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Non-Gaussian effects and multifractality in the Bragg glass
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PACS 68.35.Rh — Phase transitions and critical phenomena

Abstract. - We study, beyond the Gaussian approximation, the decay of the translational order
correlation function for a d-dimensional scalar periodic elastic system in a disordered environment.
We develop a method based on functional determinants, equivalent to summing an infinite set of
diagrams. We obtain, in dimension d = 4 — ¢, the even n-th cumulant of relative displacements as
([u(r) — u(0)]")¢ =~ A, Inr with A, = —(¢/3)"T'(n — 3)((2n — 3)//7, as well as the multifractal
dimension x4 of the exponential field e?(")  As a corollary, we obtain an analytic expression for
a class of n-loop integrals in d = 4, which appear in the perturbative determination of Konishi
amplitudes, also accessible via AdS/CFT using integrability.

Introduction: Periodic elastic systems in quenched dis-
order model numerous applications, from charge-density
waves in solids [1], vortex lattices in superconductors [2, 3]
Wigner crystals [4], Josephson junction arrays [5], to lig-
uid crystals [6]. The competition between elastic energy,
which favors periodicity, and disorder, which favors dis-
tortions, produces a complicated energy landscape with
many metastable states. While we know since Larkin [7]
that weak disorder destroys perfect translational order, it
was realized later that topological order (i.e. no disloca-
tions) may survive, leading to the Bragg glass phase (BrG)
[3,8] and validating the elastic description. A key ob-
servable, measured from the structure factor in diffraction
experiments [9], is the translational correlation function
Ck (r) = (etKur)—u(0)]) 'wwhere u(r) is the (N-component)
displacement of a node from its position in the perfect lat-
tice, and K is chosen as a reciprocal lattice vector (RLV).
Overlines stand for disorder averages, and brackets for
thermal averages. Thermal fluctuations are subdominant,
and we focus on T' = 0. It was established [8,10] that at
large scale u(r) is a log-correlated field,

(ulr) = u(O)P) = A In -, (1)
where a is a microscopic cutoff, and r := |r|. If one further
assumes u(r) to be Gaussian, one obtains

CK(I‘) ~ T

2)

with ng = n$ = 5 ALK 2. hence quasi-long range transla-
tional order and sharp diffraction peaks, a characteristic

of the BrG [8,9]. This holds for space dimension dj. <
d < dye (i.e. v € RY) with dj. = 2, dy. = 4 for standard lo-
cal elasticity. It was obtained by variational methods and
confirmed by the Functional renormalization group (FRG)
[8,10], a field-theoretic method developed in recent years
[11-16], which allows to treat multiple metastable states.
The FRG predicts the universal amplitude As in a dimen-
sional expansion in d = d,. — €. In this letter we restrict
for simplicity to the scalar case N =1, i.e. u(r) € R, and
choose the periodicity of u to be one, hence the RLV to
be K = 27k with k integer. Then, within a 2-loop FRG
calculation [13], Ay = 5 + % + O(e?) in agreement with
numerics [17,18] for d = 3.

The rationale for the Gaussian approximation is that
around d,. one can decompose u = /eui + gug + ... into
independent fields u;, where u; is Gaussian (see Appendix
G of [16]). Hence non-Gaussian corrections to ng are ex-
pected only to O(¢*). However they grow rapidly with K
and surely become important for secondary Bragg peaks.
This motivates a calculation of the higher cumulants of
u(r). We also want to study Ck (r) for arbitrary K = 27k
with k not necessary an integer. This is needed e.g. in
the context of the roughening transition [20] to determine
whether the BrG is stable to a small periodic perturbation
Vi = [ d%rcos(Ku(r)). Finally, for the algebraic decay
(2) to hold for all K all cumulants need to grow as Inr, a
property which we demonstrate.

Another motivation to study the higher cumulants of
u(r) comes from multifractal statistics, with examples
ranging from turbulence [19] to localization of quantum
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particles [21]. Although wu(r) exhibits single-scale fractal
statistics, we show here that the ezponential field e*™) ex-
hibits multifractal scaling, i.e. its moments behave with
system size L as

(Y ~ (%)I 3)

with a scaling dimension x,. This provides an interesting
example beyond the well-studied Gaussian case [22,23] of
the general correspondence between exponentials of log-
correlated fields and statistically self-similar and homoge-
neous multifractal fields [24].

The aim of this letter is thus to go beyond the Gaussian
approximation: We calculate the multifractal exponents
x4 and obtain the higher cumulants of the log-correlated
displacement field u as

([u(r) = u(0)]")" ~ Ay In(r/a) (4)

for r > a, n even, where each A, is calculated to lead-
ing order in ¢ = 4 — d (odd cumulants vanish by parity
u — —u). We use the FRG and develop a method based
on the asymptotic evaluation of functional determinants,
which allows us to sum up an infinite subset of diagrams.
Amazingly, it can also be applied to compute integrals ap-
pearing in a perturbative calculation on the field-theory
side of AdS/CFT, known as Konishi integrals [25].

Let us mention that for the same model in d = dj, =
2 (the Cardy-Ostlund model) such a summation was
achieved using conformal perturbation theory [26]. While
for d > 2 the A, are T independent, in d = 2 the glass
phase is marginal and exists for T' < T,. The higher cumu-
lants, as well as Ck (r) for k < 1, were obtained to leading
order in T, — T

The model: The Hamiltonian of an elastic system in a
disordered environment can be written as

Hlu] = / SV + () + V() %),

with [ := [d’x. The first term is the elastic energy.
The second term is a confining potential with curvature
m? which effectively divides the system into independent
subsystems of size L,, = 1/m, hence provides an infrared
(IR) cutoff. The random potential V (u,x) is a Gaussian
with zero mean and correlator

V(u,x)V(u',x") = Ro(u

()

u')6%(x — x'), (6)

where Rg(u) is a function of period unity, reflecting the
periodicity of the unperturbed crystal [3]. The partition
function in a given disorder realization, at temperature
T,is Z := [Dlu]e "/T. To average over the disorder,
we introduce replicas uq(x), @ = 1,...,n of the original
system. This leads to the bare replicated action

T Z/ [Vetex
S %/}(Ro(ua(x) — up(x)).

2
SRO —|—7U2( )

(7)

The observables of the disordered model can be obtained
from those of the replicated theory in the limit n — 0.
FRG basics: The central object of the FRG is the
renormalized disorder correlator, the m-dependent func-
tion R(u). Appropriately defined from the effective action
I'[u] associated to Sg,[u], the function R(u) is an observ-
able [14], which has been measured in numerics [27] and in
experiments [28]. It satisfies a FRG flow equation as m is

decreased to zero (R = Ry for m = oo) Under rescaling,
/2

R(u) = Agms=* R(mSu), with Ag = sF(E/Q), R(u) admits
a periodic fixed point (FP) with ¢ =0, and u € [0, 1],

- ~ - 1

R*(u) — R*(0) = R*"(0)§u2(1 —u)?. (8)

This form is valid for any d < 4, and —R*’(0) = 35t 51 > to
two loop accuracy, in agreement with numerics [27]. The
salient feature is that the renormalized force correlator
—R"(u) acquires a cusp at v = 0, which we denote by
&= RY'(0F) = s+ %. This cusp, seen in experiments
[28], is the hallmark of the multiple metastable states and
is directly related to the statistics of shocks and avalanches
which occur when applying an external force [16].
Determinant formula: The cumulants (4) can be com-
puted from (7) in perturbation theory in Ry at T' = 0, the
leading order being O(R{’(07)™). This perturbation the-
ory involves (complicated) replica combinatorics, see e.g.
[13]. Tt also requires the evaluation of multi-loop integrals
represented in fig. 1, a formidable task. We now show how
to shortcut these difficulties. We first reduce the problem
to the calculation of a functional determinant using the
method developed in [29] to evaluate averages of the form

G = (exp ([ Ax)u(x))) = lim (exp ([ AF)u1(x))) g

where u1 (x) stands for one of the n replicas. The function
Ck (r) can then be computed using the charge density of a
dipole, Ap (x) := iK[6(x—r)—4d(x)]. For an arbitrary A(x),
the average is expressed as G[A] = exp([, A(x)u*(x) —
I'[u*]), where u*(x) extremizes the exponential, i.e. is so-
lution of aua(x)l"[u]‘u:uA = A(x)dq1. The effective action
was calculated in an expansion in R (i.e. in €) to leading
order (one loop) as I'[u] = Sglu] + I'1[u] where Sg[u] is
the improved action with the bare correlator Ry replaced
by the renormalized one R, and T'y[u] is displayed e.g. in
[29,30]. Performing the extremization at 7' = 0, a slight
generalization of section IV.A of Ref. [29] leads to

(eh A0 = Gy (9)

Here GGauss[A] ZM)‘(X/K“(X)“(X/» is the Gaussian
approximation, (u(x)u(x’)) the exact 2-point correlation
function, and the effective action is

1
T = 3{ M Preg[oU (1) + n Doy [-0U )]} (10)
The effective disorder is o := R’(0T), and we define

det(=V?% + oU(r) + m?)
det(—V?2 + m?)

DloU(r)] := (11)
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Fig. 1: Diagrammatic representation of the integrals contribut-
ing to the translational correlation function to leading order.
The C, have two external points (big circles, grey) where the
external momentum p enters. They are constructed from a
polygon with n vertices each attached to one of the two exter-
nal points. They are finite in d = 4 and ~ 1/p4, D,, has one
external point (big circle, not integrated over) all other points
are integrated over. It is log-divergent in d = 4.

Tts logarithm, In(D[£oU], has a perturbative expansion in
o. The first two terms, of order ¢ and ¢2, which contain
ultraviolet divergences in d = 4, are included in the Gaus-
sian part. The remaining terms, i.e. all O(o®) with p > 3,
define the regularized determinant In(D,ee[+cU]). Thus
(10) contains only information about higher cumulants®.
We have introduced the potential

U@):i/(—v2+4n%;iMkL (12)

which in the limit m — 0 satisfies the d-dimensional Pois-
son equation V2U (r) = —A(r). Note that two copies of the
determinant appear in the present static problem in eq. (9)
as y/D[cU]|D[—cU], which can thus be interpreted as orig-
inating from an effective fermionic field theory with two
flavors of real fermions. A related observation was made
in a dynamical calculation of the distribution of pinning
forces at the depinning transition [31], where only one
copy appears, as D[oU]. Note also, from fig. 1, that to
this order we have an effective cubic field theory with cou-
pling o. The 2-point correlation function in Fourier? reads
(upu—p) = cap=@f(p/m), with f(z) ~ é42¢/cq for small z,
f(o0) =1, &g = —AqR*(0) and ¢g = éq(1 — e +...). In-
serting this with the 1-loop FP value into Ggauss[A] leads

to the above Gaussian result for n& with Ay = 2(5%)05}, and
S _ 2ﬂ_d/2
d = T({d/2)"

FEvaluation of the determinant: We now have to evalu-
ate the functional determinant (11). Unfortunately, there
is no general method in d > 1 for a non-spherically-
symmetric potential. However, as we show below, it is
sufficient to calculate the determinant for a spherically
symmetric potential, and then apply a multi-fractal scal-
ing analysis [24,32,33]. Thus we start by computing the
scaling dimension x4, = x_g, as defined from (3). To this
aim we calculate G[)\] for a (regularized) point-like charge

LA simpler version of (10) was considered in Appendix G of [16]
for a uniform source; it yields the cumulants of fr u(r).
21t was calculated to O(?) in [13] Sec. VI A.

Ap(r) = ¢d,(r) in a finite-size system. Since the cor-
responding potential is spherically symmetric, to obtain
the determinant ratio (11) we can employ the Gel'fand-
Yaglom method [34], generalized to d dimensions [35]. We
separate the radial and angular parts of the eigenfunctions
as U(r,0) = ﬁ ¥y(r) Y;(6), where the angular part is

given by a hyperspherical harmonic 1’;(5), labeled in part
by a non-negative integer I. The radial part ¢;(r) is an
eigenfunction of the 1D (radial) Schrédinger-like operator
H; + oU(r) + m?, where

) (454

(13)

The logarithm of (11) can be written as a sum of the log-
arithms of the 1D determinant ratios B; for partial waves
weighted with the degeneracy of angular momentum I,

n(Dlot]) = Y

=0

(2l+d—2)(+d-3)
I(d—2)! InB;.

(14)
The Gel’fand-Yaglom method gives the ratio of the 1D
functional determinants for each partial wave [ as

_det [H; 4+ oU(r) + m? (L)
B det [H; + m?] C (L)

B, : (15)

Here () is the solution of the initial-value problem for

[Hg +oU(r) + m2] Ui(r) =0, (16)
satisfying w(r) ~ r+(@=1/2 for  — 0. Equation (15)
holds for the boundary conditions u(|r| = L) = 0, taking
the large-L limit afterwards®. The function ;(r) solves
(16) with the same small-r behavior, but for o = 0.

We can now calculate (ed%(r)) to leading order in d =
4 — . Since 0 = O(g) we can perform the calculation in
d = 4. A point-like charge distribution leads to a potential
U(r) ~ 1/r%=2 which is too singular at the origin in d = 4.
We introduce an UV cutoff via a uniformly charged ball
of radius a, Ag(r) = Sg‘id@(a — |r|). Since L is finite, we
solve Poisson’s equation setting m — 0 and obtain

2—d d 2
q;S (“_7‘2> for 0 < r < a,
Ury=q 0 0770 (17)
B fi L.
Sd(de)rd*Q ora <7<

We insert this potential in the Gaussian approximation
which reads In Ggauss = —3 R”(0) [ U(r)?, to lowest order
O(e). The log-divergence of this integral in d = 4 leads
to x§ = —1¢?/(854) = —eq®/72. More generally, eq. (1)
requires by consistency that u(r)? ~ 1A5In(L/a) hence
xf = —Asq?/4, fixing the quadratic part O(¢?) of z,.

3To work directly in an infinite system, the electric field must
vanish fast enough. One can either use m = 0 with a neutral charge
configuration (dipole), or m > 0 (screening, exponential decay).
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To calculate the leading non-Gaussian corrections to x4
via (11), we find the solution of (16) in d = 4 with the
potential (17). It reads, for r < a

3 l+2—1i 2
W) = 1 Ry (WH i f)j
e 2a2 2
(18)
and for a <r < L,
’l/Jl(’I“) = clr%_\/m + CQT\/MJ'_%' (19)

We introduced s := 0q/(254). One can find ¢; 5 by match-
ing at r = a. Using eq. (15) we obtain the partial-wave
determinant, which is universal at large L,

B, = [,/(z T2 4s—(I+ 1)} In(L/a) + O(L°). (20)

The term O(L°) can be calculated from the ¢;; it is not
universal. Note that the massive problem also leads to
(20) with In(L) replaced by In(1/m).

Substituting this result into eq. (14) yields the result for
In(D[oU]). However, the sum over [ diverges, indicating
that this functional determinant requires regularization in
d > 2 [35]. However in (10) we only need the regularized
determinant Dyeg[+0U] ~ (L/a) Fres(£9) where the first
two orders in s are subtracted,

reg

=S+ ( (+1)2+s—(1+1)
=0

S 82
TR 1)3> ' (21)

Summing over [, it can also be written as a series in s,

LT(n—3)¢(2n - 3)
an ) fn:(—l) 2ﬁF(n+1) .

reg

(22)

Putting together the two copies we obtain the multi-fractal
scaling exponent, an even function of s (and ¢),

S =

q, (23)

Zf?ns 24

To leading order we used o = A45, 6 = £ + O(e?) and
S4 = 2m2. The final result is finite, as we avoided diver-
gences by (i) using perturbation theory in the renormal-
ized R rather than in the bare Ry, (ii) by separating the
non-Gaussian part F(s) from the Gaussian one. For com-
pleteness we also defined the single-copy exponent Feg(s)
since it appears in the theory of depinning?.

Analysis of the result: Eq. (23) is an even series in s
with a radius of convergence of |s| = 1. At s = +1, F(s),

1 €
Ty = —1A2q2 + F(s), 3

F(s) := 5 [Freg(s) + Freg(—5)]

DN | =

4 At depinning, there is an additional tadpole diagram associated
to the non-zero average u(r) = —F./m?, where F_ is the threshold
force. Similarly separating the non-Gaussian parts leads to Freg(s).

Fls) st Femik N
:
0.15 <
4
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2
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1
S
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Fig. 2: Numerical evaluation (blue dots) of F(s) (left) and
F(2mik) (right). The red solid line is the contribution of the
mode [ = 0.

plotted in fig. 2, has a square-root singularity given by its
I = 0 term. On the other hand, the exponent z, must
satisfy® qdiqxq < 0, and convexity %mq < 0, both re-
quirements for multifractal field theories [33]. While the
Gaussian part qu = —%quQ does, the correction term
F(s) does not, since F"'(s) > 0. Since F"(s) ~ W

diverges at s = +1 (¢ = g, ~ 2) one cannot trust the cal—
culation in that region®; it surely fails when F" (%) > 4=

Calculation of 2-point correlations: To obtaln the cu—
mulants (4) and the translational correlation function (2)
we would need a dipole source, for which we cannot solve
the Schrédinger problem. One way to proceed is to as-
sume that the exponential field e*“(*) obeys the conven-
tional multifractal scaling formula [24, 32, 33]:

—_———— r ZTqi+as —Tqy ~Tas L\ ~Ta1+ao
(enulr1) gqau(ra)) ~ (ﬁ) ! (—) ,

a a
(25)

with 719 = |ry — ra|. Since we already calculated z, this

formula, taken for ¢ = —¢o = ¢ immediately yields

(erlu) =]y ~ (i)‘”q,

. (26)

using that v, = z_4 and x¢p = 0. Let us define the expan-
oo 1 . Using the standard formula

M —_ n
sion zg =37 nrand
o0

we obtain one of the main results of this letter, eq. (4),
with the amplitudes for even n > 4,

1
I'(n —3)¢(2n = 3) (g)
/T 3
5Since {qusinhqu) > 0 and from Cauchy-Schwarz the inequality
(u2eav) (eav) > (ueq“>2 must hold.

60ur result is a summation of a convergent series in ge, but there
is no guarantee that there are no non-perturbative corrections.

(27)

3

A, = —2a, = —

(28)
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There is actually more information in eq. (25): Using (27)

and expanding in powers of ¢y 7 we obtain

<u(r1)ju(r2)”*j>b ~ a, In(r12/L),

(u(r)™ ~ —a, In(L/a).

~

While we already know (30) from (3) and (27), eq. (29),
valid for any 1 < j < n — 1 represents strong constraints.

Formula (25) is, at this stage, an educated guess, since
we do not know the exact solution to the corresponding
2-charge (dipole) Schrédinger problem. We now close this
gap via a careful examination of the integrals appearing
in the expansion of the determinant in powers of o, repre-
sented by the diagrams in fig. 1. We show two properties:

(i) All terms of the form eq. (29) are equal, and inde-
pendent of j: This proves that both egs. (25) and (26)
hold.

(ii) The topologically distinct integrals with the same j
are also all equal. This remarkable property goes beyond
what is needed for eq. (29), and provides simple expres-
sions for such integrals; as announced in the introduction,
they are of interest in the AdS/CFT context.

For clarity, let us detail the term n 4 (setting
m = 0). The calculation of (u(ry)?u(rs)?) involves two
3-loop integrals, Is 93, (p) and Iz 2y, (p), which are rep-
resented by the first two (topologically distinct) diagrams
in fig. 1. The first is equal to the integral, with entering

I(p,q)? .
dquQEgifz)Q with I(p,q) :=
d“q

kag(kw, fq = IW. The third diagram (i.e
integral) is the only one entering in the calculation of
(u(rq)3u(re)). By power counting, these integrals are both
UV and IR finite in d = 4, and scale as p~*; we now
determine their amplitude.

First we show that, for given n, the diagrams with two
external points depicted in fig. 1 are independent on how
these points are attached to the polygon vertices. In a nut-
shell this is because they all scale as p~#, and if we identify
the two external points, we obtain the same integral D,
in fig. 1. Explicitly, for m = 0 and d = 4, any of these
diagrams has n — 1 loops and 2n propagators, and reads

momentum p, 1{2,2}1(17) =

(31)

where a priori C,, depends on how we attach the n points
of the polygon to the two external points. In a massive
scheme, and d = 4 — ¢, by power counting this changes to

= p4+(n—1)5 n
where g, (z) — 1 for z — o0, ¢,(0) = 0 and «,, param-
eterizes the crossover point with g,(1) = 3. Now D, is
obtained from C,, by integrating over the external momen-

D
a,m

tum:
Cn D Sq [ dp
D, = n =~ Cn
/pp4+(n1)5 9 (anm) (27T)d /anm p1+ns
_ Culaym)™"* oy _ Com™7¢ 0
I — +0 (%) = ST + 0 (). (33)

The leading pole in ¢ does not depend on «,,, and is uni-
versal. Since all these diagrams lead to the same value of
D,,, all integrals of the type (31) are equal, and in d = 4
equal to C, /p*.

We already know the integral D,, in d 4 from
egs. (21) and (22), by matching powers of ¢ in the
expansion of the determinant with a point source,

InDloU] = > 77, (_17)Ln+l D, (go)™ which yields D, =~
(=1)"nfn/(2m)*" In(£) for any n > 3. Interestingly, the
Yaglom-Gelfand method allows us to calculate D,, directly
ind=4—c¢. For d < 4 we can set a = 0 in the potential
(17). The corresponding radial Schrédinger problem can

be solved ezxactly as

2sre

).
"(2—¢)e?

i) = T (), a(r) = oF) (2(

8
) g2

Using the identity )
_1\n+1 n—21y)sn .
> Qn(\/;%(n +F1() 0 &))%,1 we calculate to leading or-
der in e, nDoU] ~ Y2 (1 +1)* Inz(L). This yields
the polygon integrals for n > 3 in the massive scheme,

] (34)

Note that Ln—f changed to ™—. Further substituting this
factor by In(L/a) reproduces the above estimate for d = 4.
Using egs. (33) and (34) we now obtain C,, in d = 4,

limgg,o 9 1D0 Fl( =

2(141)

m~"T'(n—1/2)¢(2n — 3)

0
2T O

ne

_ I'(n— %)C(Qn -3)
VAT enE

This allows to expand the determinant in presence of two
charges q1, g2, in terms of 2-point diagrams, and obtain,
using (27) and (10) in d = 4 with m = 0:

2 2

n>4 n even>4

n .
x [(Q? +¢3)Dn +/ < ) q1q
o J

Here we used that all C, integrals are the same. Since
(') appears on both sides it implies (29) with a, =

C

1

L ) ¥ O C

O,’I’L

n—1

eip-r§ :

Jj=1

nfjcin
2 p4

} . (36)

7(2574)4Cn(n — 1)lo™ in agreement with (28). Choosing
g2 = —q1 rederives our main result for the cumulants (4)
and (28) since Z?;f(?)(—l)ﬂ = —2. We thus proved that
the multifractal scaling relations (25) and (26) hold.
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Performing the analytical continuation ¢ = iK we ob-
tain the decay exponent” of the translational correlations,

R 0(53)} K2+ zF(iKE)
- 136 216 3/
The wave vector K is arbitrary, not necessarily a RLV®.
Although non-Gaussian corrections start at O(g?), setting
directly ¢ = 1 and K = Ky = 27 yields® 77}%()'1-100}) =
1.097, 77%0 |2-100p = 1.279 while 7k, —77%0 = 0.569. Even if
these corrections may be an overestimate, and higher-loop
corrections are needed, non-Gaussian effects!? appear to
be non-negligible for d = 3 [18]. Comparison with the elas-
tic term [20] then shows that a small periodic perturbation
Vi becomes relevant for K < K. with 2 —ng_ = 0.

Conclusion: Using functional determinants we obtained
the scaling exponents of the (real and imaginary) expo-
nential correlations of the displacement field in a disor-
dered elastic system. We leave calculating the spectrum of
fractal dimensions!!, and the extension to a more general
elastic kernels for the future. As a surprising corollary, our
method yields, in an elegant way and for arbitrary n, exact
expressions for the integrals C,; (we numerically checked
formula (35) for n = 3,4,5). Similar integrals appear in
N = 4 SYM, on the field-theory side of two theories re-
lated via AdS/CFT: E.g., C5 contributes to the Konishi
anomalous dimension in N = 4 SYM at five-loop order,
and an elaborate formalism was put in place to calculate
it [25]. We hope that our method, and possible general-
izations, will also allow for a further-reaching check of the
AdS/CFT duality'?.

ni (37)
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