new dia
9 Recall that summation over repeated indices is implied, and that we work at levelk = 0.
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Fig. 4. Labeling of the points in Figs. 5–7, and diagrams in the main text.

Fig. 5. 2-loop diagrams after reducing the structure-constants to numbers. To be multiplied by1
2C

2
2. The numbers

given are the weight. The first line is the raw result, as obtained by using the reduction algorithm. Arrows i
the direction of the reduction. The second line after using magic relations.

in (4.6) into chain-diagrams (drawn below rotated by−1200 as compared to Fig. 5 (top))

(4.7)+ = + − .

The OPE-coefficient (4.5) simplifies to

(4.8)(Φ1Φ2Φ3|Φ3)= 1

2
C2

2

[
1

|z12|2|z13|2 + 1

|z12|2|z23|2 + 1

|z13|2|z23|2
]
,

which is manifestly symmetric, as it should be. The resulting expression for the
coefficient in (4.8) is graphically represented in Fig. 5 (bottom). One sees that
using the “magic” rule, the OPE-coefficient, and hence the integralF2, can be written
in terms of chain diagrams. This suggests, that the corresponding diagrams (i.
“Feynman” integralF2) factorize, are of order ln(L

a
)2 without a pure ln(L

a
) and thus give

no contribution to theβ-function at 2-loop order. This is indeed correct, as checke
Appendix A.1 for the cut-off procedure introduced in Section 3.

For the model at hand, the cut-off procedure is subtle. The reason is that one
put a cut-off on the lines, as would be most convenient to immediately prove factoriz

of chain-diagrams: in constructing the diagram, we have used magic rules to move around
the lines, and if we leave behind a cut-off function, then the resulting diagram will not be
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Fig. 6. 3-loop diagrams after reducing the structure-constants to numbers. To be multiplied by1
4C

3
2. The numbers

given are the weight. The first 4 lines are the raw result, as obtained by using the reduction algorithm. N
4 diagrams have weight 0. Arrows indicate the direction of the reduction. The last two lines after using
relations, dropping the redundant arrows.

totally symmetric, as it should and as it is in our construction. The only way out o
above dilemma, is to put cut-offs between any pair of points, regardless of whether t
points are connected with a line or not (compare (3.8)). However, then the factori
is no longer a trivial statement, and has to be checked. This has been done for the
chains in Appendix A.1. As we have argued in Section 2, this is not essential fo
arguments, and the conclusions remain valid in any scheme. Let us, however, menti
in order to recover the large-N limit of SU(N), factorization is needed, and is sufficient
uniquelyfix the RG-procedure up to 4-loop order; but not necessarily beyond.

4.3. 3-loop order

At 3-loop order, 36 diagrams appear, presented on top of Fig. 6. These diagra
contain six structure-constants, and have two free indicesa andb, which are contracte
with the remainingJ̄ aJ b. Since the only invariant object with two indices isδab, one can
contract the last lines to obtain the algebraic factor; the final result has of course

divided by the dimension of the adjoint representation. One can then convince oneself by
drawing pictures, that all objects which can be constructed, contain at least one loop made
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out of two or three vertices10, i.e., objects of the form

(4.9)f acbf bcd = =−C2δ
ad,

(4.10)f aedf bgef cdg = =−C2

2
f abc,

which we give together with a group-theoretical identity (derived in Appendix C.1), w
is sufficient to reduce the number off in any given diagram. Repeatedly using (4.9) a
(4.10) thus allows to eliminate allf . This procedure is performed using a computer,
the reader would have a hard time verifying it by hand. We have thus shown that all 3
diagrams are proportional toC3

2, thus no additional group theory invariants, besides
second Casimir, appear at this order.

The diagrams are given with their combinatorial factor on top of Fig. 6, to be multip
by 1

4C
3
2. Applying magic rules leads to chain-diagrams, presented graphically at the b

of Fig. 6. Algebraically, the result is

(Φ1Φ2Φ3Φ4|Φ1)

(4.11)

= C3
2

4

[
1

|z12|2|z14|2|z23|2 + 1

|z13|2|z14|2|z23|2 + 1

|z12|2|z13|2|z24|2
+ 1

|z13|2|z14|2|z24|2 + 1

|z13|2|z23|2|z24|2 + 1

|z14|2|z23|2|z24|2
+ 1

|z12|2|z13|2|z34|2 + 1

|z12|2|z14|2|z34|2 + 1

|z12|2|z23|2|z34|2

+ 1

|z14|2|z23|2|z34|2 + 1

|z12|2|z24|2|z34|2 + 1

|z13|2|z24|2|z34|2
]
.

4.4. 4-loop order, direct approach

Let us now continue to 4-loop order. After using the current-algebra, there ar
diagrams, which again we generate computer-algebraically. The group theoretical
appearing with these diagrams are much more involved. An example is a cube, whe
corner represents a structure-factorf abc and each link identifies a pair of common indic
between twof ’s. This is drawn on Fig. 3 and detailed in Appendix C.1. It is at this lo
order that an additional group theoretical invariant besides the quadratic Casimir
After reducing the algebra, one finds that 380 terms are proportional toC4

2. Using magic
rules, these diagrams can be reduced to 60 chains; these are in fact all the chains w
be drawn through 5 points.11 Each chain comes with a weight of1

8C
4
2. For the remaining
10 The simplest object without such a loop would be a cube, which indeed appears at 4-loop order, see Fig. 3.
11 In general, there is a total of12n · (n− 1)! chains that can be drawn throughn points.
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Fig. 7. 4-loop diagrams not proportional toC4
2.

diagrams not proportional toC4
2, presented in Fig. 7, our reduction-algorithm based

magic rules is incapable of further simplifying it. In Section 4.6 we will present a sim
calculation, reducing the task to calculating a combination of eight diagrams. To this
we need correlation functions involving operators which we call “adjoint” perturbat
defined below.

4.5. OPE for adjoint perturbations

Define the “adjoint” perturbation at position(zi , z̄i) as

(4.12)Φa(zi, z̄i )≡Φa
i := f abcJ b(zi)J̄

c(z̄i ).

We now apply the same procedure as in the previous sections: eliminate currents
one using (i) the current-algebra, (ii) evaluation of the group theoretical factors, an
simplifications with the magic rule. After some lengthy calculations (done again comp
algebraically), we find up to 3-loop order:

(4.13)
(
Φa

1Φ
a
2

∣∣Φ2
)= C2

2

2

1

|z12|2 ,( ∣ ) C3[
1 1

]

(4.14)Φa

1Φ2Φ
a
3
∣Φ3 = 2

4 |z12|2|z13|2 + |z13|2|z23|2 ,
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(
Φa

1Φ
a
2Φ3Φ4

∣∣Φ4
)

(4.15)

= C4
2

8

[
1

|z12|2|z14|2|z23|2 + 1

|z12|2|z13|2|z24|2 + 1

|z12|2|z13|2|z34|2

+ 1

|z12|2|z14|2|z34|2 + 1

|z12|2|z23|2|z34|2 + 1

|z12|2|z24|2|z34|2
]

+ d2


 − − +


 .

The additional group-theoretical invariantd2 is defined12 in Appendix C.1. ForSU(N) this
readsd2 = 3

2N
2 compared to the leading termC4

2 =N2. The results forSO(N) andSP(N)

are listed in Fig. 1, see also Appendix C.3. For these groups,C4
2 ∼ N4 and againd2 is

subdominant, withd2 ∼N3.

4.6. 4-loop order simplified

We have seen in Section 4.4 that a direct 4-loop calculation is quite cumber
Instead, we use here a different approach, inspired by the original work by Kutasov
We start by eliminatingΦn from the multiple OPE-coefficient (3.7). Let us first give t
result and then explain how we have obtained it:

(ΦnΦ1Φ2 · · ·Φn−1|Φn−1)

=−
∑

i,j=1,...,n−1,i �=j

1

zn − zi

1

z̄n − z̄j

(
Φ1 · · ·Φa

i · · ·Φa
j · · ·Φn−1|Φn−1

)

(4.16)+
n−1∑
i=1

C2

|zn − zi |2 (Φ1 · · ·Φn−1|Φn−1).

We have eliminated all currents at pointn. Using the current-algebra (3.1) again withk = 0,
there is a contribution from each pair of points{i, j } with i, j �= n. The first line of (4.16)
contains the contributions withi �= j , for which we have listed below the correspond
current-algebra identities in (4.17) and (4.18). The last line of (4.16) is the casei = j , and
is obtained by using the current-algebra both for the holomorphic and antiholomo
current, as given in (4.19) below.

(4.17)J a(zn)J̄
b(z̄i)J

b(zi)−→ f abc

zn − zi
J c(zi)J̄

b(z̄i)=− 1

zn − zi
Φa

i ,

(4.18)J̄ a(z̄n)J̄
b(z̄j )J

b(zj )−→ f abc

z̄n − z̄j
J̄ c(z̄j )J

b(zj )= 1

z̄n − z̄j
Φa

j ,

(4.19)J̄ a(z̄n)J
a(zn)J̄

b(z̄i )J
b(zi)−→ f abcf abd

|zn − zi |2 J
c(zi)J̄

d(z̄i )= C2

|zn − zi |Φi.
12 Constructing a symmetrized tensordabcd out of the trace of 4 structure-constantsf ab
c , d2 is the non-

dominant contribution (inN ) of the square ofdabcd (as defined in (C.13)).
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Fig. 8. The combination of 8 diagrams contributing at 4-loop order. Note the different labeling of points gi
the inset, as compared to the labels of Fig. 4, used in Fig. 7.

Note that eliminating pointn (instead of point 1 as we were used to do) is for la
calculational (and representational) convenience only.

We now turn to the 4-loop calculation, i.e., setn= 5. One can check that starting fro
(4.16), using (4.11) and (4.15), one reconstructs all the 60 chains connecting 5 po
found in Section 4.4. The remaining terms are obtained from the first term in (4.16)
the term proportional tod2 in (4.15). There are(n−1)(n−2)

2 = 6 such terms, each being
combination of 8 diagrams depicted in Fig. 8. Since each of the 6 terms gives the
contribution upon integration, we only have to calculate the integral over one of
Analytically, this is most easily written as (we have choseni, j to be the pair 1,2 and the
starting point is 5)

I :=
∫ (

1

z14z̄13
− 1

z̄14z13

)(
1

z24z̄23
− 1

z̄24z23

)
1

|z34|2
(

1

z15z̄25
+ 1

z̄15z25

)
(4.20)× C(z1, z̄1, . . . , z5, z̄5),

where the integral is over all but one point, and the cut-off functionC(· · ·) was introduced
in (3.9). This integral is evaluated in Appendix B to be

(4.21)I =− π

12

(
6+ π2) ln

(
L

a

)
.

4.7. Theβ-function up to 4-loop order

Now we are ready to put everything together to obtain theβ-function. In a scheme in
which the chains factorize, we obtain by collecting the results (4.4), (4.8), (4.11), an
paragraph below (4.16), and upon use of (3.10):

g = g0

{
1− 1

2!
[
g0C2 ln

(
L

a

)]
+ 1

3!
3

2

[
g0C2 ln

(
L

a

)]2

− 1

4!
12

4

[
g0C2 ln

(
L

a

)]3

1
(

60
[ (

L
)]4 π ( ) (

L
))}
(4.22)+
5! 8

g0C2 ln
a

+ 6
12

6+ π2 d2g
4
0 ln

a
.
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Note that the factors 1/n! are from the exponential, then for the chains the next facto
the number of chains times their dependence ong0, times the group-theoretical factor13

Cn
2/2n−1. The last term (which comes from the non-chain diagrams) has a factor of 6

combinatorics as discussed in the previous section and the minus signs from the i
(4.21) and from (4.16) cancel.

Inserting (4.22) into (3.11) leads to the 4-loopβ-function in terms of the renormalize
couplingg:

(4.23)β(g)= 1

2
C2g

2 − d2
π

240

(
6+ π2)g5 +O

(
g6),

with d2 = 3
2N

2 for SU(N), d2 = 24− 45
2 N +6N2− 3

8N
3 for SO(N) andd2 = 3

2 + 45
32N +

3
8N

2 + 3
128N

3 for SP(N), as calculated in Appendices C.2 and C.3.
In schemes in which the chains do not factorize, there are additional terms, se

and the discussion below that equation.
Some comments on the procedure are in order. Readers used to the Wilson-sche

recover that procedure by studying the change ofg in (4.22) under an infinitesimal chang
of a, corresponding to the integration over an infinitesimal shell froma to a+ δa. The only
difference is that this is a shell in position space, and not in momentum space.

Second, to our knowledge this is the first 4-loop calculation with a hard cuto
equivalently the first 4-loop calculation in a Wilson scheme.

5. Conclusion and further perspectives

In this article we have performed an explicit perturbative calculation of theβ-function
for the non-Abelian Thirring model atk = 0 up to 4-loop order. We have found th
the conjectured form of theβ-function [31], Eq. (1.1), is incompatible with our result
all regularization schemes. The discrepancy arises from an extra logarithmic diver
which appears first at 4-loop order, and which is proportional to a higher group-theo
invariant (evaluated in the adjoint representation of the symmetry group) whi
different from the quadratic Casimir invariant. This divergence is not accounted f
the conjecturedβ-function.

It is worth pointing out that our explicit 4-loop result at levelk = 0 does not only
rule out the particular conjectured form of the (isotropic)β-function Eq. (1.1), but a mor
general class of conjectures for theβ-function. This way of presenting our 4-loop res
emphasizes the dependence on the levelk, whereas in Section 2 only the special casek = 0
was discussed. Such forms which we can rule out arise by attempting to “scale” w
level k. Specifically, for any one of the classical groupsG = SU(N),SO(N) andSP(N),
theβ-function (of the isotropic theory) will in general be a function of three variables
coupling constantg, the levelk, as well asN , or equivalentlyC2 = C2(N), the second
Casimir invariant in the adjoint representation:

(5.1)
dg

dl
= β(g, k,C2).
13 See (4.4), (4.8), (4.11), and the paragraph below (4.16).
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It was argued in [35] that by rescaling the Kac–Moody currentsJ a →√
k J a (as suggeste

by the large-k calculations done in [32]), the (isotropic)β-function should satisfy (perhap
in a suitable scheme) the “scaling form”

(5.2)β(g, k,C2)
!= 1

k
F

(
C2

k
, kg

)
= gH

(
gC2,

k

C2

)
.

The conjecturedβ-function of Ref. [31], i.e., Eq. (1.1), is a special case of this. T
second equation above gives an equivalent way of writing the scaling form, useful
considering the limitk → 0 for g = fixed, whereas the form in the first equation is use
in the largek limit where 1/k → 0 for kg = fixed. Since we know that the perturbati
β-function must have a finite limit ask → 0, the second equation in (5.2), when speciali
to k = 0, leads to a form of theβ-function, whoseg-dependence is only through th
combinationgC2 (apart from an overall factor ofg). Comparison with Eq. (2.3) show
that this is incompatible with the explicit 4-loop result that we have found in any pos
scheme. Hence, our result implies that theβ-function must have an explicit dependen
on the levelk, and that the latter can in no scheme be “scaled out” in the way indicat
(5.2).

Finally, a point which deserves clarification is why in the case where a symm
G = SU(2) is broken down toU(1) by a purely imaginary easy-axis anisotropy, a
for level k = 1, the conjecture reproduces [35] known exact results [36–38]. (This
mentioned in the introduction, Section 1.) Indeed, Ref. [35] proposes that this agre
should provide a strong check of the conjecture. Here we would like to point out, how
that this agreement is not surprising, because the theory is very special. It poss
hidden quantum group symmetry (or, “fractional supersymmetry”) [43], present fo
values of the levelk. This symmetry imposes strong constraints on thek-dependence
of the relationship between the slopes of theβ-function, i.e., the RG eigenvaluesy of
the perturbation, at the UV and IR fixed points. As a consequence of the symmetr
relationship is [44]:

(5.3)
1

kyIR
+ 1

kyUV
= 1.

For the remainder of our argument, we only need the result in (5.3) about the
relationship betweenyUV andyIR. First, we note that the same result can also be obta
by using the conjecturedβ-function of [31], see [35]. Now since, following Kutasov [32
the conjecture is just the leading term in a 1/k-expansion of the beta function, it shou
yield a relation betweenyIR andyUV, which is valid at leading order in 1/k, but will not
contain information about corrections to this of order 1/k2 or higher. However, due t
Eq. (5.3), theexactrelation betweenyIR andyUV has no such higher order corrections
all. Thus the leading order term in 1/k happens to give already the whole, i.e., the ex
result for these quantities. This explains why the conjecture reproduces the exac
even for levelk = 1. We end our discussion by noting that it would be interesting to ob
generalizing Kutasov’s work, who computed (as mentioned) theβ-function of the non-
Abelian Thirring model to first order in 1/k in the large-k expansion, higher order term

in this large-k expansion. These will not in general be absent, as our work presented in this
paper shows. Work along these lines is in progress.
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Appendix A. Factorization of chain-diagrams

In this appendix, we show how chain-diagrams factor, restricting ourselves to 2
order. This is done in Appendix A.1. As a tool, we need the “conformal map
technique”, which was introduced in [45,46], reviewed in [47], and which we present
for completeness, and since in contrast to the cited references we here work exactl
critical dimension, where we need both an ultraviolet and an infrared cutoff.

A.1. Factorization of chain-diagrams at 2-loop order

At 2-loop order, everything can with the help of the magic relation be reduced t
bubble-chain. The subtracted 2-loop diagram, i.e., the 2-loop diagram minus the sq
the 1-loop diagram is (we denote byS this subtraction-operator, which also contains
integration and the cut-off functions)

S
[ ]

(A.1)=
∫

z,w

1

|z|2|w|2
[
Θ

(
a < |z|, |w|, |z−w|<L

)−Θ
(
a < |z|, |w|<L

)]
.

The first term on the r.h.s. represents the 2-loop integral, the second term the sub
1-loop integrals (where integration overw andz factorizes). Applying−a ∂

∂a
to the above

gives

−a
∂

∂a
S

[ ]

(A.2)

= a

∫
z,w

1

|z|2|w|2
[
Θ

(
a = |z|< |w|, |z−w|<L

)
+Θ

(
a = |w|< |z|, |z−w|<L

)
+Θ

(
a = |z−w|< |w|, |z|<L

)
−Θ

(
a = |z|< |w|<L

)−Θ
(
a = |w|< |z|<L

)]
.

Using the conformal mapping technique of [45–47], which is summarized in Ap
dix A.2, all terms can be mapped onto|z| = a; with the result (we have used th
a2/|z|2 = 1):

(A.3)

−a
∂

∂a
S

[ ]
=

∫
w

1

|w|2
[
Θ

(
max
min

(|z| = a, |w|, |w− z|) < L

a

)

−Θ

(
max
min

(
a, |w|) < L

a

)]
.

The functionmax
min (a1, . . . , an) is defined as
(A.4)max
min (a1, . . . , an) := max(a1, . . . , an)

min(a1, . . . , an)
.
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The above is a function ofL/a, and can be bounded forL/a > c1 by

(A.5)

∣∣∣∣∣−a
∂

∂a
S

[ ]∣∣∣∣∣ < c2
a

L

with c2 = c2(c1). Taking c1 > 3 allows the boundc2 = 2. The important thing is tha
the integral is not diverging: this means we have subtracted the right 1-loop co
term. Moreover, the limit of largeL/a can be taken; since it is zero, there is no sin
ln-contribution in the 2-loop integral. We can denote symbolically the result as

(A.6)
∫ ∫

=
[∫ ]2

.

A.2. Conformal mapping

As a tool to prove factorization of chains (see Appendix A.1), we need the “confo
mapping” technique, which was introduced in [45,46], reviewed in [47], and which
present here for completeness, and since in contrast to the cited references we he
exactly at the critical dimension, where we need both an ultraviolet and an infrared c

Note that a generalN -loop integralIN will behave as

(A.7)IN(a,L)= a0 + a1 ln
L

a
+ a2

(
ln

L

a

)2

+ · · · + aN

(
ln

L

a

)N

,

where we dropped terms which vanish in the limit ofL/a →∞. Deriving w.r.t.a leads to

(A.8)−a
∂

∂a
In(a,L)= a1 + 2a2 ln

L

a
+ · · · +NaN

(
ln

L

a

)N−1

.

On the level of the integral, this operation amounts to fixing the smallest distance toa.
Due to our normalizations, this is equivalent to fixing the both endpoints of this sm
distance. The integration over the remaining points has then to be done.

We now state a very important theorem for the integral over a functionf at orderN −1
loops: iff (z1, z̄1, . . . , zN , z̄N ) is a homogeneous function of dimension−2(N −1) (z and
z̄ have dimension 1), then the integral overz1, . . . , zN−1 (the relative coordinates betwee
points)

(A.9)IN(a,L) :=
∫

z1,...,zN−1

f (z1, z̄1, . . . , zN , z̄N )C(z1, z̄1, . . . , zN , z̄N )

has dimension 0. Consider a sectorS (ordering of the distances). Bexα := |zi − zj |, with
1 � α � m :=N(N−1)/2. ThenS := {z1, . . . , z̄N }, s.t.x1 < x2 < · · ·< xm. (Actually, we
have chosen the labeling of the distancesxα to account for the ordering. This is not alwa
the most practical thing to do.) Also define the characteristic functionχS (x1, . . . , xm) of
a sectorS as being 1 if all distances satisfy the inequalities of the sector and 0 othe
Thea-derivative of the integral restricted to the sectorS is

∂
∫ ∣
(A.10)

J S := −a
∂a

ISN(a,L)= f (z1, . . . , z̄N )∣
x1=a

Θ(xm < L)χS (x1, . . . , xm).



plete-

by the

n

ver
A.W.W. Ludwig, K.J. Wiese / Nuclear Physics B 661 [FS] (2003) 577–607 597

The conformal mapping theorem [45–47], whose proof we reproduce below for com
ness, now states thatif the integral (A.10) is Riemann-integrable everywhere, then

(A.11)J S ≡
∫

f (z1, . . . , z̄N )
∣∣
xi=a

Θ(xm/x1 <L/a)χS(x1, . . . , xm).

In words: the above integral can be evaluated by fixing any of the distances to bea (or
1 equivalently). The constraint on the smallest and largest distances is captured
condition that the ratio of largest to smallest distance is bounded byL/a, as it is in the
original integral, which is thus just a special case of the expression (A.11).

Proof. First of all, sincex1 = a, and introducing aδ-function to enforce it,J S becomes

(A.12)J S =
∫

f (z1, . . . , z̄N )δ(x1 − a)Θ(xm/x1 <L/a)χS(x1, . . . , xm).

We now aim at integrating over distancesx1, . . . , xm instead of coordinates with a
arbitrary functiong∫

d2z1 · · ·d2zN−1g(x1, . . . , xm)

(A.13)=
∫

dx1 · · ·dxmµ(x1, . . . , xm)g(x1, . . . , xm).

The measure is easily constructed as

µ(x1, . . . , xm)

(A.14)=
∫

d2z1 · · ·d2zN−1 δ
(
x1 − |z1 − z2|

) · · ·δ(xm − |zN−1 − zN |
)
,

where theδ-distributions enforce thexi ’s to be the distances between thezj ’s.
We now want to map ontoxl = a. To achieve this, we can always do the integration o

xl last. This gives forJ S

J S =
∫

dxl

∫
dx1 · · ·dxl−1 dxl+1 · · ·dxmµ(x1, . . . , xm)δ(x1 − a)

(A.15)× f (x1, . . . , xm)Θ(xm/x1 <L/a)χS(x1, . . . , xm).

We now make a change of variables. For alli but l, set

(A.16)xi := x̃ixl/a.

We also definẽxl := a, and introduce this into (A.15) as 1= ∫
dx̃l δ(x̃l − a):

J S =
∫

dxl

∫
dx̃1 · · ·dx̃m µ(x̃1, . . . , x̃m)δ(x̃l − a)

× f (x̃1, . . . , x̃m)Θ(x̃m/x̃1 <L/a)χS(x̃1, . . . , x̃m)

(A.17)× δ(x̃1xl − a)
a

xl
.

Note that the factor ofa/xl consists of(xl/a)N(N−1)/2−1 from the terms d̃xi but dx̃l ;
a factor of(xl/a)(N−1)(2−N/2) from the measure; and a factor of(xl/a)

−2(N−1) from f .
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Using that

(A.18)
∫

dxl δ(x̃1xl − a)
a

xl
= 1,

we obtain

J S =
∫

dx̃1 · · ·dx̃m µ(x̃1, . . . , x̃m)δ(x̃l − a)

(A.19)× f (x̃1, . . . , x̃m)Θ(x̃m/x̃1 <L/a)χS(x̃1, . . . , x̃m).

Dropping the tildes, this is nothing but (A.15) withx1 replaced byxl which completes the
proof. ✷

Appendix B. The 4-loop integral

In this appendix we evaluate analytically the integral (4.20) needed in Section (4
obtain theuniversalpart of the 4-loop contribution to theβ-function (i.e., the last term in
(2.3)), with the result quoted in (4.21). The integrand of the integral (4.20) in questio

(B.1)M :=
(

1

z14z̄13
− 1

z̄14z13

)(
1

z24z̄23
− 1

z̄24z23

)
1

|z34|2
(

1

z15z̄25
+ 1

z̄15z25

)
.

Graphically, this is depicted in Fig. 8. We observe that we can make the follo
simplification (due to the “second magic rule”):

(B.2)
1

wū
− 1

w̄u
= w̄u−wū

w̄wūu
= 2i

�w× �u
|w|2|u|2 = 2i

| �w− �u|h
|w|2|u|2 ,

whereh is the height of the triangle spanned by�w and�u; if the angle is larger thanπ , then
h is negative (see Fig. 9).

Note that the first two factors of the integrandM both contribute a term|z34|,
thus canceling the third term 1/|z34|2. This allows us to see that the integral has
subdivergences; it will contain only a “global divergence”, i.e., it will be proportiona
a single power of ln(L/a) (L anda are the IR and UV cutoffs, respectively). We no
proceed to check this by explicit calculation and to compute the precise coefficient
single logarithmic divergence. Let us now introduce distances as depicted in Fig. 10

Here all distances are measured from 0 except forx ′ andz which are measured from
their intersection point. In these conventions,x ′ and−z in the figure are negative. Th
integrand can then be written as14

M= (2i)2 y

(y2 + x2)(y2 + (x ′ + b)2)

−z

(z2 + x ′2)(z2 + (x + b)2)

(B.3)×
(

1

z15z̄25
+ 1

z̄15z25

)
,

14 There are four complex integration variables, equivalent to eight real integration variables. We make use of
this equivalence whenever convenient.
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Fig. 9.

Fig. 10.

where all variables are to be integrated over. Let us first do the integrals overx, x ′, b, z and
z5 =�(z5)+ i�(z5), i.e., all distances except fory, which is keptfixed and positive. At the
end, we integrate over the vectory, both overits magnitude and direction. (This fixes the
coordinate system.) We note that choosinga � |y| � L, boundary terms can be neglecte
since the integrals do not contain subdivergences, neither in the UV nor in the IR.

Doing first the integral over point 5, we obtain using (D.1) from Appendix D∫
d2z5

(
1

z15z̄25
+ 1

z̄15z25

)
=−2π ln

(|z12|2
)+ const.

(B.4)=−2π ln
[
(y + z)2 + b2]+ const,

where the constant depends on the IR-cutoffL. However, one easily sees that it drops fro
the above calculation due to the asymmetry ofz→−z of the remaining terms in (B.3). W
finally have to integrate:

(B.5)−8π
y

(y2 + x2)(y2 + (x ′ + b)2)

z

(z2 + x ′2)(z2 + (x + b)2)
ln

[
(y + z)2 + b2].

The simplest integrals are those overx andx ′. We use

∞∫
1 1 π(|y| + |z|)
(B.6)

−∞
dx

x2 + y2 (b+ x)2 + z2 = |yz|(b2+ (|y| + |z|)2)
,
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which can be done by residue-calculus. Integrating (B.5) overx andx ′ thus gives:

(B.7)−8π3 (|y| + |z|)2

yz(b2+ (|y| + |z|)2)2 ln
[
(y + z)2 + b2].

To continue, we recall that byconstructiony (which is the module of a vector) is positiv
(B.7) can thus be written as the integral over positivez only

(B.8)−8π3 (y + z)2

yz(b2+ (y + z)2)2

(
ln

[
(y + z)2 + b2]− ln

[
(y − z)2 + b2]).

The easiest integral to do is that overb, which nevertheless is a little bit tricky. We need

(B.9)

∞∫
−∞

ln(b2 + d2)

(b2 + s2)2 db= −π

s2(|d| + |s|) +
π ln(|d| + |s|)

|s|3

which can be verified with the help of the residue-theorem. To do so, one split
ln(b2 + d2) = ln(b + i|d|)+ ln(b − i|d|) which both have branch-cuts. But the integ
can be closed either in the upper or lower domain, and we close it in the domain
there is no branch-cut. This leaves us with

8π4

∞∫
0

dz
(y + z)2

yz

{[
1

(y + z)2(2|y + z|) −
ln(2|y + z|)
(y + z)3

]

(B.10)

−
[

1

(y + z)2(|y − z| + |y + z|) −
ln(|y − z| + |y + z|)

|y + z|3
]}

.

Scaling outy, and splitting the integral into domains where the absolute values h
definite sign gives

8π4

y2

∞∫
0

dz
1

z

{[
1

2|1+ z| −
ln(2|1+ z|)

(1+ z)

]

−
[

1

(|1− z| + |1+ z|) −
ln(|1− z| + |1+ z|)

|1+ z|
]}

= 8π4

y2

1∫
0

dz

{[
1

2z(1+ z)
− ln(2(1+ z))

z(1+ z)

]
−

[
1

2z
− ln(2)

z(1+ z)

]}

+ 8π4

y2

∞∫
1

dz

{[
1

2z(1+ z)
− ln(2(1+ z))

z(1+ z)

]
−

[
1

2z2
− ln(2z)

z(1+ z)

]}

2 ( ) 1

(B.11)=−

3
π4 6+ π2

y2
.
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The final integral overy contains the integral over the modulus ofy and its direction, which
contributes a factor of 2π :

(B.12)

L∫
a

dy 2πy

[
−2

3
π4(6+ π2) 1

y2

]
=−4

3
π5(6+ π2) ln

(
L

a

)
.

To conform to the normalizations used in the main text, see Eq. (3.2), this still has
divided by(2π)4, yielding the final result (with the integral running over all but one of
points, and normalizations according to Eq. (3.2))

(B.13)I :=
∫

M=− π

12

(
6+ π2) ln

(
L

a

)
+ finite.

We have indicated an additional finite term in the result, which depends on the sp
regularization prescription, and which is either a constant or decays to 0 in the lim
L/a →∞.

Appendix C. Some remarks on group theory

In this appendix, we collect a number of useful group-theoretical identities, first in
for a general Lie-groupG, then in C.2 forSU(N), and finally in C.3 for the other classic
groups,SO(N) andSP(N).

C.1. Group theoretical invariants

In this appendix we discuss the additional group theoretical invariant, referred to
main text. Since we are using the current-algebra, only the adjoint representation
symmetry groupG appears in our calculations. Therefore, all group-theoretical invar
that can possibly appear, can all be constructed out the structure constants. The s
such invariant is of course the eigenvalue of the quadratic Casimir invariantC2 in the
adjoint representation, which is of second order in structure constantsf abc. Here we
consider invariants which are of higher order in the structure constants.

Notation: The zero modesja := J a
0 = ∮

(dz/2πi)J a(z) of the Kac–Moody currents [1
are the generators of the Lie-groupG, satisfying the commutation relations

(C.1)
[
ja, jb

]= fc
abjc,

which are represented in the adjoint representation by matrices

(C.2)
(
T a

)
c
b := fc

ab.

We work withantihermiteangeneratorsja , so that the structure constantsfc
ab are real.

TheG-invariant Killing formηab, and its inverseηbc, defined by
(C.3)ηab := −1

N tr
(
T aT b

)
, ηabηbc = δac
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may be used to raise and lower adjoint indicesa, b, . . . . HereN is a suitable normalizatio
constant. Then, (C.1) and (C.3) imply that the structure constantsf cab = f abc are totally
antisymmetric. Throughout this subsection, we choose a basis of the Lie algebra for
ηab = δab. Hence, no distinction between upper and lower adjoint indices has to be
(The matrices(T a)c

b in (C.2) are then antihermitean.)
We now proceed to discuss various group-theoretical invariants, needed in the

text, which can be constructed out of products of structure constants. Our discus
organized according to the number of factorsf abc appearing.

Quadratic Casimir: The eigenvalueC2 of the quadratic Casimir invariant in the adjo
representation,15

(C.4)
(
T aT a

)
c
d = fc

abfb
ad =−C2δc

d ⇐⇒ f abcf abd = C2δ
cd

is of 2nd order in the structure constants. Eq. (C.4) is graphically depicted in (4.9).
“Triangle rule” : The Jacobi-identity implies the following relation for the structu

constants:

(C.5)fe
adfd

bc + fe
bdfd

ca + fe
cdfd

ab = 0

which is just (C.1):

(C.6)
([
T a,T b

])
e
c = fd

ab
(
T d

)
e
c.

Multiplying (C.5) with f g
ab, yields

0= f g
ab

[
f eadfd

bc + f ebdfd
ca + f ecdfd

ab
]

(C.7)=−tr
(
T gT cT e

)− tr
(
T cT eT g

)+C2f
ecg.

Using the cyclic invariance of the trace, this yields the “triangle rule”

(C.8)tr
(
T gT cT e

)= −1

2
C2f

gce.

Eq. (C.8) is graphically depicted in (4.10).
Invariant 4-index tensordabcd : Next we consider the following totally symmetrize

trace of four (adjoint) representation matrices

(C.9)dabcd := tr
(
T {aT bT cT d}),

which isG-invariant by construction. This invariant arises when considering traces o
matricesT , Eq. (C.2). The result is given in (C.12) below. To derive it, observe tha
traces of more than three generatorsT , which cannot be reduced using (C.8), one
permute twoT ’s, with the aim of creating a loop of 3 with the remainingT ’s, which, in
turn, can then be reduced using (C.8). For a trace of fourT ’s, this reads

(C.10)tr
(
T aT bT cT d

)=−1

2
C2f

abhf cdh + tr
(
T bT aT cT d

)
.

15 As usual, all repeated indices are summed.
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This also tells us that

(C.11)tr
(
T aT bT cT d

)= tr
(
T bT aT dT c

)= tr
(
T dT cT bT a

)
,

where the second relation is obtained using the cyclic invariance of the trace. We now
to calculate a general trace of fourT ’s. First, by using (C.11), and the cyclic invarian
of the trace, we find that of the 6 possible permutations, which leave the first
unchanged only 3 are independent. These areK1 = tr(T aT bT cT d) = tr(T aT dT cT b),
K2 = tr(T aT cT dT b)= tr(T aT bT dT c), andK3 = tr(T aT dT bT c)= tr(T aT cT bT d). The
totally symmetrized trace, defined in (C.9), can now be expressed in terms of theKi as:
dabcd = 1

3(K1 +K2 +K3). Writing K1 = dabcd + 1
3[(K1 −K2)+ (K1 −K3)], and using

(C.6), we can rewrite each of these terms with the help ofdabcd andf ’s as

(C.12)tr
(
T aT bT cT d

)= dabcd + C2

6

[
f adhf bch − f abhf cdh

]
.

The invariantd2 is now defined by

(C.13)
1

Nad
dabcd dabcd = C4

2

24
+ d2,

whereNad is the dimension of the adjoint representation. Note that (C.12), (C.13),
imply

(C.14)tr
(
T aT bT cT d

)
tr
(
T aT bT cT d

)=Nad

(
C4

2

8
+ d2

)
.

The l.h.s. can graphically be viewed as the “cube”-invariant, discussed in Section
depicted in Fig. 3 of the same section (recall (C.2)).

In Section C.2, we show that forSU(N)

(C.15)d2 = 3

2
N2.

(The quadratic Casimir isC2 =N in our conventions.) This is in agreement with the res
of Ref. [34]. Hence, forSU(N), the termd2 in (C.13) is subleading inN , as compared
to the first term. This subleadingN -dependence ofd2 is also true for all the remainin
classical groups, which follows from (C.13) and (C.27).

C.2. SU(N)

In this section we present a derivation of the value of the invariantd2 for G = SU(N),
i.e., of (C.15), which provides an independent check of this result given in Ref. [34].16

We start by recalling the generators in the (complexified) Lie algebra ofSU(N) in the
fundamentalrepresentation

Xa ≡Xα
ᾱ := {matrix with 1 in columnα, row ᾱ;0 elsewhere}

(C.16)(α, ᾱ = 1, . . . ,N),
16 This method can also be used to calculate higher invariants [48].
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where the adjoint indexa = {αᾱ}. These satisfy

(C.17)
[
Xα

ᾱ,X
β

β̄

]= δα
β̄
X

β
ᾱ − δ

β
ᾱX

α
β̄
,

which yields the structure constants in this basis

(C.18)fc
ab ≡ f

γ̄ αβ

γ ᾱβ̄
= δ

γ̄
ᾱ δ

β
γ δ

α

β̄
− δαγ δ

γ̄

β̄
δ
β
ᾱ .

The Killing form is given by

ηab ≡ η
αβ

ᾱβ̄
:= −1

N
tr
(
T aT b

)= −1

N

(
fd

acfc
bd

)=−2

(
δα
β̄
δ
β
ᾱ − 1

N
δαᾱ δ

β

β̄

)
(C.19)=−2( projector onto the adjoint)

and its inverse

(C.20)ηab = η
ᾱβ̄
αβ = −1

2

(
δβ̄α δ

ᾱ
β − 1

N
δᾱαδ

β̄
β

)
.

One easily finds

(C.21)ηabη
ba = (N − 1)(N + 1)=Nad= dimension of adjoint representation.

Since we useη to raise and lower indicesa = {αᾱ} of structure constants which are tracele
(see (C.18)), one can also use the simplified form

(C.22)ηab → η
simp
ab = −1

2
δβ̄α δ

ᾱ
β

instead ofηab, for calculational convenience. Writing(T a)c
b = fc

ab we obtain:17

(C.23)
1

Nad
tr
(
T aT a′)ηaa′ = −N,

(C.24)
1

Nad
tr
(
T aT b

)
tr
(
T a′T b′)ηaa′ηbb′ =N2,

(C.25)
1

Nad
tr
(
T aT bT c

)
tr
(
T a′T b′T c′)ηaa′ηbb′ηcc′ = 1

4
N3,

(C.26)
1

Nad
tr
(
T aT bT cT d

)
tr
(
T a′T b′T c′T d ′)ηaa′ηbb′ηcc′ηdd ′ = 1

8
N4 + 3

2
N2.

Comparison of (C.26) with (C.14) yieldsd2 = 3
2N

2, in agreement with (C.14), and (C.15

C.3. Other groups

BesidesSU(N) we also considerSO(N) andSP(N). The results of Ref. [49] yield:

SU(N): C2 =N, d2 = 3

2
N2,
17 Again we use a computer to do the algebra.
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SO(N): C2 =N − 2, d2 = 24− 45

2
N + 6N2 − 3

8
N3,

(C.27)SP(N): C2 = N + 2

2
, d2 = 3

2
+ 45

32
N + 3

8
N2 + 3

128
N3.

We have already quoted these values for the group theoretical invariants on Fig.
repeat them here for the convenience of the reader. Note that one can always norma
1-loop coefficient in theβ-function forg (the term∝ g2 in (2.3)) to 1/2, by rescalingg
by a constant. This means that the normalization-invariant quantity which enters at
order isd2/C

4
2. This allows us to perform the following checks on (C.27), by using w

known isomorphism between the corresponding Lie algebras:

(C.28)
d2

C4
2

∣∣∣∣
SU(2)

= d2

C4
2

∣∣∣∣
SO(3)

= 3

8
,

(C.29)
d2

C4
2

∣∣∣∣
SO(5)

= d2

C4
2

∣∣∣∣
SP(4)

= 13

72
,

(C.30)
d2

C4
2

∣∣∣∣
SU(4)

= d2

C4
2

∣∣∣∣
SO(6)

= 3

32
,

(C.31)
d2

C4
2

∣∣∣∣
SO(−N)

= d2

C4
2

∣∣∣∣
SP(N)

= 3[32+N(14+N)]
8(2+N)3

.

Appendix D. Some elementary integrals

In this appendix, we consider some elementary integrals, quoted in the main
Consider two pointsza and zb in the complex plane, which are well inside a circle
(large) radiusR centered at the origin. It is then elementary to establish the follow
result:

(D.1)
∫

|z|�R

d2
z

1

(z− za)(z∗ − z∗b)
=−π ln |zb − za |2 + π lnR2 + π ln

[
1− zaz

∗
b

R2

]
.

Furthermore, for|z− za |� a � |za − zb|

(D.2)
∫

|z−za |�a

d2z
1

(z− za)(z∗ − z∗b)
= 0.

Finally, this implies upon taking the limit ofR →∞,

(D.3)
∫

|z−za |,|z−zb |�a

d2
z

[
1

(z− za)(z∗ − z∗b)
− 1

|z− za|2
]
=−2π ln

∣∣∣∣za − zb

a

∣∣∣∣

as long as|za − zb|� 2a (up to terms of ordera2 which are neglected).
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