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Dynamics of selfavoiding tethered membranes.
II. Inclusion of hydrodynamic interaction (Zimm model)
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Abstract. The dynamical scaling properties of selfavoiding polymerized membranes with internal dimen-
sion D embedded into d dimensions are studied including hydrodynamical interactions. It is shown that
the theory is renormalizable to all orders in perturbation theory and that the dynamical scaling exponent
z is given by z = d. The crossover to the region, where the membrane is crumpled swollen but the hydrody-
namic interaction irrelevant is discussed. The results apply as well to polymers (D = 1) as to membranes
(D = 2).

PACS. 05.70.Fh Phase transitions: general aspects – 11.10.Gh Renormalization – 11.25.-w Theory of
fundamental strings

The statistical properties of polymerized flexible mem-
branes, generalizing polymers, have found large interest
during the last years. Due to the selfavoidance, they are
either found in a flat or crumpled swollen phase [1–7]. An
analytical approach was initiated in [8,9], where calcula-
tions of the static scaling exponent ν were performed at
1-loop order. Its consistency to all orders in perturbation
theory has been established in [10,11]. Recently, 2-loop
calculations have been performed, which give reliable re-
sults for all imbedding dimensions [12,13].

In this letter we want to address the question of the dy-
namics of such membranes in the crumpled swollen phase
embedded in some (viscous) solvent. (For a discussion of
the flat phase, see [14].)

We first summarize the main results before discussing
the technical procedure to derive them.

First of all, the Brownian motion of the particles, both
of the solvent and of the fluid, have to be taken into ac-
count. It is responsible for the relaxation of the mem-
brane. This can be studied via the auto-correlation func-
tion which has for large membrane size and large time the
scaling form 〈

(r(x, t) − r(x, 0))2
〉
∼ t2/z . (1)

Our goal is to determine z.
In the physical system, hydrodynamics may be impor-

tant. Two cases can be distinguished: In the first case, the
hydrodynamic is irrelevant and the exponent z is given by

z = 2 + df , (2)
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where df is the fractal dimension of the membrane. This
result has been established to all orders in perturbation
theory in [15]. In the second case, hydrodynamic interac-
tions are relevant and we will show below that this modi-
fies the exponent z to

z = d, (3)

where d is the dimension of the embedding space, see be-
low. This situation is plotted in Figure 1, where also the
phase-separation line is given.

The exponent z should be observable via dynamic light-
or neutron-scattering methods. To our knowledge, no such
experiment has been performed.

Theoretically, the dynamics for polymers has first been
regarded in [16,17] using scaling arguments. For mem-
branes, a similar analysis has been performed in [18].

Scaling can best be studied using renormalization group
methods. For polymers, such a treatment has been carried
out at 1-loop order in [16,17,19–24]. A proof of the renor-
malizability which ensures the correctness of the method
has been given in [15] for the case of purely dissipative
motion (Rouse model).

Let us now introduce the model with hydrodynamic
interactions, show that it is renormalizable and calculate
the scaling exponent z.

The static behavior of the membrane is given by the
Edwards Hamiltonian

H[r] =
1

2

∫
x

(
∇r(x)

)2

+ b

∫
x

∫
y

δd
(
r(x) − r(y)

)
. (4)
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Fig. 1. The different phase-regions for a D-dimensional mem-
brane embedded into d dimensions including hydrodynamic
interactions. The region with δ < 0 and ε < 0 is the Gaus-
sian phase. Selfavoidance and hydrodynamic interaction are
irrelevant, i.e. ν∗ = 2−D

2 and z = 4
2−D . Hydrodynamics is

relevant for small d and becomes irrelevant if d > df + 2,
where df = D/ν∗ is the fractal dimension of the membrane.
For d > df + 2 and ε > 0, z = 2 + df .

The embedding of the D-dimensional membrane in d-
dimensional bulk space is described by the mapping x ∈
IRD → r(x) ∈ IRd. b is the coupling constant, associated
to the self-avoidance.

Hydrodynamic interactions for polymers were first
introduced by Zimm [25]. He wrote down the following
Langevin equation, which we will also use for membranes:

ṙ(x, t) = D ·

(
−
δH

δr
+ ζ

)
(x, t). (5)

Here, · denotes the scalar product of the matrix operator
D and the vector δH/δr, which is defined by

f · g :=

∫
x

fα(x)gα(x). (6)

The hydrodynamic interaction is

Dαβ(x, y, r(x, t), r(y, t)) = (7)

λδαβδ
D(x− y) + λη

∫
k

(
δαβ

k2
−
kαkβ

k4

)
eik(r(x,t)−r(y,t)).

We will not repeat the derivation [25] of equation (7) here.
Let us however note that one supposes that the hydrody-
namic degrees of freedom are fast enough, so that their
dynamics can be neglected and that screening effects are
irrelevant. This might be wrong for membranes and in
this case our results would only apply to membranes with
large holes. For η = 0, (5) reduces to purely diffusive mo-
tion (Rouse model).

The noise correlation is

ζα(x, t)(D · ζ)β(y, t′) = 2δ(t− t′)δD(x− y). (8)

This ensures that the static behavior is correctly repro-
duced. Following Janssen [26], the corresponding field-
theory is obtained by imposing the Langevin-equation
through an auxiliary field r̃. Integration over the noise
then yields the dynamic functional in Ito-discretization

J =

∫
t

r̃ · ṙ + r̃ · D ·
δH

δr
− r̃ · D · r̃. (9)

This model has to be renormalized. Analogously to [15] di-
vergences only occur at small distances. They can be ana-
lyzed via a multilocal operator product expansion (MOPE).
Renormalizability is ensured [15,10,11] if counter-terms
for all possible marginal and relevant operators are in-
cluded into the action. Due to causality, only operators
with at least one response field r̃ are needed. These are
the local operators r̃ṙ, r̃(−∆)r and r̃2. Other local oper-
ators like r̃rn are forbidden by translation-invariance in
r-space.

By the same arguments one finds that there are no new
marginal or relevant counter-terms proportional to 2- or 3-
body interactions and 4-body-interactions are irrelevant.
(Of course, long-range interactions are relevant, but they
are not generated in perturbation theory.) We now want
to show that the structure of the model is preserved, i.e.
that it can be renormalized if we introduce renormalized
quantities according to

λ = ZλλR

√
Z

Z̃

r =
√
ZrR

r̃ =
√
Z̃r̃R (10)

b = bRZbZ
d/2µε

η = ηRZηZ
−1
λ Zd/2−1µδ.

The two regularization parameters ε and δ are given by

ε = 2D − νd

δ = 2− νd (11)

ν =
2−D

2
·

Perturbation theory is performed about the point (δ = 0,
ε = 0), i.e. (D = 1, d = 4). As the model is constructed
such that the static limit is correctly reproduced, Z and
Zb are the renormalization-factors of the static theory [27].

Then, Z̃ is determined in order to render ṙ finite.
The composition of r̃ with any other operator with the

same time argument is always free of divergences, as the
contraction of r̃ with any functional of r and r̃ vanishes.
We therefore conclude that the first term in the action, r̃ṙ
is correctly renormalized.

Then, Zλ and Zη are chosen to render the operator D
finite. By the same arguments as above, the last term in
the action, r̃ · Dr̃ is renormalized.
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We still have to show that also the composite operator
D · δHδr is finite. This is a consequence of the equation of
motion obtained through variation of J by r̃(x, t):

ṙ(x, t) +

(
D ·

δH

δr

)
(x, t)− 2 (r̃ · D) (x, t) = 0. (12)

This relation is valid as an operator-identity. We have al-
ready renormalized ṙ, D, δH

δr and r̃. Equation (12) thus

states that also the composite operator D · δHδr is finite.
We can now conclude that all the terms in the action are
finite.

There are three nontrivial relations which considerably
simplify renormalization and which we are going to study
now. First of all, due to the fact that in any interaction
vertex the field r appears either as difference (r(x, t) −
r(y, t)) or as spatial derivative, no divergence proportional
to r̃ṙ appears. (For a detailed discussion see [15].) This
means that

Z̃Z = 1. (13)

In addition, there is no proper renormalization of the hy-
drodynamic interaction. Let us explain this point. Denote
by

=

∫
k

(
δαβ

k2
−
kαkβ

k4

)
eik(r(x,t)−r(y,t))

×fα(x, t)gβ(y, t) (14)

any hydrodynamic interaction vertex. (The dotted line
represents any polynomial in r and r̃ or their derivatives.)
Then singular configurations which give rise to a renor-
malization of the hydrodynamic interaction are those for
which two interaction vertices are contracted to one sin-
gle vertex. We claim that their multilocal operator prod-
uct expansion (MOPE) does not contain a contribution
proportional to the hydrodynamic interaction vertex:( ∣∣∣ )

= 0. (15)

(The round dotted lines indicate points which are con-
tracted.) This property is due to the analytic behavior
of the long range (hydrodynamic) interaction. Dropping
indices, the structure of such a contraction is

=

∫
k

∫
p

k−2p−2ei(k+p)(r(x,t)−r(y,t))

× ekp(C(δx,t)+C(δy,t))

+ subdominant. (16)

In order to obtain a long-range term a pole at k+p = 0 is
necessary. For d > 2 however, the expression is analytic.
No long-range term is generated. This is easily generalized
to any order in perturbation theory.

We now use the fluctuation-dissipation theorem

Θ(t− t′) 〈rα(x, t)ṙβ(y, t′)〉 = 〈rα(x, t) (r̃ · D) (y, t′)〉 ,
(17)

which is derived along the same lines as in [26] and which
we write down in Ito-discretization. (For other discretiza-
tions, additional terms appear on the r.h.s. which cancel
the contraction of r̃ and r with the same argument.) It is
valid for bare and renormalized quantities. Inserting the
definition of Dαβ we conclude that

Zη = 1. (18)

In the parameterization given above, Zλ is

Zλ = 1 +O(ηR) (19)

as it has to vanish for ηR = 0. These relations are suffi-
cient to completely solve for the anomalous exponents. We
are interested in the IR-behavior. Suppose that the cou-
pling related to the selfavoidance has flown to its IR-fixed
point bR = b∗, what implies that also the scaling exponent
ν(bR), defined by

ν(bR) =
2−D

2
−

1

2
µ
∂

∂µ
0

lnZ (20)

has flown to its IR-fixed point ν∗. The β-function associ-
ated to the coupling η is

βη = µ
∂

∂µ
0

ηR

= ηR

(
−δ + (1− d/2)µ

∂

∂µ
0

lnZ + µ
∂

∂µ
0

lnZλ

)
. (21)

Suppose now that η has a nontrivial fixed point η∗ for
ηR > 0, i.e. βη(η∗, b∗) = 0 and ∂

∂ηR
βη(ηR, b

∗)|ηR=η∗ > 0.

(We will show below that at leading order such a fixed

point exists.) We now express µ ∂
∂µ 0

lnZ by its value at

the IR-fixed point bR = b∗

2(ν∗ − ν) = −µ
∂

∂µ
0

lnZ. (22)

We can then solve for µ ∂
∂µ 0

lnZλ

µ
∂

∂µ
0

lnZλ = δ + (2− d)(ν∗ − ν). (23)

The exponent z is given by

z = (D + 2ν∗ − µ
∂

∂µ
0

lnZλ)/ν∗. (24)

The last two equations can be combined to give

z = d. (25)

This relation is valid as long as ηR has flown to a non-
trivial fixed point η∗ > 0. We will first study the stability
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of the fixed point ηR = 0, before analyzing potential fixed
points for ηR > 0. Without selfavoidance this is simply
the line with δ = 0, see Figure 1. Selfavoidance however
modifies this phase-separation line. To see this, look at βη
at ηR ≈ 0:

βη = (−δ + (d− 2)(ν∗ − ν)) ηR + η2
R, (26)

where we used the fact that µ ∂
∂µ lnZλ = O(ηR). The sta-

bility condition for the fixed point ηR = 0 is therefore

δ < (d− 2)(ν∗ − ν). (27)

At 1-loop order, the separating line is

δ = (d− 2)
ε

8
· (28)

Numerical evaluation yields the thin line separating the
regions with z = d and z = 2 +D/ν∗ in Figure 1. There
is however a priori no reason to trust this estimate for
membranes, i.e. ε = 4. We know however that in any
dimension the Flory-estimate νFlory = (2 + D)/(2 + d) is
quite a good approximation for ν∗ in the fractal phase, for
polymers as well as for membranes [12,13]. Inserting this
relation we obtain for the separatrix

d = 2(D + 1). (29)

(This is the fat line between the regions with z = d and
z = 2 + D/ν∗.) Let us stress that we only use the Flory-
approximation to estimate ν∗, but not any of the sys-
tematically wrong assumptions which have to be used to
derive it.

Another possibility to get (29) is to demand that the
value of z is continuous on the phase separation line. The
equivalence of the results obtained by the two methods is
a consequence of the general structure of the renormaliza-
tion group.

We also can give a rigorous bound for the phase sepa-
ration line. As ν∗ ≤ 1, hydrodynamics is always relevant
for

d <
8

4−D
· (30)

We still have to check that βη has a fixed point for ηR > 0.
At 1-loop order, Zλ is

Zλ = 1−
〈 ∣∣∣ 〉

δ−1

ηR

δ
+O(η2

R). (31)

The diagram on the r.h.s. is the contraction of the hydro-
dynamic interaction only. Explicitly this is〈 ∣∣∣ 〉

µ
δαβ =

∫
x<µ−1

∫
k

(
δαβ

k2
−
kαkβ

k4

)
e−|x|

2−Dk2

= δαβ
d− 1

2d(d− 2)

1

δ
µ−δ. (32)

The residue is thus positive〈 ∣∣∣ 〉
δ−1

> 0. (33)

This ensures the stability of the fixed point at least for
small δ.

In conclusion: We have shown that the dynamical field
theory (9) for polymerized tethered membranes including
hydrodynamics is renormalizable and that the dynamical
scaling exponent z is given to all orders in perturbation
theory by d.

It is a pleasure to thank F. David, H. W. Diehl and L. Schäfer
for stimulating discussions.
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