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Rapid Note

Dynamics of selfavoiding tethered membranes.
I. Model A dynamics (Rouse model)
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Abstract. The dynamical scaling properties of selfavoiding polymerized membranes with internal dimen-
sion D are studied using model A dynamics. It is shown that the theory is renormalizable to all orders
in perturbation theory and that the dynamical scaling exponent z is given by z = 2 + D/ν∗. This result
applies especially to membranes (D = 2) but also to polymers (D = 1).

PACS. 05.70.Fh Phase transitions: general aspects – 11.10.Gh Renormalization – 11.25.-w Theory of
fundamental strings

Polymers and polymerized flexible membranes show
interesting statistical properties. Polymers have been in-
vestigated since long time, both static and dynamic [1].
Selfavoiding polymerized membranes have attracted a re-
markable interest during the last years. Their static prop-
erties have been studied numerically [2–6], experimentally
[7,8], and analytically [9–13]. Dynamics has been regarded
using scaling arguments for polymers [14,15] and mem-
branes [16]. For polymers, a renormalization group analy-
sis has been performed at 1- [17–22] and 2-loop [23] order.

For membranes, the analytical approach, inspired from
polymer theory [1], relies on renormalization group and ε-
expansion methods. It was initiated in [9,10], where it was
used to perform calculations at 1-loop order. Its consis-
tency to all orders in perturbation theory has been estab-
lished in [11,24]. Recently, 2-loop calculations have been
performed, which give reliable results for all embedding
dimensions [12,13].

In this letter we address the question of the dynamics
of such membranes, always including polymers as a special
case.

The membrane is modeled by a continuum model à la
Edwards: the embedding of the D-dimensional membrane
in d-dimensional bulk space is described by the mapping
x ∈ IRD → r(x) ∈ IRd. The Hamiltonian, which describes
the static properties of the membrane, is

H[r] =
1

2

∫
x

(
∇r(x)

)2
+ b

∫
x

∫
y

δd
(
r(x) − r(y)

)
, (1)
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where b is the coupling constant. The dynamics of the
membrane is given by the Langevin-equation

ṙ(x, t) = −λ
δH

δr(x, t)
+ ζ(x, t) (2)

which models the purely diffusive motion of the membrane
(model A in the terminology of [25]). The Gaussian noise
ζ(x, t) has the correlation

ζ(x, t)ζ(x′, t′) = 2λδD(x− x′)δ(t− t′). (3)

This Langevin equation can be formulated using an effec-
tive field theory [26] with action

J [r, r̃] =

∫
x

∫
t

r̃(x, t)

(
ṙ(x, t) + λ

δH

δr(x, t)

)
− λr̃(x, t)2.

(4)

Expectation values are calculated by integrating over all
fields r and r̃. Prepoint-discretization is used and the av-
erage over the noise has been taken. (This generated the
term quadratic in r̃.)

Perturbation theory is performed by expanding about
the Gaussian theory. We use the free propagator G and
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correlator C in position-space

C(x, t) :=
1

d

〈
1

2
(r(x, t) − r(0, 0))2

〉
0

(5)

= |x|2ν Γ−1 (−ν)

×

(
−

1

ν

(
4λ|t|

x2

)ν
+

∫ x2

4λ|t|

0

ds

s
s−ν

(
e−s − 1

))

G(x, t) :=
1

d
〈r(x, t)r̃(0, 0)〉0

= Θ(t)(4πλ|t|)−D/2 e−x
2/4λ|t| SD(2−D), (6)

where SD is the volume of the unit sphere inD dimensions,

SD =
2πD/2

Γ (D/2)
(7)

and

ν =
2−D

2
. (8)

Some normalization-factors have been absorbed into the
measure in order to have

C(x, t) ≈ |x|2−D for x2 � λ|t|. (9)

(For details compare appendix A of [13].) If x2 is much
smaller than λ|t|, the correlator approaches the finite value

C(x, t) =
(4|t|λ)ν

Γ (D/2)
+O(x2). (10)

We should mention that the propagator is simply related
to the time-derivative of the correlator

G(x, t) = Θ(t)
1

λ
Ċ(x, t). (11)

We are now in a position to construct the perturbation-
theory. The interaction vertex is:

:= 2

∫
k

r̃(x, t)(ik) eik(r(x,t)−r(y,t)). (12)

The perturbative expansion of an observable O can be
written as

〈O〉 = Norm
∑
n

(λb)n

n!

∫
〈O n〉c , (13)

where the normalization Norm has to be chosen so that
〈1〉 = 1 and the integral is taken over all arguments of the
interaction vertex. We claim that divergences only occur
at short distances and short times. To prove this look at
a typical expectation value

〈O n〉0 =
∑
α

∫
ki

fα(xl − xm, tl − tm, kl, km)

× e−
∑
i,j Qijkikj , (14)

where each contribution consists of a function fα, which
is a product of propagators, correlators and k’s and an
exponential factor, with

Qij = −C(xi − xj , ti − tj). (15)

fα is a regular function of the distances. Divergences at
finite distances can only occur if Qij is not a positive form.
We will show that Qij is a positive form for all ki which
satisfy the constraint ∑

i

ki = 0. (16)

This constraint always holds, see equation (12). For equal
times it is just the statement that the Coulomb energy
of a globally neutral assembly of charges is positive. One
simply identifies C with the Coulomb-propagator and ki
with the charges. In the dynamic case, write

Qij = (2−D)SD

∫
dDp

(2π)D

∫
dω

2π

2λ

ω2 + (λp2)
2

×
(

eip(xi−xj)+iω(ti−tj) − 1
)
· (17)

The exponential in (14) now is

∑
i,j

kikjQij = (2−D)SD

∫
dDp

(2π)D

∫
dω

2π

2λ

ω2 + (λp2)
2

×
∑
i,j

kikj

(
eip(xi−xj)+iω(ti−tj) − 1

)
= (2−D)SD

∫
dDp

(2π)D

∫
dω

2π

2λ

ω2 + (λp2)
2

×

∣∣∣∣∣∑
i

ki eipxi+ωti

∣∣∣∣∣
2

. (18)

To get the second line, equation (16) has been used. Note
that again due to equation (16), the integral is ultraviolet
convergent and thus positive. It vanishes if and only if the
charge-density, regarded as a function of space and time,
vanishes. This is possible if and only if endpoints of the
dipoles (which form the interaction) are at the same point
in space and time. No divergence occurs at finite distances.
To renormalize the theory, only short distance divergences
have to be removed by adding appropriate counter-terms.
In addition, as the divergences occur at short distances,
they can be analyzed via a multilocal operator product
expansion (MOPE) [11]. For a detailed discussion of the
MOPE and examples see [11,24,13,12].

We show now that the counter-terms which render the
static theory (1) finite are also sufficient for the dynam-
ical case (4). As an illustration we first calculate the 1-
loop counter-terms for the renormalization of the field and
of the coupling-constant. The first singular configuration
appears, when both ends of the interaction vertex (12)
are contracted towards a single point. The leading term
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(MOPE-coefficient) of this expansion is (the dotted line
indicates points which are contracted):

= 2

∫
k

− [r̃(x, t)(ik)] e−k
2|x−y|2−D

× [(ik)(r(x, t) − r(y, t))] + . . . (19)

We now Taylor-expand r(y, t) as

r(y, t) = r(x, t) + (y − x)∇r(x, t)

+
1

2
[(y − x)∇]

2
r(x, t) +O(|x− y|3). (20)

The leading term in equation (19) is∫
k

r̃(x, t)(−∆r(x, t))
(x − y)2

D

−k2

d
e−k

2|x−y|2ν

= r̃(x, t)(−∆)r(x, t)

(
−1

2D

)
|x− y|D−νd. (21)

Denoting with

( ∣∣∣∣ )
the MOPE coefficient of

proportional to = r̃(x, t)(−∆)r(x, t), this can be writ-
ten in the form( ∣∣∣∣ )

=

( ∣∣∣∣ )
(22)

where ( ∣∣∣∣ )
= −

1

2D
|x− y|D−νd (23)

is the static MOPE-coefficient [12,13]. This implies that
the counter-term for the wave-function renormalization is
the same as in the static case. Let us now regard the
counter-term for the coupling-constant renormalization.
Using the techniques of [11–13], we obtain for the contrac-
tion of two interaction vertices to one interaction vertex:( ∣∣∣∣ )

=
d

4
(G(x, t) +G(y, t))

× [C(x, t) + C(y, t)]
−d/2−1

(24)

x and y are the distances of the contracted endpoints of
the dipoles, t is their time-difference. The trick is now to
write this expression with the help of equation (11) as

−
1

2λ
Θ(t > 0)

d

dt
[C(x, t) + C(y, t)]−d/2 . (25)

In performing the perturbation-theory, we have to inte-
grate over all times. If we use, as is usually done, no cut-
off in the time-direction, the time integral will simply give
the value of the function at its lower bound:∫ ∞

0

dt

( ∣∣∣∣ )
=

1

2λ

( ∣∣∣∣ )
. (26)

(The r.h.s. is the counter-term of the static theory, see
[11–13].) We easily convince ourselves that this relation

implies the same counterterm as in the static case, if we
take care of the additional combinatorial factor 2 for the
time-ordering of the interaction vertices.

One knows from general arguments that the diver-
gences associated to short distances in space are removed
by the static counter-terms [27]. We now use the fact that
the static theory is renormalizable [11]. This implies that
new divergences can only appear for short times. We there-
fore have to analyse all possible divergences of this type.
Using the MOPE, the most relevant divergences are asso-
ciated to the operator

= r̃(x, t)ṙ(x, t). (27)

We now regard a general contraction of n dipoles towards
:

n −→ · (28)

In order to obtain the operator , one has to contract
all fields r and r̃ except of the field r̃(z, t) with the largest
time-argument (all other contractions give 0). One also
has to leave uncontracted one arbitrarily chosen field r.
Due to the structure of the interaction (12), the field r
always appears in the form r(x, t− τ)− r(y, t− τ). So the
contraction yields

r̃(z, t) [r(x, t − τ)− r(y, t− τ)]M(distances), (29)

where M denotes the MOPE-coefficient which depends on
the distances in space and time. Now, r(x, t−τ)−r(y, t−τ)
has to be expanded about (z, t). The leading term has at
least one spatial gradient. No term of the form of (27) can
be constructed. Therefore, there is no singular contribu-
tion of this type in any order in perturbation theory and
no renormalization of is needed. The last at ε = 0
marginal operator is

= r̃(x, t)2. (30)

Its renormalization is given by the fluctuation-dissipation
theorem, see below.

We now introduce renormalized quantities according
to

r =
√
ZrR

r̃ =
√
Z̃r̃R

λ = ZλλR

b = bRZbZ
d/2µε (31)

ε is the dimensional regularization parameter, defined by

ε = 2D − νd. (32)

The fluctuation-dissipation theorem states that

Θ(t)
∂

∂t

〈
1

2
(r(x, t) − r(0, 0))

2

〉
=λ

〈
r(x, t)r̃(0, 0)

〉
· (33)

This relation for the full expectation-values holds as well
for renormalized as for bare quantities. We therefrom de-
duce that

Zλ =

√
Z

Z̃
· (34)
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In addition, our findings that the term has not to be
renormalized indicate that√

ZZ̃ = 1. (35)

It follows that

Zλ = Z. (36)

As usual, the renormalization group β-function β(bR) and
the full scaling dimension ν(bR) of r are obtained from
the variation of the coupling constant and the field with
respect to the renormalization scale µ, keeping the bare
couplings fixed. They are written in terms of Z and Zb as

β(bR) =
−εbR

1 + bR
∂
∂bR

lnZb + d
2bR

∂
∂bR

lnZ
(37)

ν(bR) =
2−D

2
−

1

2
β(bR)

∂

∂bR
lnZ. (38)

The β-function has an IR-fixed point for b∗R > 0. The
function ν(bR) is for large scales therefore given by

ν∗ = ν(b∗). (39)

We deduce that the correlation-function scales for equal
times as 〈

(r(x, 0) − r(0, 0))2
〉
∼ |x|2ν

∗

. (40)

If we define the exponent z for the auto-correlation-func-
tion as 〈

(r(0, t) − r(0, 0))2
〉
∼ |t|2/z , (41)

the exponents z and ν∗ are dependent:

z = 2 +
D

ν∗
· (42)

For polymers (D = 1), this relation was given using scal-
ing arguments in [14], for membranes (D = 2) in [16].
This result was followed by perturbative calculations for
polymers in 1-loop [17–22] and 2-loop [23] order.

It is interesting to note that for polymers and mem-
branes (42) can be written in the form

z = 2 + df (43)

where df is the fractal dimension of the membrane or the
polymer.

It seems attractive to use (43) in Monte Carlo simula-
tions to improve the determination of df for selfavoiding
membranes. This might be advantageous as z can be mea-
sured for any point and any time, i.e. on a large statistical
ensemble.

In conclusion: We have shown that the purely diffusive
motion of polymers and polymerized membranes is given
to all orders in perturbation theory by (43). Experimen-
tally however, an additional hydrodynamic interaction is

present. This question will be addressed in a subsequent
publication [28].

It is a pleasure to thank F. David, H. W. Diehl and L. Schäfer
for stimulating discussions.
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