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Abstract
We develop perturbative expansions to obtain solutions for the initial-value
problems of two important reaction–diffusion systems, namely the Fisher
equation and the time-dependent Ginzburg–Landau equation. The starting
point of our expansion is the corresponding singular-perturbation solution.
This approach transforms the solution of nonlinear reaction–diffusion equations
into the solution of a hierarchy of linear equations. Our numerical results
demonstrate that this hierarchy rapidly converges to the exact solution.

PACS numbers: 02.30.Jr, 05.90.+m, 05.70.Ln

1. Introduction

Many physical problems are described by nonlinear partial differential equations (pdes). In
particular, much research interest has focused upon two classes of nonlinear pdes, namely

(i) soliton-bearing equations, which arise in the context of completely-integrable infinite-
dimensional Hamiltonian systems [1, 2]; and

(ii) reaction–diffusion equations, which arise in the context of pattern-forming systems where
local reactions are combined with spatial diffusion [3–6]. Typically, these equations
exhibit front propagation (or travelling-wave solutions), where unstable states are invaded
by stable states. The study of front propagation is of great interest in various biological
and physical contexts [7–10].

There is no general framework for obtaining the solution of the initial-value problem for an
arbitrary nonlinear pde. For the class of soliton-bearing equations in (i), powerful techniques
such as the inverse scattering transform and Backlund transformations enable the solution of
these equations for arbitrary initial conditions [1, 2]. Essentially, these methods reduce the
problem of solution of a nonlinear soliton equation to a sequence of linear equations. In a
related context, a classic example of linearization is provided by the Cole–Hopf transformation
[11], which transforms the nonlinear Burgers’ equation [12] into the linear diffusion equation.
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For the class of reaction–diffusion equations in (ii) above, there are as yet no systematic
methods of linearization. These pdes have the general form

∂tψ(�r, t) = f (ψ) + ∇2ψ (1.1)

where ψ(�r, t) is an order-parameter field, e.g., population density, chemical concentration,
magnetization, which depends on space (�r) and time (t). The order parameter may be either
scalar or vector, depending upon the number of variables which describe the physical system.
The order parameter evolves in time due to a local reaction, described by the nonlinear term
f (ψ), in conjunction with spatial diffusion. Reaction–diffusion equations are ubiquitous in
pattern-forming systems, ranging from chemical and biological physics to materials science
and metallurgy [3–6].

An important example of equation (1.1) is the Fisher equation with f (ψ) = ψ − ψ2,
which describes the growth and saturation of a species population [13, 14]. Another important
reaction–diffusion model is the time-dependent Ginzburg–Landau (TDGL) equation with
f ( �ψ) = �ψ − | �ψ |2 �ψ [15, 16], where �ψ is an n-component vector, �ψ ≡ (ψ1, ψ2, . . . , ψn).
The case with n = 1 describes the phase ordering dynamics of a ferromagnet which has been
suddenly quenched from the paramagnetic phase to the ferromagnetic phase. The TDGL
equation with n = 2 describes phase ordering dynamics in superconductors, superfluids and
liquid crystals [16]. In this paper, we will investigate the perturbative linearization of the
Fisher and TDGL equations for arbitrary initial conditions.

This paper is organized as follows. Section 2 provides an overview of relevant analytical
results, primarily in the context of the Fisher equation. Section 3 discusses our linearization
scheme and presents detailed numerical results therefrom. Finally, section 4 concludes this
paper with a summary and discussion of our results.

2. Overview of analytical results

Let us first consider the Fisher equation in an infinite domain, which has the following form
[13]:

∂tψ(�r, t) = ψ − ψ2 + ∇2ψ. (2.1)

In general, equation (2.1) is supplemented with some arbitrary initial condition ψ(�r, 0).
Typically, we are interested in the case with ψ � 0, as the order parameter describes population
density which cannot be negative. As a matter of fact, equation (2.1) is unstable for ψ < 0. The
homogeneous solution ψ∗ = 0 is an unstable fixed point (FP) of the dynamics. Fluctuations
about ψ∗ = 0 diverge exponentially and saturate to the stable FP, ψ∗ = 1.

There is no general solution available for the initial-value problem of equation (2.1).
However, some important analytical results are known for the case with dimensionality d = 1.
Kolmogorov et al [14] found that the Fisher equation has stable travelling-wave solutions
ψ(x, t) ≡ ψ(x − vt) (called clines), which are domain walls with

(a) velocity v = 2, and ψ(−∞, t) = 1, ψ(∞, t) = 0; or
(b) velocity v = −2, and ψ(−∞, t) = 0, ψ(∞, t) = 1.

The qualitative forms of these solutions are easily obtained through a phase-portrait analysis,
but the explicit analytic forms are unknown. Furthermore, it is now known that there are stable
cline solutions for all v � 2 and v � −2 [7].

In more general work, Aronson and Weinberger [17] considered the d = 1 version of
equation (1.1). They focused on functions f (ψ) which satisfy the conditions
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f (ψ) � 0 for ψ ∈ [0, 1]

f (0) = f (1) = 0 (2.2)

f ′(0) > 0 > f ′(1).

These authors demonstrated that a broad class of initial conditions ψ(x, 0), with sharp
interfaces, converges to a travelling-wave solution with a definite speed c∗, which satisfies

2[f ′(0)]1/2 � c∗ � 2L1/2

(2.3)

L = sup

[
f (ψ)

ψ

]
ψ ∈ [0, 1].

A physical explanation of this velocity-selection principle has been formulated by various
authors [18], and is often referred to as the marginal stability hypothesis. However,
this approach has proved inadequate in various applications. A more comprehensive
understanding, based on structural-stability arguments, is due to Paquette et al [19].

In the case of the Fisher equation, the Aronson–Weinberger result demonstrates that a
large class of initial conditions converges to the cline solution with v = ±2, whose functional
form is unknown as yet. An analytic form for a cline solution was first obtained by Ablowitz
and Zeppetella [20] for v = 5/

√
6 > 2. Furthermore, Murray [7] obtained approximate cline

solutions of the d = 1 Fisher equation with speed |v| � 2:

ψ(x, t) 	 1

1 + ez/v
+

1

v2

ez/v

(1 + ez/v)2
ln

(
4ez/v

(1 + ez/v)2

)
+ O(v−4) (2.4)

where z = x −vt . These solutions arise only for specific initial conditions, and are asymptotic
(t → ∞) approximations. For the case v = 2, Murray stresses that the first term of the
approximate solution is already within a few per cent of the exact solution (which is obtained
numerically).

It is of obvious interest to obtain a general solution for the initial-value problem of
equation (2.1) in arbitrary dimensions. In this context, Puri et al [21] used singular-perturbation
techniques, developed by Suzuki [22] and Kawasaki et al (KYG) [23] in the context of the
TDGL equation, to obtain an approximate solution for the initial-value problem of the Fisher
equation:

ψ̃0(�r, t) = ψL(�r, t)
1 + ψL(�r, t) ψL(�r, t) = et (1+∇2)ψ(�r, 0) (2.5)

where ψL(�r, t) is the solution of the linear part of the Fisher equation, and diverges with time.
The approximate solution in equation (2.5) has a number of attractive features. For

example, it is obtained for arbitrary dimensionality. Furthermore, initial conditions with sharp
interfaces evolve into a travelling-wave front with asymptotic speed v = 2, in accordance with
the Aronson–Weinberger result. The approach to the asymptotic velocity is as follows [21]:

v(t) 	 2 − d

2t
. (2.6)

Unfortunately, this is not in agreement with the exact result for the d = 1 Fisher equation
obtained by Bramson [24]:

v(t) 	 2 − 3

2t
. (2.7)

More generally, the fronts obtained using the singular-perturbation approximation are
appreciably sharper than the exact result (obtained numerically) [21]. Furthermore, the
solution in equation (2.5) is unable to accurately resolve front–front interactions [21]. An
improved approximation was proposed by Puri and Bray [25]. However, this is only valid for
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the less interesting class of initial conditions where the order parameter ψ does not vanish
anywhere, i.e. the evolving system is not characterized by the formation and interaction of
fronts.

Finally, it is also relevant to discuss the singular-perturbation solution for the TDGL
equation:

∂tψ(�r, t) = ψ − ψ3 + ∇2ψ. (2.8)

As mentioned earlier, the corresponding solution was obtained by KYG [23], who generalized
a diagrammatic technique developed by Suzuki [22]. The approximate solution for the scalar
TDGL equation is as follows:

ψ̃0(�r, t) = ψL(�r, t)√
1 + ψL(�r, t)2

ψL(�r, t) = et (1+∇2)ψ(�r, 0). (2.9)

Puri and Roland [26] obtained the singular-perturbation solution for the two-component TDGL
equation. This result was generalized by Bray and Puri [27] and Puri [28] to obtain the time-
dependent structure factor for the n-component TDGL equation. As in the case of the Fisher
equation, the approximate solution in equation (2.9) is characterized by fronts which are too
sharp. Furthermore, the singular-perturbation solution is unable to properly resolve domain–
wall interactions [21].

In this paper, we undertake a perturbative improvement of the singular-perturbation
solution of the Fisher and TDGL equations. We develop a hierarchy of linear equations
which rapidly converges to the exact solution. Our primary goal is methodological, namely
demonstrating the equivalence between nonlinear reaction–diffusion equations and a sequence
of linear equations.

3. Analytical and numerical results

3.1. Fisher equation

The solution of the Fisher equation with constant initial conditions suggests the following
nonlinear transformation:

ψ(�r, t) = φ(�r, t)
1 + φ(�r, t) (3.1)

where φ > 0 is an auxiliary field [16]. We confine ourselves to the physically interesting case
with 1 > ψ � 0. The corresponding pde satisfied by φ(�r, t) is

∂tφ(�r, t) = φ + ∇2φ − 2(∇φ)2

1 + φ
φ(�r, 0) = ψ(�r, 0)

1 − ψ(�r, 0)
. (3.2)

The singular-perturbation approximation is equivalent to dropping the nonlinear term on the
right-hand side (RHS) of equation (3.2). In that case, the solution (modified slightly from
equation (2.5)) is

ψ0(�r, t) = φ0(�r, t)
1 + φ0(�r, t) φ0(�r, t) = et (1+∇2)

[
ψ(�r, 0)

1 − ψ(�r, 0)

]
. (3.3)

The approximate solution in equation (3.3) reduces to that in equation (2.5) in the limit of
small ψ(�r, 0). However, in contrast to the earlier solution, equation (3.3) yields the exact
solution in the homogeneous case ψ(�r, 0) = ψ̄(0), namely

ψ̄0(t) = et ψ̄(0)

1 − ψ̄(0) + et ψ̄(0)
. (3.4)
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We will use the approximate solution in equation (3.3) as the starting point of a perturbative
expansion, which yields a hierarchy of linear equations. First, note that the exact pde obeyed
by the solution ψ0(�r, t) is

∂tψ0(�r, t) = ψ0 − ψ2
0 + ∇2ψ0 +

2(∇ψ0)
2

1 − ψ0
. (3.5)

We decompose the exact solution of the Fisher equation as ψ = ψ0 + θ0, where θ0 is the
correction to the singular-perturbation solution. Then, the pde obeyed by θ0(�r, t) is

∂tθ0(�r, t) = (1 − 2ψ0)θ0 − θ2
0 + ∇2θ0 − 2(∇φ0)

2

(1 + φ0)3
. (3.6)

We assume that θ0 is small, and break it up as θ0 = ψ1 + θ1, where ψ1 solves the linear part of
equation (3.6):

∂tψ1(�r, t) = (1 − 2ψ0)ψ1 + ∇2ψ1 − 2(∇φ0)
2

(1 + φ0)3
. (3.7)

The exact pde obeyed by θ1(�r, t) is then

∂tθ1(�r, t) = [1 − 2(ψ0 + ψ1)]θ1 − θ2
1 + ∇2θ1 − ψ2

1 (3.8)

which has the same general form as equation (3.6).
This process can be continued indefinitely. At the nth level, we decompose as

θn−1 = ψn + θn, where ψn solves the linear version of the pde obeyed by θn−1. The
corresponding pde obeyed by θn is then

∂tθn(�r, t) =
(

1 − 2
n∑

k=0

ψk

)
θn − θ2

n + ∇2θn − ψ2
n . (3.9)

The approximate perturbative solution at the nth level of iteration is then obtained as

ψ(�r, t) 	
n∑

k=0

ψk(�r, t). (3.10)

This expansion is obtained as a function of the small difference between the exact solution
and the singular-perturbation solution in equation (3.3).

The general form of the pdes obeyed by ψk (for k � 1) is

∂tψk(�r, t) = a(�r, t)ψk + ∇2ψk + b(�r, t) (3.11)

where a(�r, t) and b(�r, t) are functions of space and time. An explicit solution of
equation (3.11) is possible when a(�r, t) ≡ ā(t). In that case, we multiply equation (3.11) by
e− ∫ t

0 dt ′ ā(t ′) to obtain

∂t

[
e− ∫ t

0 dt ′ ā(t ′)ψk(�r, t)
] = ∇2

[
e− ∫ t

0 dt ′ā(t ′)ψk

]
+ e− ∫ t

0 dt ′ ā(t ′)b(�r, t). (3.12)

We next introduce the Green’s function R(�r, t), which solves (∂t − ∇2)R(�r, t) = δ(�r)δ(t):
R(�r, t) = 1

(4πt)d/2
e−r2/(4t). (3.13)

The explicit solution of equation (3.12) is then obtained as follows:

ψk(�r, t) = e
∫ t

0 dt ′ ā(t ′)
∫ t

0
dt ′

∫
d�r ′R(�r − �r ′, t − t ′) e− ∫ t ′

0 dt ′′ ā(t ′′)b(�r ′, t ′). (3.14)

More generally, a formal solution of equation (3.11) reads (somewhat symbolically)

ψk = (∂t − ∇2 − a)−1b. (3.15)
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This solution can be expanded in a Taylor series in a as follows:

ψk(�r, t) =
∫ t

0
dt ′

∫
d�r ′ R(�r − �r ′, t − t ′)b(�r ′, t ′) +

∫ t

0
dt ′

∫
d�r ′

∫ t ′

0
dt ′′

∫
d�r ′′

R(�r − �r ′, t − t ′)a(�r ′, t ′)R(�r ′ − �r ′′, t ′ − t ′′)b(�r ′′, t ′′) + · · · . (3.16)

Note that for b(�r, t) = δ(t)φ(�r, 0) and a = 1, we recover the solution to the linear part of
equation (3.2).

We will demonstrate shortly that the perturbative expansion (3.10) converges very rapidly
to the exact solution. However, we stress that our interest in such an expansion is more
methodological than operational, i.e. the above procedure converts the problem of solution of
the nonlinear Fisher equation to a hierarchy of linear equations. Of course, the same procedure
would serve to improve any approximate solution—the singular-perturbation result is merely
a convenient starting point.

3.2. Time-dependent Ginzburg–Landau equation

Before we present our numerical results, it is relevant to discuss the corresponding procedure
for the scalar TDGL equation. (The generalization to the n-component case is relatively
straightforward.) The corresponding nonlinear transformation is obtained by solving the
TDGL equation for constant initial conditions and reads

ψ(�r, t) = φ(�r, t)√
1 + φ(�r, t)2

(3.17)

where φ is the appropriate auxiliary field. In this case, we confine ourselves to the physically
interesting case with |ψ| < 1. The pde satisfied by φ(�r, t) is [16]

∂tφ(�r, t) = φ + ∇2φ − 3φ(∇φ)2

1 + φ2
. (3.18)

As before, the singular-perturbation solution is obtained by neglecting the nonlinear term on
the RHS of equation (3.18) as follows:

ψ0(�r, t) = φ0(�r, t)√
1 + φ0(�r, t)2

φ0(�r, t) = et (1+∇2)

[
ψ(�r, 0)√

1 − ψ(�r, 0)2

]
. (3.19)

This solution constitutes an improvement over the solution in equation (2.9) as it is exact in
the homogeneous case. The exact pde satisfied by ψ0 is then

∂tψ0(�r, t) = ψ0 − ψ3
0 + ∇2ψ0 +

3ψ0(∇ψ0)
2

1 − ψ2
0

. (3.20)

We decompose the solution of the TDGL equation as ψ = ψ0 + θ0, where the pde obeyed by
θ0(�r, t) is

∂tθ0(�r, t) = (
1 − 3ψ2

0

)
θ0 − 3ψ0θ

2
0 − θ3

0 + ∇2θ0 − 3ψ0(∇ψ0)
2

1 − ψ2
0

. (3.21)

As before, we designate the solution of the linear part of this equation as ψ1(�r, t). If we
decompose the overall solution as θ0 = ψ1 + θ1, the pde obeyed by θ1(�r, t) is

∂tθ1(�r, t) = [1 − 3(ψ0 + ψ1)
2]θ1 − 3(ψ0 + ψ1)θ

2
1 − θ3

1 + ∇2θ1 − (3ψ0 + ψ1)ψ
2
1 . (3.22)
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Again, we can develop an infinite hierarchy of equations. The pde for θn(�r, t) at the nth level
of this hierarchy is

∂tθn(�r, t) =

1 − 3

(
n∑

k=0

ψk

)2

 θn − 3

(
n∑

k=0

ψk

)
θ2
n − θ3

n + ∇2θn −
(

3
n−1∑
k=0

ψk + ψn

)
ψ2

n .

(3.23)

Therefore, the problem of solution of the nonlinear TDGL equation is again reducible to the
solution of an infinite hierarchy of linear equations for ψk(�r, t). The approximate perturbative
solution at the nth level is given by equation (3.10).

3.3. Numerical results for the Fisher equation

In this subsection, we will numerically examine the convergence properties of the hierarchy of
linear equations presented above. For the sake of brevity, we confine ourselves to presenting
numerical results for the Fisher equation in d = 1, 2. Similar results are obtained for the
TDGL equation also.

Our numerical results for the Fisher equation, referred to as the ‘exact solution’
subsequently, were obtained by implementing an Euler-discretized version of equation (2.1)
(with an isotropic Laplacian) in d = 1, 2. In both cases, we used periodic boundary conditions.
The discretization mesh sizes in d = 1 were �t = 0.001 and �x = 0.1 in time and space,
respectively. The corresponding mesh sizes in d = 2 were �t = 0.001 and �x = 0.2. The
lattice size was N1 = 40 000 in d = 1 and N2

2 = 10002 in d = 2. The spatial coordinates are
x ∈ [−2000, 2000] in d = 1 and x, y ∈ [−100, 100] in d = 2. Our perturbative solutions for
ψ0, ψ1, ψ2, etc were also obtained numerically by solving the relevant linearized equations.
The discretization meshes and lattice sizes for the perturbative solutions are identical to those
described above.

Figure 1(a) shows the profile of a front arising from a seed initial condition (ψ(x, 0) =
0.05δ(x)) for the d = 1 Fisher equation. The evolution gives two equivalent clines moving
in opposite directions—we focus on the cline with v > 0. In figure 1(a), we show the
exact solution (solid line); the singular-perturbation or n = 0 solution (dashed line); the n = 1
solution (dotted line) and the n = 2 solution (dot-dashed line). The n = 3 perturbative solution
(dot-dot-dashed line) is already numerically indistinguishable from the exact solution on the
scale of the figure—we will quantify the error shortly. We have numerically confirmed that the
perturbation series in equation (3.10) is strongly convergent, and the inclusion of higher-order
terms (n > 3) does not change the solution appreciably.

Let us next examine the time dependence of the front velocity. Recall that the n = 0
solution did not exhibit the correct approach to the asymptotic velocity v = 2. Figure 1(b)
plots v(t) versus t−1 for the solutions shown in figure 1(a). (We compute the velocity at the
point where ψ = 1/2.) Again, we see that the n = 3 result is almost coincident with the exact
result, which is obtained from the exact (numerical) solution depicted in figure 1(a).

Figures 2(a) and (b) study the evolution of the d = 1 Fisher equation from a random
initial condition, consisting of ten randomly-distributed seeds of random height (between 0
and 0.1). In figures 2(a) and (b), we focus on the collision and merger of two fronts, showing
the exact solution, and the solutions for n = 0, 1, 3. As in figure 1(a), the n = 3 solution is
numerically indistinguishable from the exact solution.
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Figure 1. (a) Evolution snapshot of the d = 1 Fisher equation for a seed initial condition
ψ(x, 0) = 0.05δ(x). We plot the order parameter ψ(x, t = 200) versus x for the front moving
with velocity v > 0. Details of our simulation are provided in the text. We present results for the
exact solution (solid line); the singular-perturbation or n = 0 solution (dashed line); the n = 1
solution (dotted line); the n = 2 solution (dot-dashed line) and the n = 3 solution (dot-dot-dashed
line). (b) Plot of front velocity v(t) versus t−1 for the solutions shown in (a). The front position is
defined by ψ(x, t) = 1/2. The line-type usage is the same as that in (a). The exact velocity was
obtained from the exact (numerical) solution depicted in (a).

To quantify the error involved in our approximations, we compute the ‘distance’ between
the exact solution ψe(x, t) and an approximate solution ψa(x, t) as follows:

D(t) = 1

L

∫ L/2

−L/2
dx|ψe(x, t) − ψa(x, t)| (3.24)

where L is the lattice length. Figure 2(c) plots D(t) versus t on a semi-logarithmic scale for
the different solutions depicted in figures 2(a) and (b). We obtain D(t) by averaging over 25
independent initial conditions constructed as the random superposition of seeds, Gaussians,
sine–cosine functions, etc. The maximum error for the n = 3 solution is three orders of
magnitude smaller than that for the n = 0 (singular-perturbation) solution. This quantifies
the rapid convergence of our perturbative hierarchy. Of course, the error asymptotically
approaches zero for all solutions as ψ → ψ∗ = 1 everywhere.

Next, we consider results for the d = 2 Fisher equation. Figure 3(a) shows an evolution
snapshot obtained from a seed initial condition ψ(x, y, 0) = 0.05δ(x)δ(y). The dark circular
region refers to the exact solution, and denotes points where ψ � 0.5. The solid line refers to
the front position for the n = 0 solution, and is defined by points where ψ = 0.5. Figure 3(b)
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Figure 2. (a) Evolution snapshot of the d = 1 Fisher equation for a random initial condition,
consisting of ten randomly-distributed seeds of amplitude between 0 and 0.1. We plot the order
parameter ψ(x, t) versus x at t = 40, focusing on a front–front collision. The results shown are
analogous to those in figure 1(a), except we do not show the case n = 2. (b) Analogous to (a),
but at the later time t = 80. (c) Plot of D(t) versus t on a semi-logarithmic scale, where D(t) is
the ‘distance’ (defined in equation (3.24)) between the exact solution and an approximate solution.
The error D(t) is obtained as an average over 25 independent initial conditions of various types.
We show results for the approximate solutions with n = 0, 1, 3, using the same line types as in (a)
and (b).

shows the corresponding variation of the order parameter along a horizontal cross-section of
the lattice. As in the d = 1 case, the singular-perturbation front is appreciably sharper than the
exact front. For clarity, we do not show the higher-order perturbation results—as before, the
n = 3 result is indistinguishable from the exact solution. We focus on the front position so
as to clarify the convergence of the perturbative solution. Figure 3(c) plots the front velocity
v(t) versus t−1 for the solutions depicted in figure 3(b).

Finally, figures 4(a) and (b) study the evolution from a random initial condition for the
d = 2 Fisher equation. The initial condition consists of 25 randomly-distributed seeds with
amplitudes between 0 and 0.1. Figure 4(a) shows an evolution snapshot at t = 12. (For
clarity, we only show a 5002 corner of the 10002 lattice.) The coding is the same as that for
figure 3(a). Figure 4(b) shows the variation of the order parameter along a horizontal cross-
section of the snapshot shown partially in figure 4(a). We present results for the exact
solution, and approximate solutions with n = 0, 1, 3. The approximation error is quantified in
figure 4(c), where we plot D(t) versus t on a semi-logarithmic scale. The error is obtained
as the d = 2 generalization of the quantity defined in equation (3.24). As in the d = 1
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Figure 3. (a) Evolution snapshot of the d = 2 Fisher equation from a seed initial condition
ψ(x, y, 0) = 0.05δ(x)δ(y). The dark region corresponds to the exact solution at t = 40, and
denotes points where ψ � 0.5. The solid line refers to the singular-perturbation (n = 0) solution
at t = 40, and denotes points where ψ = 0.5. (b) Variation of the order parameter along a
horizontal cross-section for the evolution depicted in (a). We plot ψ(x, y, t = 40) versus x for
y = 0, and focus on the front solution. The results presented are analogous to those in figure 2(a).
(c) Plot of front velocity v(t) versus t−1 for the solutions shown in (b). The exact velocity was
obtained from the exact (numerical) solution depicted in (b).

case, the error was obtained as an average over 25 independent initial conditions of different
types.

4. Summary and discussion

Let us conclude this paper with a summary and discussion of the results presented here.
We have studied two important examples of reaction–diffusion systems, namely the Fisher
equation and the time-dependent Ginzburg–Landau (TDGL) equation. We are interested in the
linearization of these and other reaction–diffusion equations, i.e. conversion of the nonlinear
problem to a linear problem. In both cases, we find that the singular-perturbation solution is
a good starting point for a perturbative expansion. This expansion transforms the problem of
solution of the nonlinear partial differential equation to the solution of a hierarchy of linear
partial differential equations. Our numerical studies demonstrate that this hierarchy rapidly
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Figure 4. (a) Evolution snapshot of the d = 2 Fisher equation from a random initial condition,
consisting of 25 randomly-distributed seeds with amplitude between 0 and 0.1. The dark regions
denote the exact solution at t = 12, and the solid line denotes the corresponding singular-
perturbation solution. For clarity, we only show a 5002 corner of the 10002 lattice. (b) Variation
of the order parameter along a horizontal cross-section of the snapshot partly shown in (a). We
plot ψ(x, y = 0, t = 12) versus x for the entire range of x-values. The line-type usage is the same
as earlier. (c) Analogous to figure 2(c), but for the d = 2 Fisher equation.

converges to the exact solution of the relevant equation. However, we should stress that our
primary interests in this paper are methodological rather than operational.

The formal perturbative solution for the Fisher equation developed in section 3.1 is not
analytically convenient. At present, we are investigating whether we can use this perturbative
expansion to obtain analytical results for the approach to the asymptotic velocity for specific
initial conditions.

The techniques developed here are of general applicability to a wide range of reaction–
diffusion equations. Of course, any approximate solution to the initial-value problem for a
given equation is a good starting point for a perturbative expansion. However, we find that



2054 S Puri and K J Wiese

the singular-perturbation solution appears to be particularly convenient in that it yields an
extremely accurate solution within a few steps of the perturbation expansion.
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