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We compute the normalisation factor for the large order asymptotics of perturba-

tion theory for the self-avoiding manifold (SAM) model describing flexible tethered

(D-dimensional) membranes in d-dimensional space, and the ǫ-expansion for this

problem. For that purpose, we develop the methods inspired from instanton calcu-

lus, that we introduced in a previous publication (Nucl. Phys. B 534 (1998) 555),

and we compute the functional determinant of the fluctuations around the instan-

ton configuration. This determinant has UV divergences and we show that the

renormalized action used to make perturbation theory finite also renders the con-

tribution of the instanton UV-finite. To compute this determinant, we develop a

systematic large-d expansion. For the renormalized theory, we point out problems

in the interplay between the limits ǫ → 0 and d → ∞, as well as IR divergences

when ǫ = 0. We show that many cancellations between IR divergences occur, and

argue that the remaining IR-singular term is associated to amenable non-analytic

contributions in the large-d limit when ǫ = 0. The consistency with the standard

instanton-calculus results for the self-avoiding walk is checked for D = 1.
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I. INTRODUCTION

Flexible polymerized 2-dimensional films (tethered or polymerized membranes) [1] have
very interesting statistical properties (for a review see [2, 3, 4]). In these objects there is
a competition between internal rigidity (which favors flat configurations), entropy (which
favors crumpled or folded configurations, as for polymers), and steric interactions (self-
avoidance), which tends to swell the membranes. Internal disorder, inhomogeneities and
anisotropy may also play an important role, that we shall not discuss here (see the chapters
10-12 in [3] and [4] for a recent review of these effects).

If one does not include self-avoidance, theoretical arguments (mean-field and
renormalization-group calculations) and numerical simulations show that a high-
temperature/low-rigidity crumpled phase exists where the membrane is a highly crumpled
object with infinite Hausdorff dimension, and internal rigidity is irrelevant [5, 6]. The ef-
fect of the physically relevant steric interactions is still not fully understood, especially in
low dimensions, making this problem very interesting. In the high-temperature phase these
steric interactions can be included in a model of self-avoiding manifolds (or membranes)
[7, 8, 9], hereafter denoted the SAM model, which is a generalization of the Edwards model
for polymers [10, 11]. This model is amenable to a treatment by perturbation theory (in the
coupling constant of steric interactions) and to a perturbative renormalization group analy-
sis which leads to a Wilson-Fisher like ǫ-expansion for estimating the scaling exponents and
the critical properties of the swollen phase.

This perturbative SAM model is quite interesting at the theoretical level for several
reasons:

1. It can only be defined as a non-local field-theory over the internal 2-dimensional space
of the manifold, with infinite-ranged multi-local interactions. Therefore the applicabil-
ity of renormalization theory and of renormalization group techniques is a non-trivial
issue. A proof of perturbative renormalizability to all orders was finally given in
[12, 13].

2. The model is in fact defined through a double dimensional continuation, where both
the dimension of space d and the internal dimension D of the manifold are analytically
continued to non-integer values. The physical case of two-dimensional membranes is
always in the strong-coupling regime where the engineering dimension of the coupling,
ǫ = 2D − 2−D

2
d is ǫ = 4 for any space dimension d.

3. The analytical study of this model at the non-perturbative level is still in its infancy,
since it is a technically quite difficult problem. A first step was made by the two
present authors for the large orders of perturbation theory for the model in [14]. It is
this issue of the large-order asymptotics of the SAM model that we treat in this paper.

For quantum mechanics [15, 16, 17] and for local quantum field theories [18] (such as the
Laudau-Ginzburg-Wilson φ4 theories) the large-order asymptotics of perturbation theory are
known to be controlled by (in general complex) finite-action solutions of the classical equation
of motion called “instantons”. More precisely the large-order asymptotics are described by
semi-classical approximations around these instantons. We refer to for instance [19] for a
review of this “instanton calculus”.

In [14] we have shown that similarly for the SAM model there exists an instanton which
controls its large-order asymptotics. This instanton is a scalar field configuration in the ex-
ternal d-dimensional space, which extremizes a highly non-local effective-action functional,



6

and which cannot be computed exactly. We showed also in [14] that remarkable simplifi-
cations occur in the large-d limit, which suggests that a systematic 1/d expansion can be
constructed to study the instanton, but also that already the first 1/d correction to the
large-d limit is plagued with infrared (IR) divergences whose origin was unclear. In the
paper [14] we only studied the instanton at the classical level, i.e. the (non-local) equation
of motion and the properties of its solution, the instanton.

In this paper we present the full semi-classical analysis of the instanton for the SAM
model, derive its connection with the large-order asymptotics, and study the UV divergences
and renormalization for the instanton calculus. For this purpose, many new calculational
techniques had to be developed, hence the length of the paper and its technical character.
More precisely, the main new results that we have obtained are:

1. We first show in much more details than in [14] how the instanton emerges from
the functional integral which defines the continuum SAM model. In particular we
treat properly and carefully the zero-modes for the instanton, how the contour of
functional integration are deformed in the complex saddle-point method, as well as
various normalization problems for the functional integration. This is done in Sect. III-
A,B.

2. Using this, we obtain the contribution of the fluctuations around the instanton in the
semi-classical approximation as the determinant of a non-local kernel operator in d-
dimensional space, and derive the normalization factor for the large-order asymptotics
(Sect. III-C,D,E).

3. We analyze completely the UV divergences of this determinant, and show that in the
renormalized theory these UV divergences for the instanton determinant factor are
canceled by the one-loop perturbative counterterm of the renormalized theory, making
the final asymptotics UV finite. This is an important check of the consistency of the
SAM model, since the original proof of renormalizability is only valid in perturbation
theory. (In a field theoretic language it is not a background-independent proof).
This is done in Sect. IV. Our argument is based on the extension of the perturbative
renormalizability argument to the general case of ensembles of interacting manifolds
in an external background potential.

4. In [14] the instanton equation was solved within a variational approximation. In
sect. V we study how this approximation can be applied to the explicit calculation of
the instanton determinant factor. We first show that a direct variational calculation
gives a result which is too naive, and does not take properly into account the UV
fluctuations. We then propose a systematic framework to construct an expansion
around the variational approximation, developing ideas that we proposed in [14]. We
then show that this framework gives the leading term for the instanton determinant
factor in the large-d limit.

5. We are thus able to construct a systematic 1/d expansion for the instanton calculus,
and show that this expansion is well defined as long as the SAM is super renormal-
izable, i.e. ǫ > 0 (no UV divergences in perturbation theory, apart from vacuum
energy terms). The leading and first subleading terms are computed explicitly for the
determinant factor and the normalization factor of the zero mode of the instanton.
These calculations involve a new non-trivial diagrammatic expansion. This is done in
Sect. VI .
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6. Finally we study the 1/d expansion for the renormalized theory at ǫ = 0. We show
that, at variance with instanton calculus for local field theories, some subtle issues arise
for the SAM model. Indeed, we show that already at leading order in d, the limits
d → ∞ and ǫ → 0 do not commute, and that some care is needed in order to obtain
the instanton determinant factor for the renormalized theory at large d. We then
show that the subleading terms of the 1/d expansion are plagued with IR divergences
at ǫ = 0, generalizing results of [14]. We analyze completely these IR divergences
at the first subleading order, and show that many compensations occur, leaving a
single IR-singular term associated with a single eigenmode for the fluctuations around
the instanton, namely the unstable eigenmode generated by global dilation for the
instanton. This analysis of the renormalized theory is done in Sect. VII.

To summarize, we have performed in this paper a non-trivial check of the consistency of
the model, in particular of its renormalization, in a non-perturbative regime, and we have
developed the tools to compute the large-order asymptotics of the SAM model.

Appendices contain more technical computations and details about the normalizations.
In particular in appendix C we explicitly check that in the special case of the SAW (D = 1)
we recover the large-order asymptotics for the Edwards model obtained by field theoretical
methods (using instanton calculus and the well known equivalence between the Edwards
model and the O(n = 0) φ4 Landau Ginzburg model [20, 21]). This provides a check of the
consistency of the SAM model.

II. THE MODEL

A. The non-interacting manifold

First we define the model for the Gaussian non-interacting manifold (free or phantom
manifold). Of course this model reduces to a massless free field, but we reconsider it closely
in order to fix properly the normalization for the measure and for the definition of the
observables, and for the treatment of the zero modes.

1. The model and its action

We consider a manifoldM with a finite size, as a closed D-dimensional manifoldM, with
a fixed internal (or intrinsic) Riemannian structure, given by a metric tensor g = gµν(x).
x = (xµ; µ = 1, . . . , D) describes (a system of) local coordinates on M. From now on the
internal volume ofM, Vol(M) and its internal size L are defined as

Vol(M) =

∫

M
dDx
√
g , L = Vol(M)

1
D (2.1)

with g = det[g]. The manifold is embedded in external (or bulk) d-dimensional Euclidean
space Rd. This embedding is described by the field r = {ra; a = 1, . . . , d}

M→ Rd , x→ r(x) (2.2)

We shall use dimensional regularization in this paper by considering that the internal di-
mension D of the manifold is 0 < D < 2 non-integer. See the reference paper [13] for a more
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precise discussion of how we can define a finite membrane within dimensional regularization.
In practice we can restrict ourselves to the case of a square D-dimensional torus of size L,
TD =

(
RD/(L · Z)D

)
, with flat metric gµν = δµν .

We first consider the free non-interacting manifold (phantom membrane). The manifold
may fluctuate freely in external d-dimensional space. Its free energy is given by the Gaussian
local elastic term S0, which is the integral of the square of the gradient of the field r

S0[r] =

∫

M

1

2
(∇r)2 =

∫
dDx
√
g

1

2
gµν∂µr · ∂νr . (2.3)

This is nothing but the Euclidean action for a free massless field (with d components) living
onM. The manifold may (and does) freely intersect itself, as does a random Brownian walk
in d ≤ 4 space dimensions.

2. The partition function

The partition function for the free manifold is thus given by the functional integral

Z0 =

∫
D[r] e−S0[r] (2.4)

where D[r] is the standard functional measure for the free massless field r (see Appendix A
for details and the normalization used in this paper).

There is an infinite factor in Z0 (the volume of bulk space Vol(Rd)) coming from the
translational zero mode of the manifold. This can be isolated by choosing a specific point x0

on the manifold and a specific point r0 in bulk space, and by defining the partition function
Z0 for a marked manifold

Z0 = Z0(r0) =

∫
D[r] δd(r(x0)− r0) e−S0[r] (2.5)

Z0(r0) is infra-red (IR) finite and does not depend on the choice of r0 or of x0. We have
formally

Z0 =

∫
ddr0 Z0(r0) = Vol(Rd)Z0 . (2.6)

The partition function Z0 is found to be related to the determinant of the Laplacian
operator over M through

Z0(r0) =
[
det′ [−∆] · 2π/Vol(M)

]−d/2

, (2.7)

where det′ [−∆] is the product of the non-zero eigenvalues of (minus) the Laplacian operator
∆ = g−1/2∂µg

µν∂ν onM. Vol(M) =
∫

dDx
√
g is the internal volume of the manifold. This

last term comes from the proper treatment of the translational zero mode of the Laplacian
(see Appendix A).

The determinant det′ [−∆] is ultra-violet (UV) divergent, and is defined through a zeta-
function regularization (for a manifold M with non-integer dimension D 6= 1 or 2 this is
equivalent to dimensional regularization)

log(det′ [−∆]) = −ζ ′(0) , ζ(s) = tr′((−∆)−s) . (2.8)
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The zeta-function ζ(s) is defined by analytic continuation from Re(s) large. tr′ means the
trace over the space orthogonal to the kernel of ∆. ζ(s), scales with the size ofM as

ζ(s) = [Vol(M)]2s/D ζ̃(s) , (2.9)

where the “normalized zeta-function” ζ̃(s) depends on the shape of the manifold but not on
its size (scale invariance). In the absence of a conformal anomaly, as this is the case for the
generic case of D non-integer we have the exact identity

ζ(0) = −1 . (2.10)

(This factor comes from the contribution of the subtracted zero mode in the determinant).
Hence the partition function reads

Z0(r0) = [Vol(M)]−
d(2−D)

2D

[
eζ̃′(0)

2π

]d/2

. (2.11)

The last term is a “form factor” depending on the shape ofM.
For 2-dimensional manifolds (D = 2), the conformal anomaly gives an additional scale

factor of the form |Lµ0|χ d/6, where L = Vol(M)1/D is the size of M, µ0 the regularization
mass scale, required to define properly the measure in the functional integral (see Appendix
A), and χ the Euler characteristics of the membrane. We shall not discuss this any further,
since this is not relevant for the problem treated here, where we consider manifolds with
D < 2.

B. The interacting self-avoiding manifold

1. The action

The steric self-avoiding interaction is introduced by adding a 2-body repulsive contact
interaction term of the form

∫

x

∫

y

δd(r(x)− r(y) =

∫

M
dDx

√
g(x)

∫

M
dDy

√
g(x) δd(r(x)− r(y))

(where δd(r) is the Dirac distribution in the external space Rd ) to the action, which is now

S[r, b] =

∫

M

1

2
(∇r)2 +

b

2

∫

x

∫

y

δd(r(x)− r(y)) (2.12)

b > 0 is the self-avoidance coupling constant. This is similar to what is done in the Edwards
model for polymers.

2. The partition functions

The partition function for the self-avoiding manifold is

Z(r0, b) =

∫
D[r] δd(r(x0)− r0) e−S[r,b] ; Z(b) =

∫
ddr0Z(r0, b) . (2.13)
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These partition functions are defined in perturbation theory, within a dimensional regular-
ization scheme, i.e. by analytic continuation in the internal dimension D.

If the internal coordinate x has engineering dimension 1, the external coordinate r has
engineering dimension ν0 given by (i.e. [r] ∼ [x]ν0)

ν0 = (2−D)/2 (2.14)

and the coupling constant b has engineering dimension −ǫ (i.e. [b] ∼ [x]−ǫ) with

ǫ = 2D − (2−D)d/2 (2.15)

As usual in polymer and membrane problems, we shall consider mainly the normalized
partition function Z(b), defined by the ratio of the interacting partition function for the
interacting manifold M, divided by the partition function for the same manifold M, but
free.

Z(b) = Z(b)/Z0 = Z(r0, b)/Z0(r0) . (2.16)

Let

L = (Vol(M))1/D ; Vol(M) =

∫

M
dDx

√
g(x) (2.17)

be the internal size of the manifold. The normalized partition function has a perturbative
series expansion in powers of b, of the form

Z(b) = 1 +
∞∑

k=1

Zk (bLǫ)k (2.18)

where the coefficients Zk depend only on the shape of the manifold, on its internal dimension
D, and on the external dimension d. These coefficients are given by the expectation value in
the massless free theory defined by the free action S0 of the bi-local operators corresponding
to the interaction term

Zk =
1

k! 2k

∫∫

x1,y1

· · ·
∫∫

xk,yk

〈 ∏

i=1,k

δd(r(xi)− r(yi))
〉
0
, (2.19)

with 〈. . . 〉0 the expectation value w.r.t. S0[r], see (2.3).

3. Observables and correlation functions in external space

We shall be mainly interested in correlations functions which correspond to observables
which are global for the manifold (i.e. do not depend on the internal position of specific
points on the manifold), but which may be local in external space (i.e. do depend on the
position of specific points in the external space). These observables are the simplest ones.
In particular for the case D = 1 (polymers) these observables have a direct interpretation
in terms of correlation functions of local operators in the corresponding local field theory in
external d-dimensional space.

The observables involve the manifold density ρ(r). We define the manifold density at the
point r1, ρ(r1), as the functional of the field r(x)

ρ(r1; r) =

∫

x

δd(r(x)− r1) . (2.20)
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The N -point density correlator R(N)(r1 · · · rN) for the interacting manifold is defined as

R(N)(r1 · · · rN ; b) =

∫
D[r]

N∏

i=1

ρ(ri; r) e−S(r,b) . (2.21)

Obviously the one-point density correlator is related to the partition function (for a one-point
marked manifold) by

R(1)(r0; b) = Vol(M)Z(r0; b) . (2.22)

Ratios of density correlators define expectation values of densities. For instance, the e.v.
(expectation value) of a product of N density operators ρ(ri) for a manifold constrained to
be attached to a point r0 is the ratio

〈ρ(r1) · · ·ρ(rN )〉r0;b = R(N+1)(r0, r1 · · · rN ; b)/R(1)(r0; b) . (2.23)

As for the partition functions, it is more convenient to normalize the density correlators
with respect to the partition function for the free manifold. We thus define the normalization
for the normalized density correlators, by

R(N)(r1 · · · rN ; b) = R(N)(r1 · · · rN ; b)

/
Vol(M)Z0 . (2.24)

In particular the normalized 1-point correlator coincides with the normalized partition func-
tion

R(1)(r1; b) = Z(b) (2.25)

and is independent of r1.
These observables have a perturbative series expansion in the coupling constant b. In

particular they scale with the size L of the manifold as

R(N)(r1 · · · rN ; b, L) = LN(ǫ−D) · R(N)(r1 L
−ν0 , · · · , rN L−ν0 ; bLǫ) (2.26)

and
R(N)(r1 · · · rN ; b, L) = L(N−1)(ǫ−D) ·R(N)(r1 L

−ν0 , · · · , rN L−ν0 ; bLǫ) (2.27)

4. Global quantities and gyration radius moments

We define the moments of order k for the gyration radius (in short the k-th gyration

moment) R
(k)
gyr of the manifold by

R(k)
gyr =

∫
x1

∫
x2
|r(x1)− r(x2)|k∫

x1

∫
x2

1
. (2.28)

The standard gyration radius is Rgyr =

√
R

(2)
gyr. The expectation value R(k)

gyr of the k-th

gyration moment R
(k)
gyr for the interacting manifold is thus (for k > 0)

R(k)
gyr = 〈R(k)

gyr〉 =
1

Vol(M)2

∫

r1

∫

r2

|r1 − r2|k R(2)(r1, r2; b) . (2.29)
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C. UV divergences and perturbative renormalization

Using dimensional regularization, the perturbative expansion for the partition function
and the observables is known to be UV finite for

0 < D < 2 and D < ǫ i.e. d <
2D

2−D . (2.30)

As long as we deal with finite-size manifolds (L < ∞), perturbation theory is free from
infra-red divergences (which occur for infinite manifolds since perturbation theory is made
around the free-manifold theory, which is a free massless scalar field in D ≤ 2 dimensions).

The perturbative expansion suffers from short-distance (UV) divergences when

D ≤ ǫ . (2.31)

These UV divergences come from the short-distance behavior of the expectation values which
appear as integrands in the integrals, when the distance between several points xi and yj

goes to zero. Using dimensional regularization these divergences appear as poles in ǫ (d
being fixed), or equivalently as lines of singularity in the (d,D) plane.

As proved in [13], these UV divergences can be studied within a multi-local operator
product expansion (MOPE) which generalizes Wilson’s OPE of local field theory. As a
consequence, these UV divergences are proportional to the insertion of multi-local operators,
and are amenable to renormalization theory.

The MOPE formalism and dimensional analysis show that for 0 < ǫ ≤ D there is a finite
number of divergences, with poles at

ǫ = D/n , n ∈ N+ . (2.32)

These divergences are proportional to insertions of the identity operator 1 (with dimension
0). The model is super-renormalizable for ǫ > 0 and these divergences are subtracted by
adding to the action a local counterterm proportional to the volume of the manifold (i.e. to
the integral of the identity operator 1).

∆S(r) ∝
∫

x

1 = Vol(M) . (2.33)

These divergences and the corresponding counterterm are constant terms, independent of the
configuration of the manifold, i.e. of the field r, and they disappear in the observables given
by ratios of correlators such as the e.v. 〈ρ(r1) · · ·ρ(rN )〉r0 and the normalized correlators
R(N).

For ǫ = 0 the model has an infinite number of divergences. These divergences are pro-
portional to the insertion of the two operators present in the original action S. This means
that the theory is renormalizable, and that it can be made UV-finite by adding to the action
counterterms of the same form than those of the original action. In other words, one can
construct in perturbation theory a renormalized action

Sr(r; br, µ) =
Z(br)

2

∫

x

(∇r)2 +
brµ

ǫZb(br)

2

∫

x

∫

y

δd(r(x)− r(y)) , (2.34)

where br is the dimensionless renormalized coupling constant, Z(br) and Zb(br) the wave-
function and the coupling-constant renormalization factors, and µ is the renormalization
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momentum scale, while r(x) is now the renormalized field. This renormalized action is such
that the renormalized correlation functions

R(N)
r (r1 · · · rN ; br, µ) =

∫
D[r]

N∏

i=1

ρ(ri; r) e−Sr(r;br,µ) (2.35)

have a perturbative series expansion in br which is UV finite for ǫ ≥ 0 and stays finite for
ǫ = 0. For a finite manifold with size L the renormalized perturbation theory is still IR
finite.

From the standard arguments of renormalization group (RG) theory the renormalized
theory describes the universal large-distance scaling behavior of self-avoiding manifolds. One
can write RG equations which tell how the observables scale with the size of the manifold
for ǫ > 0. When expressed in terms of the renormalized observables and the renormalized
coupling, these RG equations have a regular limit (at least in perturbation theory) as ǫ →
0+. As a consequence one can construct an ǫ-expansion à la Wilson-Fisher for the scaling
exponents.

D. Effective non-local model in external space

As shown in [14], to study the large-order behavior of the SAM model as well as its
large-d behavior, it is necessary to reformulate the model as an effective non-local model
for an auxiliary composite field V (r) in the external d-dimensional space.We recall this
reformulation.

1. Auxiliary fields and effective action

First we recall the auxiliary field ρ(r) (local manifold density) defined in (2.20),

ρ(r) =

∫

x∈M
δd(r(x)− r) (2.36)

and its conjugate field V (r), which is the Lagrange multiplier for the above constraint, such
that

1 =

∫
D[V ]D[ρ] exp

(∫
ddr V (r)

[
ρ(r)−

∫

M
δd(r(x)− r)

])
. (2.37)

ρ is a real field, while V is imaginary, and has to be integrated from −i∞ to +i∞ in the
functional integral. Equivalently the functional measures for ρ and V are formally

∫
D[ρ] =

∫ ∞

0

∏

r

dρ(r) ≡
∫ ∞

−∞

∏

r

dρ(r) ;

∫
D[V ] =

∫ i∞

−i∞

∏

r

dV (r)

2iπ
. (2.38)

We now insert (2.37) in the functional integral. Since the interaction term can be written
as ∫

x

∫

y

δd(r(x)− r(y)) =

∫

r

ρ(r)2 , (2.39)
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the integral over the field ρ is Gaussian and can be performed explicitly. We obtain for the
partition function

Z(b) =

∫
D[r]D[V ] exp

[
−
∫

x

(
1

2
(∇xr)

2 + V (r)

)
+

1

2b

∫

r

V (r)2

]
. (2.40)

Note that the functional measure D[V ] over V [r] is now normalized so that
∫
D[V ] exp

(
1

2b

∫

r

V (r)2

)
= 1 (2.41)

and depends explicitly on the coupling constant b.
This functional integral describes a free (not self-interacting) manifold fluctuating in a

random annealed potential V (r). This is a simple generalization of the reformulation of the
SAW problem into a random walk in a random annealed potential.

Now we integrate over the field r(x) and define the effective free energy FM[V ] for the
non-interacting (phantom) manifoldM in the external potential V (r) by

exp (−FM[V ]) =

∫
D[r] exp

[
−
∫

x

(
1

2
(∇xr)

2 + V (r)

)]
. (2.42)

We are left with the effective action for the field V , SM[V ], which is given by

SM[V ] = FM[V ] − 1

2b

∫

r

V (r)2 (2.43)

and is a non-local functional of the potential V . The partition function is now given by a
functional integral over the potential V alone

Z(b) =

∫
D[V ] exp

[
−FM[V ] +

1

2b

∫

r

V (r)2

]
=

∫
D[V ] exp [−SM[V ]] . (2.44)

2. Correlation functions for global observables

The same transformation can be used to compute the density correlators R(N) and the
corresponding correlation functions as expectation values of observables with the effective
action S[V ]. Indeed inserting a density operator ρ(r) in the original functional integral (2.13)
over r(x) amounts to insert a functional derivative with respect to the conjugate field V (r)
in the functional integral (2.44) over V (r).

ρ(r) → δ

δV (r)
(2.45)

so that

R(N)(r1, · · · , rN ; b) =

∫
D[V ] exp

[
−FM[V ]

] δ

δV (r1)
· · · δ

δV (rN)
exp

[
1

2b

∫

r

V (r)2

]
. (2.46)

For instance the 2-point correlator is

R(2)(r1, r2; b) =

∫
D[V ]

[
1

b2
V (r1)V (r2) +

1

b
δd(r1 − r2)

]
e−FM[V ]+ 1

2b

∫
r
V (r)2

=
1

b2
Z(b) 〈V (r1)V (r2)〉 +

1

b
δd(r1 − r2) (2.47)



15

Similarly, for the moments of order k of the gyration radius (defined by (refdefGyrMom))
we get (for k > 0)

R(k)
gyr =

1

b2
1

Vol(M)2

∫

r1

∫

r2

|r1 − r2|k
〈
V (r1)V (r2)

〉
, (2.48)

where 〈 〉 denotes the average over V with the effective action SM[V ] given by Eq. (2.44).

III. LARGE ORDERS OF PERTURBATION THEORY AND INSTANTON CALCULUS

A. Instanton and large orders in Quantum (Field) Theory

1. Instanton semi-classics

To fix our normalizations let us first recall the basics of instanton calculus in quantum
mechanics and quantum field theory. We consider a model defined by the functional integral
over a field φ(r) with a classical action S[φ] and a (dimensionless) coupling constant g. The
partition function is

Z =

∫
D[φ] e−

1
g
S[φ] . (3.1)

The functional measure D[φ] over φ is defined from the so-called DeWitt metric G on classical
field configuration (super)space. We choose it to be local and translationally invariant, so it
must be of the form

G(δφ, δφ) =
µ2

0

2πg

∫
ddr |δφ(r)|2 =

µ2
0

2πg
‖δφ‖2

2
(3.2)

‖ · ‖2 is the L2 norm. This metric depends explicitly on an (arbitrary) normalization mass
scale µ̃0 = µ0/

√
g. The corresponding measure over field (super)space is (formally) D[φ] =∏

r dφ(r)
√

detG. It is such that

∫
D[φ] e−

µ2
0

2g

∫
r

φ2

= 1 . (3.3)

(Note that the factor of g has been introduced for convenience, to have the same functional
dependence on g for the measure in (3.3) and the Boltzmann factor in (3.1).)

We assume that there is a classical vacuum (field configuration) φ0 which minimizes the
action S, which is constant (φ0(r) = φ0) and which is unique (no zero modes around the
classical vacuum). In the semi-classical approximation the contribution of φ0 to the partition
function is simply

Z
classical vacuum
←−−−−−−−−− e−

1
g
S[φ0]

(
Det

[
S ′′[φ0]/µ

2
0

])−1/2
, (3.4)

where S ′′ is the Hessian operator, with kernel

S ′′[φ](r1, r2) =
δ2S[φ]

δφ(r1)δφ(r2)
. (3.5)

Now we assume that there are also instanton configurations which contribute to the func-
tional integral. These instantons are non-constant field configurations φinst(r; z

a) which
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are classical solutions of the field equations, and thus local extrema of the action S, i.e.
S ′[φinst] = 0, with a finite action Sinst = S[φinst]. In general, the set of instantons with
action Sinst is a finite-dimensional subspace, called the instanton moduli space. We denote
z = {za, a = 1, m} a (local system of) collective coordinates on the m-dimensional mod-
uli space of the instantons with action Sinst. The collective coordinate z must include the
position of the instanton rinst (d moduli), its size if the action S is scale invariant, and in
addition the internal degrees of freedom of the instanton if needed.

The contribution of the instanton to the functional integral is also given by a semi-classical
formula. We must separate the integration over the instanton moduli space Mz from the
integration over the field fluctuations transverse to the moduli spaceMz, since the Hessian

S ′′[φinst] has now δinst zero-modes ∂aφinst = ∂φinst[z]
∂za . The moduli space integration is then

done explicitly. For that purpose, we must consider the restriction of the metric G to the
instanton moduli space Mz. The corresponding metric tensor hab in the coordinate system
z is defined by

‖dφinst‖2 = dza dzb hab(z) ; dφinst =
∂φinst

∂za
dza , (3.6)

where dφinst is an instanton fluctuation. Hence the metric on moduli space is

hab(z) =

(
∂φinst

∂za

∣∣∣∣
∂φinst

∂zb

)
=

µ2
0

2πg

∫

r

∂φinst(r, z)

∂za

∂φinst(r, z)

∂zb
, (3.7)

and the corresponding measure is dµ(z) = dmz
√

det(h). The contribution of the fluctuations
orthogonal to the moduli spaceMz is evaluated by the saddle-point method. The final result
for the contribution of the instanton to the partition function is

Z
instanton

←−−−−−−−−−
∫

Mz

dmza

√
det(hab(z)) e−

1
g
S[φinst]

(
det′

[
S ′′[φinst]/µ

2
0

])−1/2

, (3.8)

where det′ [S ′′[φinst]] is the product of the non-zero eigenvalues of S ′′[φinst]. The det(h) gives
a power of the coupling constant g−m/2, where m is the number of instanton zero-modes.

Similarly, let us now consider the expectation value for an observable O[φ], for instance
a product of fields O = φ(r1) · · ·φ(rn). The expectation value is given by

〈O〉 =
1

Z

∫
D[φ]O[φ] e−

1
g
S[φ] (3.9)

The contribution of the (translationally invariant) classical vacuum to 〈O〉 is simply

〈O〉
classical vacuum
←−−−−−−−−− O[φ0] . (3.10)

The contribution to 〈O〉 of the instanton φinst, is obtained from

〈O〉 ≈
∫
D[ϕ]

(
O[φ0 + ϕ]e−

1
g
S[φ0+ϕ] +O[φinst + ϕ]e−

1
g
S[φinst+ϕ]

)

∫
D[ϕ]

(
e−

1
g
S[φ0+ϕ] + e−

1
g
S[φinst+ϕ]

) . (3.11)

This expression is rather symbolic, since we have not written the integral over the 0-mode
of the instanton. Since S0 < Sinst, we have S0/g ≪ Sinst/g, for g → 0. Thus the leading
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term of (3.11) is given by (3.10), and the subleading one is the contribution of the instanton,
which (up to exponentially small terms) reads

〈O〉
instanton

←−−−−−−−−−
∫

Mz

dmza

√
det(h(z))

(
O[φinst[z]]−O[φ0]

)
e−

1
g
(S[φinst]−S[φ0])

×
(

Det′ [S ′′[φinst]/µ
2
0]

Det [S ′′[φ0]/µ2
0]

)−1/2

. (3.12)

One can check that the µ0 dependence disappears (remember that the moduli metric h
depends on µ0) as long as there is no scale anomaly coming from UV-divergences in the
ratio of the two determinants of the Hessians.

2. Large orders of perturbation theory and instantons

We now recall the basic argument which shows how the large orders of perturbative series
obtained by functional integrals are related to instantons.

We assume that the observable Z(g) has a series expansion for small positive coupling con-
stant g and is in fact an analytic function of the coupling constant g in a complex neighbor-
hood of the origin away from the negative real axis (i.e. for |g| small enough, |Arg(g)| < π),
but with a discontinuity along the negative real axis (|Arg(g)| = π).

Its asymptotic series expansion is written as

Z(g) =
∞∑

k=0

Zk g
k . (3.13)

The large order (large k) asymptotic behavior of the coefficients Zk can be estimated by
semi-classical methods. Indeed, using a classical dispersion relation, Zk can be written as a
Mellin-Barnes integral transform of the discontinuity of Z(g) along the cut (see figure 1)

Zk =

∫

C

dg

2iπ
g−k−1 Z(g) = (−1)k

∫ +∞

0

dg

2iπ
g−k−1 [Z(−g + iǫ)− Z(−g − iǫ)]|ǫ→0+

= (−1)k

∫ +∞

0

dg

π
g−k−1 Im[Z(−g + i0+)] (3.14)

with C a counterclockwise contour around the cut (Z is assumed to be real for real g > 0).
For large positive k this integral is dominated by the small g behavior of the discontinuity,

where semi-classical methods are expected to be applicable. Indeed, it turns out that for
small real negative g, the discontinuity of Z(g) is dominated by the contribution of a complex
instanton (the real part of Z(g) is still given by the contribution of the real classical solution).
Therefore the small g behavior of Im[Z(g)] is of the form

Im[Z(−g + 0+)] = C |g|β e−A|g|−α

[1 + o(|g|∗)] (3.15)

with A a number (corresponding to the instanton action Sinst), α a (positive) constant given
by power counting (in QM and standard local field theories α = 1), C a number related
to the determinant of the Hessian operator of fluctuations around the instanton, and β a
constant related to the number m0 of zero-modes of the Hessian (in standard local field
theories β = 1 +m0/2). (See appendix C for details on the polymer case.)



18

Re(g)

Im(g)

0

Discontinuity

Integration path

FIG. 1 Contour integration in the complex coupling constant plane for the large orders asymptotics

Given (3.15), the integral (3.14) can be calculated: Changing variables from g to x := g−α,
we obtain

Zk = (−1)k C

απ

∫ ∞

0

dx

x
x(k−β)/αe−Ax

= (−1)k C

πα
A

β−k
α Γ

(
k − β
α

)
(3.16)

Γ is Euler’s gamma function. Note that since (3.15) is valid for small g only, this result is

valid for large k. Using Stirling’s formula Γ(n) ≃ nne−n
√

2π/n, this amounts to

Zk = (−1)k

[
k

α

] k
α

[Ae]
β−k

α

[
k

α

]− β
α C

πα

√
2πα

k
[1 + o(1/k∗)] (3.17)

and for α = 1

Zk = (−1)k kk [Ae]β−k k−β C

π

√
2π

k
[1 + o(1/k∗)] . (3.18)

It is an alternating asymptotic series with a Borel transform with non-zero radius of con-
vergence.

B. Instanton for the SAM

We are thus interested in the analytic structure of the partition function and the corre-
lators of the SAM model for small negative coupling constant b

b < 0 , b→ 0 . (3.19)
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In particular we are interested in the discontinuity along the negative real axis. As shown
in [14] this can be done more easily by first rescaling the fields and the size of the manifold
with b in an adequate way.

1. Complex rotation and rescalings for coupling constant and fields

We consider a finite manifoldM with internal size L defined as

Vol(M) = LD . (3.20)

We are interested in the model for small complex coupling constant b, and more precisely
in the discontinuity of the observables along the negative real axis (b < 0 real), where there
is a cut.

We denote the argument of the coupling constant b by θ

θ = Arg (b) . (3.21)

To reach the cut at negative b from above or below amounts to taking the limit

θ → ±π , |b| fixed . (3.22)

We now rescale the internal coordinate of the membrane x and the field r with the size L of
the manifold and the modulus |b| of the coupling constant

x → |b| 1
D−ǫL

D
D−ǫ x , r → |b|

2−D
2(D−ǫ)L

(2−D)D
2(D−ǫ) r (3.23)

so that we now deal with a rescaled manifoldMs with internal size and internal volume

size(Ms) = |b|− 1
D−ǫL− ǫ

D−ǫ , Vol(Ms) = |b|− D
D−ǫL− ǫD

D−ǫ . (3.24)

Similarly we must rescale the auxiliary fields ρ and V as

ρ → |b|−1L−Dρ , V → |b|− D
D−ǫL− D2

D−ǫV . (3.25)

The purpose of these rescalings is that as the original coupling constant b goes to 0, the
effective theory for the auxiliary field V becomes simple. Indeed it appears that both terms
in the effective action S[V ] now scale in the same way, as will be detailed now.

a. Coupling constant: Let us denote by g the inverse of the volume of the rescaled manifold

g =
1

Vol(Ms)
= |b| D

D−ǫ L
Dǫ

D−ǫ (3.26)

g is the (dimensionless) effective coupling constant of the theory, which is real and positive
and goes to 0 with |b| as long as ǫ < D.
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b. Partition function: The original partition function (for the manifoldM) becomes for the
rescaled theory involving the manifoldMs

ZMs(b) =

∫
D[r]D[V ] exp

(
−
∫

Ms

(
1

2
(∇xr)

2 + V (r)

)
+

e−iθ

2g

∫

r

V (r)2

)

=

∫
D[V ] exp

(
−FMs [V ] +

e−iθ

2g

∫

r

V (r)2

)
. (3.27)

Due to (3.26) both terms in the exponential scale as Vol(Ms) = 1/g.

c. Functional measure: The functional measure over the rescaled field V is now normalized
so that ∫

D[V ] exp

(
e−iθ

2g

∫

r

V (r)2

)
= 1 . (3.28)

d. Correlation functions: The moments for the gyration radius of the manifold become in
the rescaled effective theory

R(k)
gyr = b−2 L−2D

(
Lg

1
D−ǫ

) (2−D)(2d+k)
2

−2D
∫

r1

∫

r2

|r1 − r2|k V (r1)V (r2)

= e−2iθ
(
|b|LD

) 2−D
2(D−ǫ)

·k
∫

r1

∫

r2

|r1 − r2|k V (r1)V (r2)

Hence

R(k)
gyr = e−2iθ L

2−D
2

k g
2−D
2D

k

∫

r1

∫

r2

|r1 − r2|k V (r1)V (r2) . (3.29)

L is the internal extension of the original manifoldM. This has the correct dimension Lν0k

with ν0 = (2 − D)/2, since [R(k)] = [r]k and [r] = [x]
2−D

2 . Note that there is no additional
phase for θ = ±π.

2. Semiclassical limit and the effective action S[V ]

Now come the crucial points:

1. As long as
ǫ < D

taking the semiclassical limit b → 0 amounts to taking both the small coupling limit
g → 0 in the rescaled theory and the thermodynamic limit (infinite volume) for the
rescaled manifold

b→ 0 ⇔ g → 0 and Vol (Ms)→∞

for the rescaled manifold.
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2. In this thermodynamic limit the free energy FMs [V ] becomes proportional to the
volume of the manifold

FMs [V ] = Vol (Ms) E [V ] + · · · . (3.30)

The free energy density E [V ] is defined as

E [V ] := lim
Vol(Ms)→∞

1

Vol(Ms)
FMs [V ] (3.31)

in the limit where the size of the manifold Ms is rescaled to ∞, and its shape kept
fixed. In this limit, the manifoldMs becomes locally a flat D-dimensional Euclidean
space RD:

Ms → RD . (3.32)

The free energy density E [V ] is independent of the size and of the shape of the manifold
and it is enough to compute it for the infinite flat manifold.

3. Moreover – and this is an important point – as long as we are interested in the con-
tribution of potentials V such that the manifold is “trapped” in V (namely such that
the free energy density E [V ] < 0 is negative, i.e. such that there is a “bound state” in
V ) the neglected terms + · · · are expected to be exponentially small in 1/g.

4. Finally, since

Vol(Ms) =
1

g
(3.33)

in the limit g → 0 the functional integral takes the standard form

Z(b)
g→0
=

∫
D[V ] exp

[
− 1

g
S[V ]

]
, (3.34)

where g is given by (3.26), the measure is given by (3.28) and the effective action S[V ]
for the field V is given by

S[V ] = E [V ]− e−iθ

2

∫
V 2 (3.35)

E [V ] is the free energy density for an infinite flat manifold trapped in the potential V ,
and is given by (3.31).

3. The functional integral for negative b and the instanton

We are interested in the imaginary part of the partition function Z(b) for b along the
negative real axis, that is for

θ → ±π . (3.36)

In this limit the effective action S[V ] for the rescaled theory is real

S[V ] = E [V ] +
1

2

∫
V 2 (3.37)



22

and the measure over V is also real, since it is normalized such that

∫
D[V ] exp

[
− 1

2g

∫
V 2

]
= 1 . (3.38)

It is now the standard measure for a real white noise with variance g:

〈V (r1)V (r2)〉 = g δ(r1 − r2) . (3.39)

Thus we can chose for integration measure over V the standard measure over real V (r)

∫
D[V ]θ=±π =

∫ ∞

−∞

∏

r

dV (r)√
2πgδd(0)

. (3.40)

The instanton V inst is a non-trivial finite action extremum of the action S[V ] and was
found in [14]. The saddle-point equation is

0 =
δS[V ]

δV (r)
= V (r) + 〈ρ(r)〉V , (3.41)

where ρ(r) is the manifold density at point r

ρ(r) =
1

Vol(M)

∫
dDx δ(r− r(x)) (3.42)

and from now on we drop the index at Ms. 〈· · · 〉V refers to the expectation value for the
phantom manifold trapped in the external potential V (r), that is with the action

∫

M
dDx

(
1

2
(∇xr)

2 + V (r)

)
. (3.43)

The “classical vacuum” is V = 0 (free manifold). The instanton V inst is a configuration of
potential which is negative (potential well V (r) < 0), spherically symmetric, with V → 0
as |r| → ∞. The solution of the instanton equation and its properties have been studied in
[14].

C. Contribution of fluctuations around the instanton

1. Instanton zero modes

The Hessian matrix (second derivative of the action) is

S ′′[V ]r1r2 =
δ2E [V ]

δV (r1)δV (r2)
= δd(r1 − r2) + 〈ρ(r1)ρ(r2)〉conn

V . (3.44)

The instanton has d translational zero modes, corresponding to the position of the center of
gravity r0 of the instanton. Thus the Hessian has d zero modes

V zero
a = ∇aV

inst ; S ′′[V ] · V zero
a = 0 . (3.45)
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According to the previous analysis, see Eq. (3.2), the metric on the instanton moduli space
M = Rd, ds2 = hab dra0drb0, is

hab =
1

2πg

∫
ddr V zero

a V zero
b = δab

1

2π g d

∫
ddr

(−→∇V inst
)2

(3.46)

(using rotational invariance). Therefore the measure over the instanton position r0 is

ddr0

[
1

2π g d

∫
ddr

(−→∇V inst
)2
]d/2

.

Hence the contribution of the instanton to the partition function will be (depending on
whether θ = Arg(b) = ±π)

Z(b)
instanton
←−−−−−−−−− C±

∫
ddr0

[
1

2πd g

∫

r

(~∇V )2

]d/2

e−
1
g
S[V ]

[
det′

(
S ′′[V ]

)]− 1
2 (3.47)

with C± a simple factor (usually 1 or an integer for a real instanton) giving the weight of
the instanton in the functional integral.

One might also expect zero-modes associated to the rotational invariance of the theory.
Such modes would indeed appear for a non-rotationally invariant instanton solution. As it
will turn out, the instanton is rotationally invariant, such no such zero-modes exist.

2. Unstable eigenmode

However, as expected for a theory with the wrong sign of the coupling and as shown in
[14], the instanton has one unstable eigenmode V −(r). Thus the Hessian has one negative
eigenvalue λ− and its determinant is real but negative: det′(S ′′) < 0. Therefore we expect
that the factor C± will be complex.

In fact, as this is the case for the instanton in the local φ4 field theory, the real part of C±
is not unambiguously defined, but depends on the resummation procedure used to define
the contribution of the classical saddle-point V = 0 in the functional integral (this is known
as the Stokes phenomenon). However, the instanton gives the dominant contribution to the
imaginary part of the functional integral, and one can show that

Im
[
Z(b)

] instanton
←−−−−−−−−− D±

∫
ddr0

[
1

2πd g

∫

r

(~∇V )2

]d/2

e−V S[V ]
∣∣det′

(
S ′′[V ]

)∣∣− 1
2 (3.48)

with the weight factor D±

D± = ∓ i

2
. (3.49)

This result can be obtained by a more precise analysis of the respective position of the
integration path and of the instanton solution in the space of complex potentials V (r) ∈ C

as θ is rotated from 0 to ±π, using the steepest descent method. This is shown in Appendix
B.
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D. Final result for the instanton contribution

The final result for the imaginary part of the partition function at negative coupling is

ImZ(b) = ∓ 1

2

∫
ddr0

[
1

2πd g

∫

r

(~∇V )2

]d/2

e−
1
g
S[V ]

∣∣det′ (S ′′[V ])
∣∣− 1

2 . (3.50)

depending on whether Arg(b) = ±π. The infinite bulk volume factor
∫

ddr0 disappears (as
it should) in the normalized partition function Z = Z/Z0

Im Z(b) = ∓ 1

2
g−d/D

[
e−ζ̄′(0)

d

∫

r

(~∇V )2

]d/2

e−
1
g
S[V ] |det′ (S ′′[V ])|−

1
2 , (3.51)

where ζ̃ ′(0) was defined in (2.9). One must remember that

g =
(
|b|L−ǫ

) D
D−ǫ (3.52)

and that r is in fact the dimensionless rescaled field r̃ = r
(
|b|LD

)− 2−D
2(D−ǫ) = r

(
g LD

)− 2−D
2D

defined in (3.23). We thus obtain for the discontinuity of the partition function Z(b) for a
marked manifold with a fixed point (as defined by Eq.(2.13))

ImZ(b) = ∓ 1

2
L−d 2−D

2 g − d
D

[
1

2πd

∫

r

(~∇V )2

]d/2

e−
1
g
S[V ] |det′ (S ′′[V ])|−

1
2 . (3.53)

For the N -point correlators R(N)(r1, · · · , rN ; b) defined by (2.21) the result is more compli-
cated since the ri’s are rescaled in the process b → g. However he result takes a simple
form for global quantities such as the moments of the radius of gyration of the manifold

R(k)
gyr = 〈R(k)

gyr〉 defined by (2.28)

ImR(k)
gyr = ∓ 1

2
L(k−d) 2−D

2 g−
d
D

+k 2−D
2D e−

1
g
S[V ]×

×
[

1

2πd

∫

r

(~∇V )2

]d/2 ∣∣det′ (S ′′[V ])
∣∣− 1

2

[∫

r1

∫

r2

|r1 − r2|k V (r1)V (r2)

]
.

(3.54)

E. Large orders

In the rest of this article, we shall denote for simplicity

S = S[V inst] , D = det′
(
S[V inst]

)
, L = log(D) , W =

[
1

2πd

∫

r

(~∇V inst)2

]d/2

.

(3.55)
If no UV divergences were present at ǫ = 0, the final result at ǫ = 0 would be

ImZ(b) = ∓ 1

2
L−2D |b| 4

2−D e−
1
|b|

S
W |D|− 1

2 . (3.56)
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Using the the arguments of Sect. III.A.2, in particular the dispersion relation (3.14) and
(3.18), the large-order asymptotics for the perturbative expansion of Z(b)

Z(b) =
∞∑

k=0

Zk b
k (3.57)

would be (ǫ = 0)

Zk ≃ (−1)k Γ

(
k − 4

2−D

)
1

2π
L−2D W |D|− 1

2 S
4

2−D
−k (3.58)

or equivalently (ǫ = 0)

Zk ≃ (−1)k Γ

(
k − 2− d

2

)
1

2π
L− 4d

4+d W |D|− 1
2 S2+ d

2
−k , (3.59)

indicating that the Borel transform of Z(b) has a finite radius of convergence S. Of course

the instanton normalization W |D|− 1
2 depends also on d.

IV. UV DIVERGENCES AND RENORMALIZATION

We now discuss the UV divergences in the determinant factor for the instanton, and how
they are renormalized. We remind the reader that at one loop in perturbation theory, for
0 < ǫ ≤ D there is a divergence associated to the operator I (super-renormalizable case); for
ǫ = 0 two divergences associated to the operators (∇r)2 and δd

(
r(x)− r(y)

)
(renormalizable

case). For ǫ < 0 the theory is not renormalizable. The model is always considered for D < 2
and ǫ is given by

ǫ = 2D − d

2
(2−D) . (4.1)

A. Series representation of the determinant for the fluctuations

The Hessian matrix S ′′ is given by (3.44). We rewrite it as

S ′′
r1r2

= 1lr1r2 − Or1r2 , 1lr1r2 = δd(r1 − r2) (4.2)

Or1r2 = lim
M→RD

1

Vol(M)

∫

x1

∫

x2

〈
δd
(
r1 − r(x1)

)
δd
(
r2 − r(x2)

)〉conn

V
, (4.3)

where V is the instanton potential V inst. O can be rewritten, using translational invariance
x→ x + x0 when M→ RD, and the saddle point equation for the instanton potential V

Or1r2 =

∫

RD

dDx
〈
δd
(
r1 − r(0)

)
δd
(
r2 − r(x)

)〉conn

V

=

∫

RD

dDx
[〈
δd
(
r1 − r(0)

)
δd
(
r2 − r(x)

)〉
V
−
〈
δd
(
r1 − r(0)

)〉
V

〈
δd
(
r2 − r(x)

)〉
V

]

=

∫

RD

dDx
[〈
δd
(
r1 − r(0)

)
δd
(
r2 − r(x)

)〉
V
− V (r1)V (r2)

]
. (4.4)
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Let us already note that such an integral is IR finite, since from clustering we expect that
at large distances

〈
δd
(
r1 − r(x)

)
δd
(
r2 − r(y)

)〉conn

V
= O

(
exp(−|x− y|m)

)
when |x− y| → ∞ , (4.5)

where m is the “mass gap” of the excitations for the manifold trapped in the instanton
potential V .

We have seen that the operator S ′′ has d zero modes V zero
a ∝ ∇aV

inst, which, as discussed
in section (III.A), are eigenvectors of O with eigenvalue λ0 = 1, and one unstable eigenmode
V −, which is an eigenvector of O with eigenvalue λ− larger than 1. For convenience, we
normalize its L2 norm to 1. Let us denote P0 the projector on the zero-modes, and P− the
projector on the unstable mode

P0
r1r2 =

∑

a

V zero
a (r1)V

zero
a (r2) =

−→∇V ⊗−→∇V
∫
r

(−→∇V
)2 , P−

r1r2 = V−(r1)V−(r2) (4.6)

and P the sum
P = P0 + P− . (4.7)

Apart from these eigenvalues, is is easy to see that all other eigenvalues of O are smaller
than 1, but positive. Indeed, from Eq.(4.3), O is a positive operator, since for any f(r)

f ·O · f =
1

Vol(M)

〈[∫

x

f
(
r(x)
)]2
〉conn

V

> 0 . (4.8)

To compute the determinant of the fluctuations we treat separately the negative and zero
modes from the rest. We write the logarithm of det′[S ′′]

L = log
(
det′ [S ′′]

)
= log(1− λ−) + tr [(I− P) log(I−O)] . (4.9)

The first term is the contribution of the unstable mode (it has an imaginary part), the
second term is the contribution of all other modes with 0 < λ < 1. In this last term we can
expand the log and obtain a convergent series

L = log(1− λ−) −
∞∑

k=1

1

k
Lk , Lk = tr

[
(I− P)Ok

]
= tr

[
Ok
]
− d− λk

− , (4.10)

provided that each term is UV finite (that is the trace is well defined).
We now show that only the first two terms k = 1 and k = 2 are UV divergent, and require

renormalization.

B. UV divergences

1. UV divergences in r and in x space

UV divergences in the determinant are expected to come from the high momentum eigen-
modes of S ′′. If we consider a potential V = V inst + V>, with V> a high momentum fluc-
tuation, we expect that a phantom manifold trapped in V will feel only weakly the small
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wavelength variations of V , so its free energy E [V ] will depend only weakly on V>. The
other term

∫
ddr V 2(r) will be dominant in the variation of the effective action S[V ]. As a

consequence, high momentum eigenmodes of S ′′ will have eigenvalues close to 1, that is will
be eigenmodes of O with very small eigenvalues λ→ 0.

Therefore UV divergences will come from the contribution of the numerous eigenvalues
of O close to 0, that is from the divergence of the spectral density ρO(λ) of the operator O

at λ = 0. We shall show that ρO(λ) diverges as λǫ/D−3, and that

tr[O] is UV divergent if ǫ ≤ D , tr[O2] UV divergent if ǫ = 0 (4.11)

and that higher powers tr[Ok] (k ≥ 3) are UV convergent.
The tr[·] amounts in our representation to an integral over r in bulk space Rd. UV diver-

gences will occur as short-distance singularities in r space. We shall also see that to analyze
the UV divergences it is more convenient to come back to the equivalent representation of
O in x space (internal manifold).

2. tr[O]:

This term is given by

tr[O] =

∫
ddr Orr (4.12)

and is UV divergent for ǫ ≤ D because we expect that

Orr′ ≃ |r− r′|−d+
2(ǫ−D)
2−D as r− r′ → 0 . (4.13)

The crucial point (to be proven later) is that the short-distance behavior of Orr′ for a manifold
in the background potential V (r) does not depend on the details of the potential V , and is
given (at leading order) by that of a free manifold in a constant potential (V (r) = V0). We
can compute explicitly Orr′ in that case and find Eq. (4.13).

Using (4.4) we can rewrite tr[O] as an x-integral over the manifold M, and integrate
explicitly over r, with the result

tr[O] =

∫
ddr

∫

M
dDx

[〈
δd
(
r − r(x0)

)
δd
(
r− r(x)

)〉
V
− V (r)2

]

=

∫

M
dDx

[〈
δd
(
r(x)− r(x0)

)〉
V
−
∫

r

V (r)2
]
.

(4.14)

It contains the integral of the correlation function

〈δd
(
r(x)− r(x0)

)
〉
V

(4.15)

for a phantom manifold (i.e. without self-interaction) trapped in the instanton potential V (r).
The choice of the “origin” x0 is arbitrary, since (4.15) depends only on x− x0 (translational
invariance inM = RD).

This integral is IR convergent, as can be seen from Eq. (4.5). UV divergences occur if
the x-integral is divergent at short distances on the manifold, i.e. for |x − x0| → 0. The
correlation function (4.15) is very similar to the 2-point correlation function which appears
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at first order in the perturbative expansion of the self-avoiding manifold model, and more
precisely for the normalized partition function Z(b)

Z(b) = 1− b

2

∫

x,y

〈
δd
(
r(x)− r(y)

)〉
0
+
b2

8

∫

x,y,x′,y′

〈
δd
(
r(x)− r(y)

)
δd
(
r(x′)− r(y′)

)〉
0
+O(b3) .

(4.16)
One therefore expects that the renormalization group counter-terms at leading order, which
subtract the leading order UV-divergences in (4.16) are also sufficient to render (4.14) finite.
That this is indeed the case will be shown below.

3. tr[O2]:

Similarly, starting from (4.4), we can rewrite tr[O2] in term of two “replicas” of the
manifold, labeledM1 andM2, fluctuating independently in the same instanton potential V
(without interactions). If we denote r1(x) and r2(x) the r-fields for the two replicas, we have

tr[O2] =

∫
ddr

∫
ddr′ Orr′Or′r

=

∫
ddr

∫
ddr′

∫

M1

dDx

∫

M2

dDy
[〈
δd(r− r1(x0))δ

d(r′ − r1(x))
〉

V
− V (r)V (r′)

]
×

×
[〈
δd(r′ − r2(y0))δ

d(r − r2(y))
〉

V
− V (r′)V (r)

]

=

∫

M1

dDx

∫

M2

dDy

{〈
δd
(
r1(x0)− r2(y)

)
δd
(
r1(x)− r2(y0)

)〉

V

−
〈
V (r1(x0))V (r1(x))

〉
V
−
〈
V (r2(y0))V (r2(y))

〉
V

+

[∫

r

V (r)2

]2
}

.

(4.17)

The choice of the origins x0 and y0 on the two manifoldsM1 andM2 is arbitrary.
This integral is IR finite by the same arguments as those for tr[O]. UV divergences are

only present in the first correlation function

〈
δd
(
r1(x0)− r2(y)

)
δd
(
r1(x)− r2(y0)

)〉
V

(4.18)

very similar to the correlation function which appears at second order in Z(b), see Eq. (4.16).
We shall see that UV divergences occur when

x→ x0 , y→ y0 simultaneously (4.19)

while the other terms
〈
V
(
r(x)
)
V
(
r(x0)

)〉
V

are not singular.

4. tr[Ok], k ≥ 3:

We can similarly write the higher order terms. At order k we need k copies Mα of the
manifoldM, fluctuating in the same instanton potential V (r). The most UV singular term
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in the x-representation of tr[Ok] is

∫

⊗Mα

dDx
〈 k∏

α=1

δd
(
rα−1(oα−1)− rα(xα

)〉
V

(4.20)

(where we identify α = 0 with α = k), that we can represent graphically as a “necklace of k
manifolds”. The reference points oα on eachMα can be chosen arbitrarily, for instance fixed
to the origin. UV divergences occur when all pairs of points (oα, xα) collapse simultaneously
on each Mα. These terms are in fact UV finite for ǫ = 0.

0

x0

y o"

x

y

z

M

M’

M"

o’

o

FIG. 2 Diagrammatic representation of the UV divergent correlation functions at order k = 1 (one

manifold), k = 2 (2 manifolds), and k = 3 (3 manifolds).

C. MOPE for manifold(s) in a background potential

In [12, 13] the UV divergences of the self-avoiding manifold model have been analyzed
using a Multilocal Operator Product Expansion (MOPE). This formalism was developed to
study the correlation function of multilocal operators of the form (2.19),

〈∏

i

δd
(
r(xi)− r(yi)

)〉
0
, (4.21)

where the expectation values
〈
· · ·
〉
0

are calculated for a free manifold model (V = 0). We

show here how this formalism can be adapted to deal with expectation values
〈
· · ·
〉

V
for

manifolds trapped in a non-zero background potential V (r).

1. Normal product decomposition of the potential V

In order to compute easily expectation values of operators in the background potential
V , we shall use the normal product formalism already developed in [14].

For simplicity we consider a potential V (r) spherically symmetric (as the instanton po-
tential) with its minimum at r = 0, of the form

V (r) =

∞∑

n=0

vn

2nn!

(
r2
)n

, v1 = m2
0 > 0 m0 = “bare mass” . (4.22)
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We may (at least formally), compute expectation values of operators
〈
· · ·
〉

V
in perturbation

theory, starting from the Gaussian potential V (r) =
m2

0

2
r2 and expanding in powers of the

non-linear couplings {vk, k ≥ 2}. This perturbation theory involves Feynman diagrams with
massive propagators 1/(p2 +m2

0). It is more convenient to resum all tadpole diagrams and
to deal with an expansion of the potential V (r) in terms of normal products : (r2)

n
:m. The

normal product : [ ] :µ with the subtraction mass scale µ is defined by the global formula

(expanded in k, it generates all operators which are local powers of r)

:eikr :µ = ek2Gµ/2 eikr , (4.23)

where Gµ is the tadpole amplitude evaluated with the propagator of mass µ,

Gµ =

∫
dDp

(2π)D

1

p2 + µ2
=

Γ
(

2−D
2

)

(4π)D/2
µD−2 . (4.24)

Thus we rewrite the potential V (r) given in (4.22) as

V (r) =
∞∑

n=0

gn

2nn!
: (r2)

n
:m . (4.25)

The mass scale m used to define the normal product : · · · :m is defined self-consistently from
V so that it coincides with the “renormalized mass” in (4.25)

g1 = m2 . (4.26)

This gives a self-consistent equation for m in terms of V (r) (or its Fourier transform V̂ (k))

m2 = − 1

d

∫
ddk

(2π)d
k2 V̂ (k) e−

k2

2
Gm

= − 1

Gm

(2πGm)−d/2

∫
ddr V (r)

(
1− r2

dGm

)
e−

r2

2 Gm .

(4.27)

All other couplings g0, g2, g3, etc. in (4.25) are then uniquely defined from the potential V .
We rewrite V as

V (r) = g0 +
m2

2
: r2 : +U(r) ; U(r) =

g2

222!
: (r2)2 : +

g3

233!
: (r2)3 : + . . . (4.28)

and we shall treat the non-linear terms U(r) as perturbation. The expectation value of a
(multilocal) operator O(x1, . . . , xK) can be expanded as

〈O(x1, . . . , xK)〉V =
∞∑

N=0

(−1)N

N !

∫ N∏

i=1

dDzi〈O(x1, . . . , xK)U(z1) · · ·U(zN )〉connected
m , (4.29)

where 〈· · · 〉 is the expectation value in the massive free theory (U = 0).
In this new perturbative expansion there are no tadpole diagrams. This makes the di-

agramatics much simpler. In addition many simplifications occur in the limit d → ∞, as
already noted in [14].
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2. MOPE in a harmonic potential

First we consider the case of a potential quadratic in r, which is especially simple. The
potential reads

V (r) = v0 +
m2

0

2
r2 = g0 +

m2

2
: r2 :m , m0 = m ; v0 = g0 − d

m2

2
Gm . (4.30)

The field r is still free but massive with mass m and the propagator is

Gm(x− y) =

∫
dDp

(2π)D

eip(x−y)

p2 +m2
=

1

2π

[
m

2π|x− y|

]D−2
2

KD−2
2

(m|x− y|) , (4.31)

where Kν is the modified Bessel Function.
It is simple to study the short-distance limit of products of local and multilocal operators

in this massive Gaussian theory, using exactly the same ideas and techniques as for the free
massless case (m = 0) developed in [13].

a. OPE for the massive propagator Gm: We express the short-distance expansion of multilocal
operators in terms of the expansion for the massive propagator1

Gm(x−y) = c0(D)mD−2 − d0(D) |x−y|2−D + c1(D)mD |x−y|2 − d1(D)m2 |x−y|4−D + · · · .
(4.33)

The coefficients c0, c1, d0, d1, are finite as long as D < 2 and are given by

c0(D) =
Γ
(

2−D
2

)

(4π)D/2
, c1(D) =

c0(D)

2D
, d0(D) = −Γ

(
D−2

2

)

4 πD/2
, d1(D) =

d0(D)

2(4−D)
. (4.34)

Note that

d0(D) =
1

(2−D)SD
with SD =

2 π
D
2

Γ(D/2)
= volume of the unit sphere in RD . (4.35)

This expansion follows itself from the OPE for the product of two r fields in the massive
theory, which reads

ra(x)rb(y) = −|x− y|2−D d(|x− y|2m2) δab 1l +
∑

p1,p1

xp1

p1!

yp2

p2!
:∇p1ra∇p2rb :0 , (4.36)

1 The expansion is easily obtained from the proper-time integral representation of Gm(x), by expanding the

integrand in m2 to get the analytic terms in m2, and in x2 to get the analytic terms in x2:

Gm(x) =

∫
dDp

(2π)D

∫ ∞

0

ds eipxe−(p2+m2)s =
1

(4π)D/2

∫ ∞

0

ds e−m2ss−D/2e−x2/(4s) (4.32a)

=
Γ(−2+D

2 )

4π
D

2

|x|2−D − Γ(−4+D
2 )m2

16π
D

2

|x|4−D +O(m4) + non-analytic terms in m2 (4.32b)

=
mD−2

(4π)
D

2

Γ

(
1− D

2

)
− 1

4

mD

(4π)
D

2

Γ

(−D
2

)
|x|2 +O(x4) + non-analytic terms in |x|2 (4.32c)
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where the coefficient d(|x− y|2m2) has an (asymptotic) series expansion in |x− y|2m2

d(|x− y|2m2) = d0 + d1|x− y|2m2 + d2|x− y|4m4 + · · ·

and where the normal products : · · · :0 with respect to the zero mass means that the operators
∇•r∇•r are defined through dimensional regularization (see below).

b. MOPE for δd(r1 − r′1) and tr[O]: We first consider the short-distance expansion for the
operator δd(r(x) − r(y)), which enters in tr[O]. Using the definition (4.23) for the normal
product we can write it as

δd(r(x)− r(y)) =

∫
ddk

(2π)d
eik(r(x)−r(y))

=

∫
ddk

(2π)d
e−k2

(
Gm(0)−Gm(x−y)

)
: eik(r(x)−r(y)) :m .

(4.37)

The last bilocal operator is regular at short distance (when x→ y) and can be expanded in
x− y as

:eik(r(x)−r(y)) :m = 1l(z) − 1

2
kakb (xµ − yµ)(xν − yν) : ∇µra∇νr

b(z) :m + · · · , (4.38)

where z = x+y

2
and the subdominant terms are of order O(|x − y|4) with higher derivative

operators. We insert (4.38) into (4.37) and integrate over k to obtain

δd(r(x)− r(y)) = (4π)−
d
2 [Gm(0)−Gm(x− y)]−

d
2 ×

×
[
1l(z)− δab

4

(xµ − yµ)(xν − yν)

[Gm(0)−Gm(x− y)]
:∇µra∇νr

b(z) :m + · · ·
]
.

(4.39)

We now use the short-distance expansion (4.33) of the massive propagator Gm(x − y) and
insert it into (4.39) to obtain

δd(r(x−r(y)) = (4π d0)
− d

2 |x−y|ǫ−2D

[(
1 +

d

2

c1
d0
mD|x−y|D − d

2

d1

d0
m2|x−y|2 + · · ·

)
1l(z)

− δab

4

(xµ − yµ)(xν − yν)

d0 |x−y|2−D
:∇µra∇νr

b(z) :m + · · ·
]
.

(4.40)

In (4.40) we can regroup the two terms of order |x− y|ǫ−D as

(4π d0)
−d/2 |x− y|ǫ−D

[
d

2

c1
d0

mD 1l(z) − 1

4d0

(xµ − yµ)(xν − yν)

|x− y|2 :∇µr∇νr(z) :m

]
. (4.41)

Note that the OPE (4.40) is a relation between operators, and is valid for any choice of the
mass m used to define the normal product. Thus the term (4.41) can be rewritten as the
normal ordered operator :∇r∇r :0 with subtraction mass µ = 0

(4π d0)
−d/2 |x− y|ǫ−D

[
− 1

4d0

(xµ − yµ)(xν − yν)

|x− y|2 :∇µr∇νr(z) :0

]
. (4.42)
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Indeed we have the relation

:∇µra∇b
νr :m = :∇µr

a∇b
νr :0 − 2 δab δµν m

D c1(D) 1l . (4.43)

Since this relation will be crucial to prove renormalizability, let us show it explicitly. From
the definition of the normal product we have

:∇µr
a∇b

νr :m = ∇µra∇νr
b − 〈∇µr

a∇νr
b〉m 1l (4.44)

for any m, hence

:∇µra∇νr
b :m− :∇µra∇νr

b :0 = −
(
〈∇µr

a∇νr
b〉m − 〈∇µra∇νr

b〉0
)
1l . (4.45)

The r.h.s. is easily calculated using the OPE (4.33) for the propagator Gm itself, since

〈ra(x)rb(y)〉m = δab Gm(x− y) . (4.46)

This yields

〈
∇µra∇νr

b
〉

m
−
〈
∇µr

a∇νr
b
〉
0

= δab ∂

∂xµ

∂

∂yν
[Gm(x− y)−G0(x− y)]

∣∣∣∣
x=y

= −2 δab δµν m
D c1(D) . (4.47)

Note that the massless propagator G0(x − y) is IR divergent but the IR divergent term is
constant (independent of x− y) and disappears in (4.47) because of the x derivatives. Hence
we obtain (4.43).

Thus we have obtained the first three terms of the MOPE for the δ operator in the U = 0
background

δd(r(x)− r(y)) = (4πd0(D))−
d
2 |x− y|ǫ−2D

[
1− d

4(4−D)
m2|x− y|2 + · · ·

]
1l(z)

−π (4πd0(D))−(1+ d
2)|x− y|ǫ−D−2(xµ − yµ)(xν − yν) :∇µr∇νr :0 + · · · .

(4.48)

The same argument can be used to construct the higher orders of the MOPE. They involve
higher dimensional operators of the form Op = :∇p1r∇p2r∇p3r · · · :0 (since the operator
δd(r(x)− r(y)) is invariant by translation r→ r+ r0 the Op must contain only derivatives ∇r,
that is pj > 0, and by parity in r the Op must be even in r). They give subdominant powers

of |x− y| of the form m2k|x− y|ǫ−2D+2k+
∑

j (pj−1+D/2).
Finally let us stress that the two first terms of the MOPE (for D < 2) are the terms of

order |x − y|ǫ−2D and |x − y|ǫ−D and that they are the same as for the MOPE for the free
membrane, that is for m = 0. This will imply that the (one-loop) UV divergences (single
poles at ǫ = D and ǫ = 0) due to this MOPE in the massive theory (self-avoiding manifold
in a harmonic confining external potential) are canceled by the same counterterms as for
the free theory (self-avoiding manifold with no confining potential). These counterterms are
proportional to the operators 1l and (∇r)2.
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c. MOPE for δd(r1− r2)δ
d(r1− r2) and tr[O2]: The reader familiar with the techniques of [13]

will see that the same arguments can be used to construct the MOPE for general products
of local and multilocal operators in the m 6= 0, U = 0 background.

Let us concentrate on the MOPE for two δ operators, which enters in tr[O2]. We are
interested in the short-distance expansion (x → x0, y → y0) for the product of two bilocal
operators

δd(r1(x0)− r2(y))δ
d(r1(x)− r2(y0)) , (4.49)

where r1 and r2 belong to two independent manifoldsM1 andM2. As above, we write the
δ’s as a Fourier transform of an exponential and reexpress it in terms of normal products

δd(r1(x0)− r2(y))δ
d(r1(x)− r2(y0)) =

∫
ddk1d

dk2

(2π)2d
ei(k1[r1(x0)−r2(y)]+k2[r1(x)−r2(y0)])

=

∫
ddk1d

dk2

(2π)2d
: ei(k1[r1(x0)−r2(y)]+k2[r1(x)−r2(y0)]) : e−k1k2[Gm(x0−x)+Gm(y−y0)]−(k2

1+k2
2)Gm(0)

Note that there are no cross-terms, as those proportional to G(x−y), since x and y belong to
different manifolds, thus r1(x) and r2(y) are uncorrelated. We now keep the dominant term
for the OPE when x→ x0 and y→ y0

: ei(k1[r1(x0)−r2(y0)]+k2[r1(x)−r2(y0)]) : = :ei((k1+k2)[r1(x0)−r2(y0)]) : + · · ·

(the neglected terms contain subdominant ∇pr’s), rewrite this term as

:ei((k1+k2)[r1(x0)−r2(y0)]) : = ei((k1+k2)[r1(x0)−r2(y0)]) e(k1+k2)2Gm(0)

and integrate over k1 and k2 to obtain

∫
ddk1 ddk2

(2π)2d
: ei(k1+k2)[r1(x0)−r2(y0) : ek1k2[2Gm(0)−Gm(x0−x)−Gm(y−y0)]

=

∫
ddk ddk′

(2π)2d
eik[r1(x0)−r2(y0)]e(k2/4−k′2)[2Gm(0)−Gm(x0−x)−Gm(y−y0)]

(4.50)

with k = k1 + k2 and k′ = (k1 − k2)/2. The leading term is obtained by dropping the factor
of k2/4 in the second exponential (the neglected terms give subdominant δ(n)(r1− r2) terms).
This allows to do the integrations explicitly

δd(r1(x0)− r2(y))δ
d(r1(x)− r2(y0)) ≃ (4π)−d/2 [2Gm(0)−Gm(x− x0)−Gm(y − y0)]

−d/2

× δd (r1(x0)− r2(y0)) . (4.51)

From the short-distance expansion (4.33) for Gm(0)− Gm(x) the most singular term when
both x→ x0 and y→ y0 is

δd(r1(x0)− r2(y))δ
d(r1(x)− r2(y0)) =

[
|x− x0|2−D + |y − y0|2−D

]−d/2

(4πd0(D))d/2
δd(r1(x0)− r2(y0)) + · · · .

(4.52)
Thus we have obtained the leading term for the MOPE in the harmonic background U = 0,
m 6= 0.
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This leading coefficient given by (4.52) is the same as for the free membrane (V = 0).
The same calculation can be done for the MOPE of two δ’s on the same membrane, and we
get (at leading order) a MOPE with the same coefficient

δd(r(x0)− r(y))δd(r(x)− r(y0)) =

[
|x− x0|2−D + |y − y0|2−D

]−d/2

(4πd0(D))d/2
δd(r(x0)− r(y0)) + · · · .

(4.53)
This implies in particular that the (one-loop) UV divergence (single pole at ǫ = 0) due to
this MOPE in the massive theory (self-avoiding manifold in a harmonic confining external
potential) is canceled by the same counterterm as for the free theory (self-avoiding manifold
with no confining potential). This counterterm is proportional to the bilocal operator δ(r−r′).

d. MOPE for higher order terms and tr[Ok]: The same analysis can be performed for the
product of three δ’s, in particular δd[r1(x0) − r2(y)]δ

d[r2(y0) − r3(z)]δ
d[r3(z0) − r1(x)], which

has to be considered for the quantity tr[O3]. It shows that the leading singularity when
x → x0, y → y0, z → z0 is given by the same MOPE as in the free theory, with the same
leading coefficient. No additional UV divergences arise. The same result holds for higher
order products of δ’s.

3. MOPE in the anharmonic potential

We now generalize this analysis to the SAM model in an anharmonic confining potential.

a. General discussion: The perturbative expansion involves now interaction vertices given
by the expansion of the local potential U(r). For D < 2 and as long as no bilocal δ(r − r′)
operators are inserted this perturbation theory is UV finite. The only UV divergences that
occur when D → 2 are given by the tadpole amplitudes Gm, but they are subtracted by
the normal product prescription : · · · :m. Thus as long as the normal ordered potential V is
finite (i.e. its coefficients g1 = m2, g2, g3, etc. are UV finite) the “vacuum diagrams” are
UV finite. Since we deal with a massive theory no IR divergences are expected.

Now we have to consider insertions of the bilocal δd(r − r′) operators, and thus to look
for instance at

∫
dDy dDy

N∏

i=1

dDzi 〈δd(r(x)− r(y))U(z1) · · ·U(zN )〉connected

m . (4.54)

The UV divergences which may occur when |x − y| → 0, while the other distances remain
finite, have already been analyzed with the MOPE in the harmonic case. We have seen
there that when some zi come close, no UV divergences occur. The only dangerous case is
when some z’s, x and y come close at the same rate. Thus we must study the short-distance
expansion of a product of local operators (the U ’s) and of multilocal operators (the δ’s),
in the massive theory. This short-distance expansion can be studied by the same MOPE
techniques as above. Let us first give a simple explicit example.
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z

x y

z

x y

FIG. 3 Two contributions to tr(O) at first order in perturbation theory, associated with the

insertion of one : r(z)4 :

b. Example: To be explicit, we first regard as an example the simple case of the contribution
to tr(O) given by one of the terms of (4.54) with only one U(z), and more precisely one
quartic term : r(z)4 :. The arguments for higher powers in r or higher orders in perturbation
theory will be identical. Following (4.14) the crucial term to calculate is

∫

M
dDx

∫

M
dDy

〈
δd
(
r(x)− r(y)

)
: r(z)4 :

〉
m
. (4.55)

Applying Wick’s theorem we can decompose it in terms of multilocal diagrams such as those
depicted on Fig. 3. More explicitly this term can be written as

∫

M
dDx

∫

M
dDy

∫
dDk

(2π)d

〈
eik[r(x)−r(y)] : r(z)4 :

〉
m

=

∫

M
dDx

∫

M
dDy

∫
dDk

(2π)d

〈
eik[r(x)−r(y)]

〉
m

(
〈k [r(x)− r(y)] r(z)〉2m

)2

∼ 1

Vol(M)

∫

M
dDx

∫

M
dDy

∫

M
dDz

∫ 〈
δd(r(x)− r(y))

〉
× [Gm(x− z)−Gm(y − z)]4

[Gm(0)−Gm(x− y)]2
,

=:

∫

x,y∈M
F(x, y)

∫

z∈M

[Gm(x− z)−Gm(y − z)]4

[Gm(0)−Gm(x− y)]2
. (4.56)

We now derive an important bound. First of all, due to the triangular inequality

(r(y)− r(z))2 ≤ (r(x)− r(y))2 + (r(x)− r(z))2 (4.57)

Gm(0)−Gm(y − z) ≤ 2Gm(0)−Gm(x− y)−Gm(x− z) (4.58)

leading to
Gm(x− z)−Gm(y − z) ≤ Gm(0)−Gm(x− y) . (4.59)

An analog relation is valid with x and y exchanged, resulting in a bound for the absolute
value. The r.h.s. is thus also positive and we get the bound for the ratio

∣∣∣∣
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

∣∣∣∣ ≤ 1 . (4.60)
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We now want to show that the counter-terms remains the same. Using (4.60), we can write
the bound

∣∣∣∣
∫

M
dDx

∫

M
dDy

∫
dDk

(2π)d

〈
eik[r(x)−r(y)] : r(z)4 :

〉
m

∣∣∣∣

≤
∣∣∣∣
∫

x,y∈M
F(x, y) [Gm(0)−Gm(x− y)]2

∣∣∣∣×
∫

z∈M

[
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

]4

≤
∣∣∣∣
∫

x,y∈M
F(x, y) [Gm(0)−Gm(x− y)]2

∣∣∣∣×Vol(M) . (4.61)

The latter bound is already enough to show that no additional counter-terms proportional
to the elastic energy are necessary. It would also be sufficient for the perturbation expansion
of tr(O2). However, we can do better and show that there is no divergence at all. To do so,
we now estimate the integral over z. Two domains of integration have to be distinguished:

S :
∣∣z− x+y

2

∣∣ ≤ α|x− y|

L :
∣∣z− x+y

2

∣∣ > α|x− y|

α is chosen large (to be specified below), but finite. The integrals over z are bounded by

∫

z∈M

[
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

]4

≤
∫

z∈S

[
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

]4

+

∫

z∈L

[
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

]4

. (4.62)

Using (4.60), the first term, is bounded by

∫

z∈S

[
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

]4

≤
∫

z∈S
1 ≤ (α|x− y|)D . (4.63)

In domain L, analyticity of the propagator allows the bound
∣∣∣∣
Gm(x− z)−Gm(y − z)

Gm(0)−Gm(x− y)

∣∣∣∣ ≤ a1

∣∣∣∣
(x− y)∇Gm(x− z)

Gm(0)−Gm(x− y)

∣∣∣∣ ≤ a2 (m|x− y|)D−1 . (4.64)

We do not give a rigorous proof here, but it is clear that α should be sufficiently larger than
1 (say 10), which allows to establish a value for a1, itself depending on α, but saturating for
large α. The constant a2 is chosen in order to bound ∇Gm(x− z) by its maximal value on
M, which has to scale with m by power-counting in the way given above.

We are now in a position, to put everything together.
The integration over the distance s := x− y (which contains the possible UV-divergence)

can now be written for small s as follows (we drop all constants for simplicity of notations)

∫
ds

s
sD × s−

2−D
2

d × s2(2−D) ×
{

sD ,

s4(D−1) ,

for S
for L . (4.65)

The factor of sD comes from the integration measure; s−
2−D

2
d is the leading UV-divergence

in F(x, y); the next factor s2(2−D) is the short-distance scaling of [Gm(0)−Gm(x− y)]2, and
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the remaining factors have been established in (4.63) and (4.64) respectively. Using ǫ =
2D − 2−D

2
d, this can be rewritten as

∫
ds

s
sǫ ×

{
s2(2−D) ,

sD ,

for S
for L . (4.66)

As long as D < 2, all integrals are UV-convergent in the limit of ǫ→ 0. Thus no additional
counter-terms are needed. The only possible UV-divergence is when first taking D → 2
before ǫ → 0. Note however, that this divergence only effects the contribution to the
free energy (proportional to the counter-term 1), but cancels in all properly normalized
observables.

c. General analysis: We now consider the MOPE for the operator with one δd(r − r′) and
P =

∑
i

pi fields r

O(x, y, zi) = δd(r(x)− r(y))
N∏

i=1

: rpi(zi) :m (4.67)

when the N + 2 points x, y, zi → o. The generating functional for these operators is

δd(r(x)− r(y))
N∏

i=1

: eqir(zi) :m=

∫
ddk

(2π)d
eik(r(x)−r(y))

N∏

i=1

: eqir(zi) :m

=

∫
ddk

(2π)d
: e

ik(r(x)−r(y))+
∑
i

qir(zi)
:m

× e
−k2[Gm(0)−Gm(x−y)]+ 1

2

∑
i6=j

qiqjGm(zi−zj)+i
∑
i

kqi[Gm(x−zi)−Gm(y−zi)]

.

(4.68)

Expanding the normal ordered operator in x, y and z, using the short-distance expansion
for the propagator Gm and integrating over k we get the MOPE. We see that in this MOPE
for (4.67) local operators appear, of the form

A = rM∇r1r∇r2r · · ·∇rQr , 0 ≤ M ≤ P , rj > 0 . (4.69)

The dimension of the operator (4.67) is dim[O] = ǫ−2D+P (2−D)/2, while the dimension
of (4.69) is dim[A] = (M +Q)(2 −D)/2− R where R =

∑
j

rj ≥ Q. Hence the coefficients

in the MOPE
O(x, y, zi) =

∑

A

CO
A (x, y, zi;m)A(o) (4.70)

scale as
CO

A (Sx, Sy, Szi;m) ∼ Sω C0
A(Sx, Sy, Szi;m) + · · · , (4.71)

where

ω = dim[O]− dim[A] = ǫ− 2D + (P −M)(2−D)/2 +Q(4−D)/2 + (R−Q) . (4.72)

There will be short-distance UV divergences if the integration over the N + 1 independent
positions x, zi is not convergent. This occurs if

D(N+1)+ω ≤ 0 ⇒ ǫ+D(N−1)+(P −M)
2−D

2
+Q

4−D
2

+R−Q ≤ 0 . (4.73)
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The caseN = 0 has already been studied. When N ≥ 1, since P ≥ M and R ≥ Q we see that
as long asD < 2 the condition (4.72) is satisfied only if ǫ = 0, N = 1 and P = M . Let us look
at what this last condition means. P = M means that all the rpi in O appear in A, namely
that no combination of propagators of the form [

∏
Gm(x − zi) − Gm(y − zi)]

∏
G(zj − zk)

appear in the coefficient C of the MOPE, which therefore depends only on x − y. In other
words, this particular coefficient comes from the product of two independent expansions

1. The N = 0 MOPE δd(r(x)− r(y)) → |x− y|ǫ−2D1l

2. The trivial OPE
∏
i

: rpi(zi) : → : rP : with coefficient 1.

and contains no connected diagram with propagators connecting any of the zi’s to x or y.
Thus this apparent divergence is not real. It is part of the N = 0 leading divergence at ǫ = D
and disappears in the connected expectation value 〈· · · δ(r(x)− r(y))U(r(z)) · · · 〉connected

m .
All other coefficients of the MOPE have scaling dimension ω, which satisfy the inequality

(4.72). No additional UV divergences occur beyond those which appear already for the free
manifold and the manifold in a harmonic potential, even when ǫ = 0.

The same argument can be developed when there are two δ operators and several U ’s.
One can show that when considering the short-distance expansion of

δd(r(x0)− r(y0))δ
d(r(x1)− r(y1))

∏

i

U(xi)
∏

j

U(yj) , x1, xi → x0 and y1, yi → y0

(4.74)
bilocal operators are generated by the MOPE. Power counting shows nevertheless that no
additional UV divergence appears beyond those already studied for x1 → x0, y1 → y0 while
all other distances remain finite.

This is sufficient to prove (at least at one loop) that the counterterms which make the
SAM model UV finite at ǫ = 0 also render the SAM in a confining potential UV-finite, as
long as D < 2.

d. The limit D → 2: It is interesting to notice that there is a potentially divergent term
when ǫ = 0 and D → 2 which corresponds to

N = 1 , Q = R = 0 , 0 ≤M < P arbitrary . (4.75)

(We have already seen that the case M = P is not relevant). This fact is not unrelated to
the following observation. In the MOPE (4.48) for the single bilocal operator δ(r − r′), the
third term, which is a subdominant term in the MOPE of the form

δd(r(x)− r(y)) → m2|x− y|ǫ−2D+2 1l

is not UV divergent if D < 2, but when D → 2 it becomes of the same order as the divergent
term

δd(r(x)− r(y)) → |x− y|ǫ−D : (∇r)2 :

and is potentially dangerous when D → 2. Since this term depends on m, it depends linearly
on the potential V (r), like the N = 1 terms that we consider here. It would be interesting
to study this more.
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Since Q = R = 0, this means that there are no ∇r involved in the MOPE and we are
only interested in the terms of the MOPE of the form

δd(r(x)− r(y)) : rp(z) : → : rm(o) : , 0 ≤ m < p . (4.76)

It is quite easy to compute the corresponding coefficients. We find

δd(r(x)− r(y)) :eαr(z) :m → (4π)−d/2 [Gm(0)−Gm(x− y)]−d/2 e−
α2

4
(Gm(x−z)−Gm(y−z))2

Gm(0)−Gm(x−y) : eαr(z) :m
(4.77)

hence at short distances

δd(r(x)− r(y)) :eαr(z) :m → (4π d0)
−d/2 |x− y|ǫ−2D e−

α2d0
4

H(x,y,z) : eαr(z) :m (4.78)

with the function H(x, y, z) defined as

H(x, y, z) =

(
|x− z|2−D − |y− z|2−D

)2

|x− y|2−D
(4.79)

or, after averaging with weight exp(α2J/4)

δd(r(x)− r(y)) :eJr2(z) :m

→ (4π d0)
−d/2 |x− y|ǫ−2D [1− Jd0H(x, y, z)]−d/2 : eJr2(z)[1−Jd0H(x,y,z)]−1

:m (4.80)

D. Renormalization

1. Explicit form of the UV divergences for the determinant det′(S ′′[V ])

From the definition (4.14) of tr[O] as an x integral and the MOPE (4.48) for δd(r − r′),
we see that the x integral (4.14) has short-distance UV divergences if ǫ ≤ D. The usual rule
of dimensional regularization

∫
dDx |x|−a = SD

1

D − a + finite terms (4.81)

implies that tr[O] has an UV pole at ǫ = D, proportional to the insertion of the identity
operator 1l, i.e.

tr[O] = C0
1

ǫ−D 〈1l〉V + regular terms at ǫ = D (4.82)

(of course 〈1l〉V = 1), with the residue C0 given by

C0 = C0(D, d) = SD [4πd0(D)]−
d
2 . (4.83)

SD is the volume of the unit sphere in RD and d0(D) = 1/(2−D)SD the coefficient of the
first subleading term in the OPE of G(x); they are given in (4.34).

Using dimensional regularization, tr[O] is analytically continued to 0 < ǫ < D. The next
term in the MOPE gives the UV divergence at ǫ = 0, hence a pole given from (4.48) by

tr[O] = C1
1

ǫ
〈: (∇r)2 :0〉V + regular terms at ǫ = 0 (4.84)
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with residue

C1 = C1(D, d) = −SD
1

4Dd0(D)
[4πd0(D)]−d/2 . (4.85)

Similarly, tr[O2] has an UV pole at ǫ = 0, given from (4.52) by

tr[O2] = C2
1

ǫ
〈δd(r1(x0)− r2(y0))〉V + regular terms at ǫ = 0 (4.86)

with residue

C2 = C2(D, d) = S2
D

1

2−D
Γ
(
D/(2−D)

)2

Γ
(
2D/(2−D)

)
[
4πd0(D)

]−d/2
. (4.87)

Here r1 and r2 are associated to two independent copies M1 and M2 of the infinite flat
manifoldM. Thus we have

δd(r1(x0)− r2(y0))〉V =

∫
ddr 〈δd(r1(x0)− r)〉V 〈δd(r2(y0)− r)〉V =

∫
ddr [〈ρ(r)〉V ]2

where ρ(r) is the manifold density in bulk space. Using (4.10) and the discussion of section
IV.B, we see that the logarithm of the determinant of the instanton fluctuations L = log(D)
has a UV pole at ǫ = 0 given by

L = log (det′[S ′′]) =
1

ǫ

(
− C1

〈
(∇r)2

〉
V
− C2

2

∫
ddr [〈ρ(r)〉V ]2

)
+ LMS (4.88)

where LMS is the UV finite part of L, obtained by subtracting the UV pole of L at ǫ = 0;
hence the “MS” (for minimal subtraction) subscript.

2. Renormalized effective action

We now study how the perturbative counterterms modify the effective action S[V ] used
in the instanton calculus. For this purpose, we now repeat for the renormalized theory the
transformation S[r] → S[V ] and the rescalings performed for the bare theory in Sect. II.D
and III.B.

a. Renormalized original action Sren[r]:

The renormalized action for the SAM model is according to [13]

Sren[r] =
Z(br)

2

∫

x∈M
(∇r(x))2 +

brZb(br)µ
ǫ

2

∫∫

x,y∈M
δd(r(x)− r(y)) (4.89)

br is the dimensionless renormalized coupling constant and µ is the renormalization mass
scale. At one loop the counterterms Z(br) and Zb(br) are found to be

Z(br) = 1− br
C1

ǫ
, Zb(br) = 1 + br

1

2

C2

ǫ
(4.90)
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with C1 and C2 the same residues as those obtained above in (4.85) and (4.87). We first
rewrite the renormalized action as the bare action S[r] plus the “one-loop counterterm ∆1S[r].

Sren[r] = S[r] + ∆1S[r] ; S[r] =
1

2

∫

x∈M
(∇r(x))2 +

brµ
ǫ

2

∫∫

x,y∈M
δd(r(x)− r(y))

∆1S[r] = − br
C1

ǫ

1

2

∫

x∈M
(∇r(x))2 +

b2rµ
ǫ

4

C2

ǫ

∫∫

x,y∈M
δd(r(x)− r(y))

(4.91)

Note that (∇r)2 =:(∇r)2 :0 +d δD(0)1l and that in dimensional regularization δD(0) = 0.

b. Renormalized effective action Sren[V ]:

We repeat the transformation of Sect. II.D to pass from the action S[r] to the effective action
S[V ] for the effective field V (r), keeping ∆1S[r] as a perturbation. We thus arrive at the
representation for the renormalized partition function Zren(br)

∫
D[r] exp(−Sren[r]) =

∫
D[r]D[V ] exp

(
−
∫

x

[
1

2
(∇r)2 + V (r)

]
+

1

2brµǫ

∫

r

V 2 −∆1[r]

)

=

∫
D[V ] exp

(
−FM[V ] +

1

brµǫ

∫

r

V 2

)
〈exp (−∆1S[r])〉V

.

(4.92)

We now perform the same rescalings and the same rotation in the complex coupling-constant
plane as for the bare theory (see section III.B):

x→
(
|br|µǫLD

) 1
D−ǫ x , r→

(
|br|µǫLD

) 2−D
2(D−ǫ) x , θ = Arg(br)→ ±π . (4.93)

Starting from a finite manifold M with size L (volume LD), we end up with a rescaled
manifoldMs with volume Vol(Ms) and renormalized effective coupling gr

gr =
1

Vol(Ms)
, Vol(Ms) = |br|−

D
D−ǫ [Lµ]−

Dǫ
D−ǫ . (4.94)

The functional integral becomes

Zren(br) =

∫
D[V ] exp

(
−FMs [V ] +

e−iθ

2gr

∫

r

V 2

)
〈exp (−∆′

1S[r])〉V (4.95)

∆′
1S[r] = br

[
− C1

ǫ

1

2

∫

Ms

(∇r)2 +
gre

iθ

4

C1

ǫ

∫∫
δd[(r − r′)

]
. (4.96)

As in section III.B, θ = Arg(br). We are interested in the semiclassical limit br → 0. Since
this limit is a thermodynamic limit, where the volume of the manifold Vol(Ms) = g−1

r →∞,
it is natural to assume that clustering takes place (since for the instanton configuration the
manifold is confined in the potential V ). We may thus approximate the contribution of the
counterterm by

〈exp (−∆′
1S[r])〉V = exp (−〈∆′

1S[r]〉V ) (4.97)
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up to terms exponentially small in gr. The last expectation value is

〈∆′
1S[r]〉V = brVol(Ms)

(
− 1

2

C1

ǫ

〈
(∇r(o))2

〉
V

+
eiθgr

4

C2

ǫ

∫

x

〈
δd(r(o)− r(x)

〉
V

)
. (4.98)

Now we easily check that

brVol(Ms) = br/gr = eiθ
(
g1/D
r µL

)−ǫ
(4.99)

and that when ǫ = 0 it reduces to eiθ = O(1). The first expectation value in (4.98) 〈(∇r)2〉V
is of order O(1). The study of the second expectation value is slightly more subtle. We
write ∫

Ms

dDx
〈
δd(r(o)− r(x)

〉
V

=

∫
ddk

(2π)d

∫

Ms

dDx
〈
eik(r(o)−r(x))

〉
V
. (4.100)

From clustering we expect that what dominates is the large-|x| regime where

〈
eik(r(o)−r(x))

〉
V

=
〈
eikr(o)

〉
V

〈
e−ikr(x)

〉
V

= 〈ρ̂(k)〉V 〈ρ̂(−k)〉V , (4.101)

and where ρ̂(k) is the Fourier transform of the manifold density ρ(r), see (3.42). So we finally
obtain

gr

∫

x

〈
δd(r(o)− r(x)

〉
V
≃ grVol(Ms)

∫
ddk

(2π)d
〈ρ̂(k)〉V 〈ρ̂(−k)〉V =

∫

r

[〈ρ(r)〉V ]2 (4.102)

also of order O(1). (4.100) contains an UV-divergence when x → 0 and this will give a
double pole when ǫ→ 0 in (4.98), but this divergence is of order brVol(Ms)gr ≃ gr. This is
in fact a two-loop divergence that we do not have to consider here.

The final result is that we can rewrite the renormalized functional integral (at one loop)
as

Zren(br) =

∫
D[V ] exp

(
− 1

gr
S[V ]− eiθg

−ǫ
D

r (µL)−ǫ∆1S[V ]

)
(4.103)

with S[V ] the bare effective action (3.35) and ∆1S[V ] the one-loop counterterm for the
effective action

∆1S[V ] = − C1

ǫ

1

2

〈
(∇r)2

〉
V

+
C2

ǫ

eiθ

4

∫

r

〈ρ(r)〉V
2 . (4.104)

This amounts to state that the renormalised effective action Sren[V ] at one loop is

Sren[V ] = S[V ] + eiθg
D−ǫ

D
r (µL)−ǫ∆1S[V ] , (4.105)

with S[V ] the original bare effective action (3.35), and ∆1S[V ] given by (4.104).

3. 1-loop renormalizability

It is now easy to show that the renormalized action for the SAM model which makes
perturbation theory finite at one loop makes also the determinant factor for the instanton
D = det′(S ′′[V inst]) UV finite at ǫ = 0.
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a. Instanton contribution in the renormalized theory

If we evaluate the renormalized functional integral around the instanton saddle point
V inst by the saddle-point method, we see that the contribution at one loop of the instanton
in the bare theory (in (3.53) and (3.54))

e−
1
g
S[V ] |det′(S ′′[V ])|−

1
2 = e−

1
g
S[V ]− 1

2
Re(L) (4.106)

is replaced in the renormalized theory by

e−
1
gr

S[V ] |det′(S ′′[V ])|−
1
2 eg

− ǫ
D

r (µL)−ǫ∆1S[V ] = e−
1
gr

S[V ]− 1
2
Re(Lren) , (4.107)

where the ”renormalized trace-log” of the instanton-fluctuations’ determinant Lren =
log(Dren) is simply (from now on we set θ = ±π)

Lren = L− 2
(
g

1
D
r µL

)−ǫ

∆1S[V ] . (4.108)

b. Limit ǫ→ 0 and UV finiteness.

From Eq. (4.104) for the counterterm and Eq. (4.88) which gives the UV poles of L, one
easily checks that Lren is UV finite when ǫ→ 0. It is given in this limit by

Lren = LMS −
(

1

D
log gr + log(µL)

)
B when ǫ = 0 , (4.109)

where LMS is the UV-finite part of L, as defined in Eq. (4.88), and the coefficient B is (minus)
the residue in (4.88)

B = C1

〈
(∇r)2

〉
V

+
C2

2

∫

r

V (r)2 . (4.110)

(We used the instanton equation 〈ρ(r)〉V + V (r) = 0 to simplify the last term).
Finally it is shown in Appendix E that for the instanton potential V we have

〈(∇r)2〉V = − d
(
1− ǫ

D

)−1

S ,

∫

r

V (r)2 = 2
(
1− ǫ

D

)−1

S , (4.111)

where S = S[V ] is the instanton action. Hence for ǫ = 0 we have

B = (−d C1 + C2) S . (4.112)

c. UV pole at ǫ = D

A similar calculation shows that the counterterm which subtracts the perturbative UV pole
in C0

ǫ−D
also subtracts the leading divergence for the instanton. This justifies our use of

dimensional regularization to deal with this divergence.
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E. Large orders for the renormalized theory

1. Asymptotics

From these results we can easily obtain the large-orders asymptotics for the renormalized
theory at ǫ = 0. The semiclassical estimate (3.56) for the discontinuity of the partition
function Z(b) becomes for the renormalized partition function Zren(br)

ImZren(br) = ∓ 1

2
L−2D |br|

4
2−D e−

1
|br|

S
W |Dren]

− 1
2

= ∓ 1

2
L−2D |br|

4
2−D

+ B

2D (µL)
B

2 e−
1

|br|
S

W |DMS]
− 1

2

(4.113)

with DMS = exp(LMS). The large order asymptotics for the renormalized partition function

Zren(br) =

∞∑

k=0

Zren
k bkr (4.114)

are

Zren
k ≃ (−1)k Γ

[
k − 4

2−D −
B

2D

]
1

2π
L−2D (µL)

B

2 W |DMS]
− 1

2 S
4

2−D
+ B

2D
−k (4.115)

and the analog of (3.59) obtained by using d/2 = 4/(2−D)− 2 at ǫ = 0.

2. Discussion

From these semiclassical estimates we expect that the Borel transform of the renormalized
theory still has a finite radius of convergence, given by the instanton effective action S. We
also see that as in ordinary QFT, renormalization at ǫ = 0 implies a dependence on the
renormalization scale µ, an anomalous dependence on the size L of the manifold (anomalous
dimension) and an anomalous power dependence in the renormalized coupling constant gr.
These anomalous dimensions are given by the factor B, which combines the perturbative
anomalous dimensions C1 and C2 with the instanton action S.

V. VARIATIONAL CALCULATION

In [14] we used a Gaussian variational approximation to compute the instanton V inst
var and

its action S inst
var . Moreover we showed that the variational method was a good approximation

for the instanton in the limit d → ∞ (for fixed ǫ), and the 0-th order of a systematic 1/d
expansion. We computed explicitly the first correction in the 1/d expansion, and showed
that for the instanton action S inst

var it was finite when ǫ→ 0.
We apply the same strategy here to compute the fluctuations around the instanton,

namely the determinant factor

D = det′(S”) = det′(1l−O) , Or1r2 = − δ2E [V ]

δV (r1)δV (r2)
(5.1)

We first recall briefly the principle of the variational method. Then we present a direct
calculation of D using a variational estimate for O. We show that this method does not
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treat properly the fluctuations and thus the UV divergences. We then present a calculation
of D based on the variational method and the reorganization of the perturbative expansion
at large d already used in [14] and in section IV.C.

A. Variational approximation for the instanton

We first briefly recall the variational approximation developed in [14]. We use a trial
Gaussian Hamiltonian Htrial[r] of the form

Htrial[r] =

∫

M
dDx

[
1

2
(∇r)2 +

1

2
(r − r0)M(r − r0)

]
, (5.2)

where the variational parameters are the position of the instanton r0 and the variational
mass matrix M = (Mab) (a symmetric real d×d matrix). The variational approximation for
the free energy of the manifoldM in the potential V is

Fvar[V ] = min
r0,M

[
Fvar[V ; M, r0]

]
, Fvar[V ; M, r0] = Ftrial + 〈H −Htrial〉Htrial

. (5.3)

Ftrial = − ln
[∫
D[r] exp (−Htrial[r])

]
is the free energy for the trial Hamiltonian, and is a

function of M only (translational invariance). We are interested in the limit of the infinite
flat manifoldM→ RD, and we consider the free energy densities

Evar[V ] =
1

Vol(M)
Fvar[V ] , Evar[V ; M, r0] =

1

Vol(M)
Fvar[V ; M, r0] . (5.4)

Obviously
Evar[V ] = min

r0,M

[
Evar[V ; M, r0]

]
. (5.5)

Evar[V ; M, r0] can be written in terms of the Fourier transform of the potential V (r)

Ṽ (p) =

∫
ddr e−ipr V (r) . (5.6)

and in [14] is given as

Evar[V ; M, r0] =
1

D

Γ
(
2− D

2

)

(4π)D/2
tr
(
MD/2

)
+

∫
ddp

(2π)d
Ṽ (p) eipr0− 1

2
pGp , (5.7)

where G = (Gab) is the “variational tadpole” matrix, defined as

G = G(M) =

∫
dDk

(2π)D

1

k2 + M
=

Γ
(
1− D

2

)

(4π)D/2
M

D
2
−1 . (5.8)

Extremization of (5.7) with respect to the variational parameters M and r0 for fixed V gives
the two equations for the the variational parameters M = M[V ] and r0 = r0[V ] as a function
of the potential V

Mab = −
∫

ddp

(2π)d
papb Ṽ (p) eipr0− 1

2
pGp (5.9)

0 =

∫
ddp

(2π)d
pa Ṽ (p) eipr0− 1

2
pGp . (5.10)



47

Inserting these solutions in (5.7) gives Evar[V ] = Evar [V,M[V ], r0[V ]]. Now, extremization of
the variational effective action

Svar[V ] = Evar[V ] +
1

2

∫
V 2 (5.11)

with respect to variations of V (r) leads to the equation for the variational instanton V inst
var ,

V inst
var (r) + 〈δd

(
r− r(x0)

)
〉
Htrial

= 0 . (5.12)

The variational instanton is rotationally invariant (as expected), so the associated mass
matrix Mvar = M[V inst

var ] and the tadpole matrix Gvar = G(M[V inst
var ]) are constants times the

unit matrix 1l,

Mvar = Mvar 1l , Gvar = Gvar 1l , Gvar =
Γ
(
1− D

2

)

(4π)D/2
Mvar

D
2
−1 . (5.13)

(5.12) implies that the variational instanton has Gaussian profile, and (5.9) gives Mvar as
the solution of

2Mvar (4π)d/2 Gvar
1+ d

2 = 1 . (5.14)

The variational instanton is a Gaussian well (centered at r0), its width is given by
√
Gvar

V̂ inst
var (p) = − e−ipr0−Gvar

2
p2

, V inst
var (r) = − (2πGvar)

−d/2e−
1

2Gvar
(r−r0)2 . (5.15)

The variational instanton action was found to be [14]

S inst
var = Svar[V

inst
var ] = GvarMvar

(
1− ǫ

D

)
. (5.16)

B. A poor man’s direct variational calculation of the instanton determinant D

1. The approximation

We have to compute the determinant of the fluctuations around the instanton solution
V inst

D = det′V

[
S[V ]

dV [r]dV [r′]

]∣∣∣∣
V =V inst

. (5.17)

In section V.A, we have calculated the instanton solution in the variational approximation
V inst

var . A first approximation for D is to replace it by

Dvar = det′V

[
d2S[V ]

dV [r]dV [r′]

]∣∣∣∣
V =V inst

var

, (5.18)

but this is still difficult to compute. A further approximation is to replace this by

Dvar′ = det′V

[
d2Svar[V ]

dV [r]dV [r′]

]∣∣∣∣
V =V inst

var

. (5.19)

since we have seen that Svar[V ] for a general potential V is easy to calculate.
This first and simple approximation (5.19) is presented in details in this section. We

shall see from the result that it misses important features of the true result, especially the
UV-divergences due to the fluctuations, which are expected as we have discussed in section
IV. In the following section V.C, we will therefore calculate (5.18), which seems to be more
appropriate.
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2. Reduction to a finite dimensional determinant in variational space

In order to calculate (5.19), we start from (5.7), and we need

d

dV (r)

d

dV (r′)
Evar[V ] . (5.20)

We use
d

dV (r)
=

∂

∂V (r)
+

dr0
dV (r)

∂

∂r0
+

dM

dV (r)

∂

∂M
. (5.21)

Thus
dEvar
dV (r)

=
∂Evar
∂V (r)

+
dr0

dV (r)

∂Evar
∂r0

+
dM

dV (r)

∂Evar
∂M

=
∂Evar
∂V (r)

, (5.22)

since due to the saddle-point equations

∂Evar
∂r0

= 0 and
∂Evar
∂M

= 0 . (5.23)

The second derivative is

d2Evar
dV (r)dV (r′)

=
∂2Evar

∂V (r)∂V (r′)
+

dr0
dV (r′)

∂2Evar
∂V (r)∂r0

+
dM

dV (r′)

∂2Evar
∂V (r)∂M

=
dr0

dV (r′)

∂2Evar
∂V (r)∂r0

+
dM

dV (r′)

∂2Evar
∂V (r)∂M

, (5.24)

since the explicit dependence of Evar on V is linear. Using the saddle-point equations (5.23)
we obtain

d

dV (r)

∂Evar
∂r0

= 0 =
∂2Evar
∂V (r)∂r0

+
dr0

dV (r)

∂2Evar
∂r0∂r0

+
dM

dV (r)

∂2Evar
∂r0∂M

(5.25)

d

dV (r)

∂Evar
∂M

= 0 =
∂2Evar

∂V (r)∂M
+

dr0
dV (r)

∂2Evar
∂r0∂M

+
dM

dV (r)

∂2Evar
∂M∂M

. (5.26)

Eqs. (5.24) to (5.26) lead to (attention to the counter-intuitive sign)

d

dV (r)

d

dV (r′)
Evar[V ] = −




dM

dV (r)

dr0
dV (r)







∂2Evar
∂M∂M

∂2Evar
∂M∂r0

∂2Evar
∂r0∂M

∂2Evar
∂r0∂r0







dM

dV (r′)

dr0
dV (r′)


 (5.27)

with (remind that everything is evaluated at the saddle-point)

Evar
[
V inst

var ,M, r0
]

=
1

D

Γ
(
2− D

2

)

(4π)D/2
tr
(
MD/2

)
− 1

(2π)d/2
det(A1l + G)−1/2e−

1
2
r0

1
A1l+G

r0 . (5.28)

The quantity A is defined as follows:

A := Ginst
var , (5.29)
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i.e. it is the same as G, defined in (5.13), but always taken at the variational instanton.
Thus when varying V , and thus M and G, only G changes, but not A.

The determinant to be calculated is (the prime indicating that the zero-modes are omit-
ted)

Dver′ = det′V

[
d2Svar[V ]

dV (r)dV (r′)

]
= det′V

[
δd(r− r′) +

d2Evar[V ]

dV (r)dV (r′)

]

= det′V


δ

d(r− r′)−




dM

dV (r)

dr0

dV (r)







∂2Evar
∂M∂M

∂2Evar
∂M∂r0

∂2Evar
∂r0∂M

∂2Evar
∂r0∂r0







dM

dV (r′)

dr0

dV (r′)





 (5.30)

Now we use the cyclic invariance of the determinant2 to reduce the above expression (5.30),
which is the determinant of an integral kernel operator over Rd, to the determinant of a finite
dimensional matrix, acting on the space of the variational parameters r0 (d dimensional) and
M (d× d-dimensional):

= det′r0,M


1l−





∫
ddr




dM

dV (r)

dr0

dV (r)


⊗




dM

dV (r)

dr0

dV (r)











∂2Evar
∂M∂M

∂2Evar
∂M∂r0

∂2Evar
∂r0∂M

∂2Evar
∂r0∂r0







= det′r0,M




1l−





∫
ddp

(2π)d




dM

dṼ (p)

dr0

dṼ (p)



⊗




dM

dṼ (−p)

dr0

dṼ (−p)











∂2Evar
∂M∂M

∂2Evar
∂M∂r0

∂2Evar
∂r0∂M

∂2Evar
∂r0∂r0







(5.31)

1l is the corresponding d(d + 1)-dimensional unit-matrix. In fact the variational mass ma-
trix parameter space is d(d + 1)/2 dimensional, since one has to consider only symmetric
mass matrices M. However in our calculation is is simpler to consider the d2-dimensional
variational space of all real matrices M.

3. The calculation

We now evaluate the elements of the matrix. First of all, due to rotational invariance
and parity of the instanton, the off-diagonal blocks of the two matrices {�} and (�) vanish

∂2Evar

∂r0∂M
= 0 (5.32)

∫
ddp

(2π)d

∂M

∂Ṽ (p)

∂r0

∂Ṽ (−p)
= 0 . (5.33)

2 If X is a n×m matrix and Y a m×n matrix, and det′ denotes the product over non-zero eigenvalues, we

have the general identity det′[1−XY ] = det′[1− Y X ], although the first determinant is the determinant

of a n× n matrix, and the second one the determinant of a m×m matrix.
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The second relation will be explicitly checked below. As a consequence (5.31) takes block-
diagonal form, leading to the factorization of the determinant as the product of the deter-
minants over each diagonal block

Dvar′ = D
(1)
var′ D

(2)
var′ (5.34)

D
(1)
var′ = det′

[
1l−

∫

p

dM

dṼ (p)
⊗ dM

dṼ (−p)

∂2Evar
∂M∂M

]
(5.35)

D
(2)
var′ = det′

[
1l−

∫

p

dr0

dṼ (p)
⊗ dr0

dṼ (−p)

∂2Evar
∂r0∂r0

]
. (5.36)

Second, we shall see that the second block, relative to the zero-mode collective coordinate
r0, is also 0. Indeed, we shall show that

∫

p

dr0

dṼ (p)
⊗ dr0

dṼ (−p)

∂2Evar
∂r0∂r0

= 1l (5.37)

so that
D

(2)
var′ = det′ [0] = 1 . (5.38)

Thus it remains to compute the determinant of the first block, involving only dependencies on
the variational mass M. Using (5.28) and the matrix derivative rules gathered in Appendix
D, we find

∂2Evar
∂M∂M

=
A

M

2−D
32

[2(2 +D)E− d(2−D)P] , (5.39)

with E the projector on symmetric matrices and P the projector on the unity matrices

Eij,kl =
1

2
(δikδjl + δilδjk) (5.40)

Pij,kl =
1

d
δijδkl . (5.41)

Next, we calculate
δMij

δV (r)
. Using Eq. (5.9) and varying V yields

δMij[V ] = −
∫

ddp

(2π)d
pipj δṼ (p) eipr0 e−

1
2
pipjGij

+
1

2

∫
ddp

(2π)d
pipj Ṽ (p) eipr0 e−

1
2
pipjGij pkplδGkl . (5.42)

Using that at the saddle-point δG = D−2
2

A
M
δM and Ṽ (p) from Eq. (5.15), we obtain

δMij [V ] = −
∫

ddp

(2π)d
pipj δṼ (p) eipr0 e−

1
2
p2A − 1

2

∫
ddp

(2π)d
pipj e−p2A pkplD − 2

2

A

M
δMkl

= −
∫

ddp

(2π)d
pipj δṼ (p) eipr0 e−

1
2
p2A +

2−D
8

δMkl (dPij,kl + 2Eij,kl) . (5.43)

This leads to

2−D
8

dPδM− 2 +D

4
δM =

∫
ddp

(2π)d
pipj δṼ (p) eipr0 e−

1
2
p2A (5.44)
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and finally upon varying δV

δM

δṼ (p)

(
2−D

8
dP− 2 +D

4
E

)
= p⊗ p eipr0 e−

1
2
p2A . (5.45)

This can be inverted (in the subspace of symmetric matrices) as

δM

δṼ (p)
=

(
− 4

2 +D
E− 4d(2−D)

(2 +D)(4− 2d+ 2D +Dd)
P

)
p⊗ p eipr0 e−

1
2
p2A . (5.46)

Next, we need δM

δV (r)
⊗ δM

δV (r)
∂2Evar

∂M∂M
. Due to the saddle-point equations, or more explicitly

looking at Eqs. (5.45) and (5.39), the following combination is relatively simple:

δM

δṼ (p)

∂2Evar
∂M∂M

= − A
M

2−D
4

p⊗ p eipr0 e−
1
2
p2A , (5.47)

and after (Gaussian) integration over p we obtain finally

∫
ddp

(2π)d

δM

δṼ (−p)
⊗ δM

δṼ (p)

∂2Evar
∂M∂M =

2−D
2 +D

E +
2d(2−D)

(2 +D)(ε+ 2−D)
P . (5.48)

The first block determinant (5.35) is therefore the determinant of the following operator
acting on the d(d+ 1)/2 dimensional space of d× d symmetric matrices

D
(1)
var′ = det′

(
2D

2 +D
E− 2d(2−D)

(2 +D)(ε+ 2−D)
P

)
. (5.49)

Since in this space the projector E reduces to the identity, while P is the projector on the
1-dimensional subspace generated by the identity, it is easy to see that the operator has
d(d+ 1)/2− 1 eigenvalues equal to 2D/(2 +D), plus one eigenvalue equal to 2D/(2 +D)−
2d(2−D)/(2 +D)(ǫ+ 2−D) = −2(D − ǫ)/(ǫ+ 2−D). Hence the final result is

D
(1)
var′ = Dvar′ = − 2(D − ε)

ε+ 2−D

(
2D

2 +D

) d(d+1)
2

−1

. (5.50)

4. Terms associated with the zero modes

Before discussing this result, we calculate the other entries of the matrix (5.27), associated
with the 0-modes. First we vary Eq. (5.10) with respect to δr0 and the corresponding δṼ (p):

∫
ddp

(2π)d
δṼ (p) ip e−

1
2
pGpeipr0 =

∫
ddp

(2π)d
Ṽ (p) p e−

1
2
pGpeipr0(pδr0) . (5.51)

Deriving with respect to δṼ (p) and evaluating at Vinst yields

ipi e
− 1

2
Ap2

eipr0 =

∫
ddp

(2π)d
Ṽ (p) pi e

− 1
2
pGpeipr0

(
p

dr0

dṼ (p)

)

= −Mij
dr

j
0

dṼ (p)
= −Mδij

dr
j
0

dṼ (p)
. (5.52)



52

This gives
dri0

dṼ (p) Vinst

= − 1

M
ipi e

− 1
2
Ap2

eipr0 . (5.53)

Combining Eqs. (5.46) and (5.53) checks (5.33).
We now calculate the determinant of the lower block, for which we need

∫
ddp

(2π)d

dr
j
0

dṼ (p)

drk0

dṼ (−p)
=

1

M2

∫
ddp

(2π)d
pjpke−Ap2

=
1

M
δjk , (5.54)

as well as

∂2Evar
∂ri0∂r

j
0 Vinst

=
∂

∂ri0

∂

∂rj0

∫
ddp

(2π)d
Ṽ (p)eipr0e−

1
2
p·G·p =

∫
ddp

(2π)d
pipje−Ap2

= Mδij , (5.55)

where we used that the first term of Evar in (5.7) does not depend on r0, as well as the
instanton at the saddle-point from Eq. (5.15) and the mass from Eq. (5.14). Hence the
second block matrix, relative to the zero mode r0, is identically zero. This is not surprising.
Therefore {∫

ddp

(2π)d

dr
j
0

dṼ (p)

drk0

dṼ (−p)

}
∂2Evar
∂ri0∂r

j
0

= δik , (5.56)

and indeed the determinant (5.31) is the contribution of the d translational instanton zero-
modes.

D
(2)
var′ = det′r0 [0] = 1 . (5.57)

5. Discussion

We now discuss our result (5.50) for Dvar′ in our simple variational approximation. We
see that Dvar′ is finite and negative for ǫ < D, thus we recover the unstable mode with a
negative eigenvalue for S ′′. However we see that for ǫ = 0, Dvar′ is still finite, while we expect
from our general argument that D will have UV divergences. Thus our approximation does
not properly take into account the short-wavelength fluctuations around the instanton, and
renormalization, which is important when ǫ→ 0.

Finally it is interesting to look at the behavior of Dvar′ in the limit d →∞, ǫ fixed. We
find for the logarithm of Dvar′,

Lvar′ = log(Dvar′) ≃ −
d

2

(
1− ǫ

4

)
= O(d) (5.58)

as expected from the variational approximation. However, as we shall see later, the better
approximation Lvar and the exact solution L behaves respectively at large d as

Lvar ≃
d

ǫ2
, L ≃ d2

ǫ
. (5.59)
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C. Expansion around the variational approximation and 1/d expansion

1. The large-d limit

A better method to compute D is to start from (4.3)

Or1r2 =

∫

x

〈
δd(r1 − r(o))δd(r2 − r(x)))

〉conn

V inst (5.60)

(o is an arbitrary point on M = RD) and to make a perturbation expansion around the
variational Gaussian Hamiltonian Htrial. Since the problem is invariant under translations,
we chose for V the instanton centered at the origin (r0 = 0). m will denote the variational
mass (M = m2) and Gm the variational tadpole Gm = (4π)−D/2Γ((2 − D)/2)m2−D. m is
solution of (5.14), that we rewrite

2m2Gm = (4πGm)−d/2 . (5.61)

a. Large-d limit and the variational approximation:

The first crucial point used in [14] is that when the variational instanton potential (5.15) is
written in terms of normal products relative to the variational mass m, it takes the simple
form

V inst
var (r) = −(4πGm)−d/2 : e−

r2

4Gm :m = −2m2 Gm : e−
r2

4Gm :m (5.62)

that we rewrite as the variational trial potential 1
2
m2r2 plus a perturbation U(r) as in section

IV.C (see (4.28))

V inst
var (r) = −2m2Gm 1l +

m2

2
: r2 :m + U(r) , U(r) = − 2m2Gm

∞∑

n=2

1

n!

( −1

4Gm

)n

:
(
r2
)n

:
m

(5.63)
and to treat U(r) as perturbation, see (4.29) and Fig. 4.

r

V

FIG. 4 The variational instanton (black) and its approximation by a harmonic potential (grey)

(here for D = 1, d = 4). Note that the curvature of V (r) is the quadratic term before normal-

ordering, whereas in the variational approximation the quadratic term after normal-ordering ap-

pears.

The second point is that in the limit when

d → ∞ , ǫ fixed (5.64)
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these perturbative terms are subdominant (of order 1/d) with respect to the leading term

obtained by replacing V by the trial harmonic potential m2

2
: r2 :m. This is seen by rescaling

x and r in units of the variational mass m (as described in detail in Appendix G), so that
m→ 1, and the propagator Gm(x) becomes G(x) = G1(x)

Gm(x)→ G(x) = Gm=1(x) = (2π)−
D
2 KD−2

2
(|x|) (5.65)

and the tadpole amplitude Gm becomes

Gm → c0(D) = G(0) = (4π)−D/2Γ

(
2−D

2

)
≃ 1

4π

d

4− ǫ when d→∞ , ǫ fixed .

(5.66)
c0(D) is noted C in [14]. When we shall not deal with the explicit dependence on D of c0(D)
we shall denote it simply by c0.

The variational instanton potential becomes (see Appendix G)

V inst
var (r) = −2c0 1l +

1

2
: r2 : + U(r) , U(r) = − 2c0

∞∑

n=2

1

n!

(−1

4c0

)n

:
(
r2
)n

: , (5.67)

where the normal product : · · · : refers to the normal product with respect to the unit mass
m = 1, i.e. : · · · :=: · · · :m=1.

Since c0 ∼ d, in perturbation theory, the 2n-leg vertices carry a weight d1−n and closed
loops carry a weight d (summation over bulk space indices). Counting the resulting factors
of d for each graph, as in the large-N expansion for vector models, only “cactus diagrams”
with tadpoles survive in the large-d limit. However within our normal product scheme, there
are no tadpoles. Therefore for any observable at large d we can replace

〈Observable〉V inst
var

= 〈Observable〉m + subdominant terms in
1

d
, (5.68)

where 〈· · · 〉m refers to the expectation value with respect to the trial variational action

Hvar
trial =

∫

x

1

2
(∇r)2 +

m2

2
r2 . (5.69)

For the same reason, as shown in [14], at leading order in 1/d, the variational instanton,
solution of

V inst
var (r) +

〈
δd(r− r(o))

〉
m

= 0 (5.70)

is a good approximation for the exact instanton V inst, solution of (3.41):

V inst(r) = V inst
var (r)

(
1 +O(1/d)

)
. (5.71)

The first correction of order 1/d was computed in [14]. Finally the action for the variational
instanton was found to be

S inst
var = mD

(
1− ǫ

D

)
c0(D) . (5.72)

If we rescale the effective coupling constant g (or equivalently the initial coupling constant b)
in terms of the variational mass m,

g → mD g i.e. b → mD−ǫ b (5.73)
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the instanton action becomes

S inst
var =

(
1− ǫ

D

)
c0(D) = O(d) . (5.74)

This rescaling will the done at the end, but for the time-being, we keep the explicit mass
dependence.

b. Large-d limit for O:

For our problem, in the large-d limit, we shall firstly approximate the Hessian O in the
exact instanton background, with kernel Or1r2 given by (5.60), by the Hessian Ovar in the
variational instanton background, with kernel Ovar

r1r2
given by

Ovar
r1r2

=

∫

x

〈
δd(r1 − r(o))δd(r2 − r(x))

〉conn

V inst
var

(5.75)

and then approximate this Ovar by its large-d limit Ovar′ , with kernel

Ovar′

r1r2
=

∫

x

〈
δd(r1 − r(o))δd(r2 − r(x))

〉conn

m
. (5.76)

This will be the leading term of a systematic 1
d

expansion, which can be performed along
similar lines as in [14].

Ovar′

r1r2
can easily be computed, since we now deal with a massive free theory. It is even

easier to compute its Fourier transform

Ôvar′

k1k2
=

∫

r1

∫

r2

e−i(k1r1+k2r2) Ovar
r1r2

=

∫

x

〈
eik1r(o)eik2r(x)

〉
m
−
〈
eik1r(o)

〉
m

〈
eik2r(x)

〉
m

= e−(k2
1+k2

2)Gm(0)/2

∫

x

[
e−k1k2Gm(x) − 1

] , (5.77)

where Gm(x) is the massive scalar propagator (4.31). Note that we have Gm = Gm(0).

c. Zero modes:

In order to compute D, we must take into account the translational zero modes of S ′′= 1l−O

and the projector P0 onto the subspace of zero modes. According to section III.C, these zero
modes are the partial derivatives of V inst, V zero

a = ∂aV
inst, and from section IV.A (see (4.6))

the projector is

P0r1r2 = c0

∑

a

∂aV
inst(r1)∂aV

inst(r2)

(with the constant c0 such that P2
0 = P0). In the large-d limit we may approximate P0 by

P0
var

P0
var
r1r2

= c
′
0

∑

a

∂aV
inst
var (r1)∂aV

inst
var (r2) (5.78)

and since V inst
var is a Gaussian function, Pvar

0 is easily computed. We obtain for its Fourier
transform

P̂0

var

k1k2
= − k1k2

m2
e−

1
2
(k2

1+k2
2)Gm(0) . (5.79)
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Finally, in the large-order formulas such as (3.53), to the instanton zero-modes is associated
the weight factor

W = g−
d
D

[
1

2πd

∫

r

(∇V inst)2

]d/2

.

In the large-d limit this gives

Wvar = g−
d
D

[
1

2πd

∫

r

(∇V inst
var )2

]d/2

= g−
d
D

[
m2

2π

]d/2

=

[
g−

2
D

2π

]d/2

(5.80)

so that
log (Wvar) = O(d) .

2. Large-d calculation of L

a. Series representation for L:

We now apply these results to the computation of the determinant, or rather of its logarithm

L = log (det′[S ′′]) . (5.81)

Since S ′′ = 1l−O and since det′ subtracts the zero modes, we can write

L = tr
[
log (1l−Q)

]
; Q = O− P0 . (5.82)

Note that L has an imaginary part since S ′′ has one negative eigenvalue λ−. We expand the
log as

L = −
∞∑

k=1

1

k
tr
[
Qk
]
. (5.83)

As we shall see, further simplifications occur in the large-d limit. In this limit we can
approximate Q by Qvar′ given by

Qvar′ = Ovar′ − P0
var , (5.84)

where Ovar′ defined by (5.76) is the Hessian −E ′′ at the variational instanton, computed in the
variational approximation, while P0

var defined by (5.79) is the projector on the zero-modes
of S ′′ in the variational approximation. Therefore we approximate L by

Lvar′ = −
∞∑

k=1

1

k
tr
[(

Qvar′
)k]

. (5.85)

b. “Beads” and “necklace” diagrammatic representation:

Starting from (5.77), (5.79) and using the fact that
∫
x
Gm(x) = 1/m2, we can write the

kernel of Qvar′ as

Q̂var′

k1,k2
= e−(k2

1+k2
2)Gm(0)/2

∫

x

[
e−k1k2Gm(x) − 1 + k1k2Gm(x)

]
, (5.86)
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and expanding in k1k2, we get a simple diagrammatic representation for Q̂var′

k1,k2
as a sum of

“watermelon” diagrams

Q̂var′

k1,k2
= e−(k2

1+k2
2)Gm(0)/2

∞∑

n=2

(−1)n

n!
(k1k2)

n

∫

x

Gm(x)n

= + + + ...

. (5.87)

Each line represents a propagator Gm. No internalM momentum flows in the diagram, the
p’s are external momenta relative to the embedding space Rd. In this series the term n = 0
is removed by the fact that O is defined by a connected correlator in (5.60); while the term
n = 1 is removed by the projector onto the zero modes P0.

Now we consider the tr[(Qvar′)
k
] in (5.85). Each trace is given by

tr
[(

Qvar′
)k]

=

∫
ddk1

(2π)d
· · · ddkk

(2π)d
Q̂var′

k1,−k2
Q̂var′

k2,−k3
· · · Q̂var′

kk ,−k1
. (5.88)

Thus Lvar′ can be represented as a sum over “necklace” diagrams made out of the “beads”
of (5.87). The integration over the k’s can be done explicitly and gives a decomposition of
the form

tr
[(

Qvar′
)k]

=
∑

n1,...,nk≥2

Pn1,...,nk
(d)

k∏

i=1

2m2Gm(0)
Ini

2nini!
, In =

∫

x

[
Gm(x)

Gm(0)

]n

, (5.89)

where Pn1,...,nk
(d) is a polynomial in d (the bulk space dimension), with integer coefficients,

given by the average

Pn1,...,nk
(d) = (−k1k2)n1(−k2k3)n2 · · · (−kkk1)nk (5.90)

with the normalized Gaussian independent variables ki ∈ Rd, i.e. ka
i k

b
j = δabδij . The

polynomial P can be computed by Wick’s theorem. Typical configurations are:

37335 2 2 6 443

Note that the first and last points are identified. Let us denote by N the total number of
lines N =

∑
ni in the diagram. From (5.90) the P ’s are non zero if and only if the ni’s are

either all even, or all odd.

• If k = 1 this is always true and Pn(d) is of degree n in d.

• If k > 1 and the ni’s are even, N ≥ 2k and the degree of P (d) is N/2 ≥ k.

• If k > 1 the ni’s are odd, N ≥ 3k and the degree of P (d) is 1 + (N − k)/2 > k.
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c. Large-d power counting:

We now look at the behavior of these terms when d→∞, ǫ fixed. First we rescale everything
in units of the variational mass m,

x→ x/m , p→ pm
2−D

2 , Gm(x)→ m2−DG(x) , (5.91)

that is set the variational mass m to unity in our calculations, since the tr[Qk] are dimen-
sionless quantities. We refer to Appendix G for the details on this rescaling. Then we note
that the propagator G(x) for x 6= 0 given by (4.31) is of order O(1) when d→∞

G(x) = (2π)−
D
2 |x| 2−D

2 KD−2
2

(|x|) → 1

2π
K0(|x|) = O(1) ,

while G(0) is of order O(d) since

G(0) = (4π)−
D
2 Γ (2−D

2
) → 1

2π

1

2−D ≃ d

4π(4− ǫ) = O(d) .

Thus the integrals In given by (5.89) are of order d−n

In =

∫

x

[
G(x)

G(0)

]n

= O(d−n) ,

and the term associated to the k-bead necklace [n1, n2, · · · , nk] in the decomposition (5.89)
is of order

[n1, n2, · · · , nk] → O
(
ddegree[P ]+k−N

)

where N =
∑
ni.

• If k = 1, we have seen that degree[P ] = N , and all the terms are of order d. Therefore,
if the series over the n’s converges (we shall discuss this later)

tr
[
Qvar′

]
= O(d) . (5.92)

• If k > 1 we have seen that there are two cases. For even necklaces the ni’s are all

even and degree[P ] = N/2 ≥ k so we obtain a term of order d k−N
2 ≤ d0 We note that

the most dominant terms are those with N = 2k. These are the [2, 2, · · · , 2] necklaces
whose beads contain 2 links (chains of bubbles).

(5.93)

For odd necklaces, the ni’s are all odd and degree[P ] = 1 + (N − k)/2 > k, while

N ≥ 3k. This gives a term of order d 1−N−k
2 ≤ d1−k ≪ 1. The conclusion is that (as

long as we can sum the necklace series) the k > 1 terms are of order O(1)

k > 1 ⇒ tr
[(

Qvar′
)k]

= O(1) , (5.94)

and that the dominant contribution is given by the chain of bubbles.
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d. Final result:

All the k > 1 terms in (5.89) are subdominant with respect to the k = 1 term. In the large-d
limit, L is of order O(d) and can be approximated by

L = − tr
[
Qvar′

]
+ O(1) . (5.95)

We shall check this result with explicit calculations. As we shall see, the summation of
the necklace series is not completely obvious, and is impaired by the UV divergences of the
theory. Let us also note that the imaginary part which comes from the unstable eigenmode
of S ′′ = 1l−O is an effect of order O(1) (since it is associated with one single eigenvalue).

D. Explicit calculations at large d

1. tr
[
Qvar′

]
and its large-d limit for ǫ > 0:

We first consider the leading term tr
[
Qvar′

]
, given by

tr
[
Qvar′

]
= tr

[
Ovar′

]
− d (5.96)

a. x-integral representation: tr
[
Ovar′

]
is easily calculated from (5.77) and (5.88).

tr
[
Ovar′

]
=

∫
ddk

(2π)d
Ovar′

k,−k =

∫
ddk

(2π)d
e−k2Gm(0)

∫

x

[
ek2Gm(x) − 1

]

The k-integration is Gaussian and gives, using the equation for m (5.61)

tr
[
Ovar′

]
= 2m2Gm(0)

∫

x

([
1− Gm(x)

Gm(0)

]− d
2

− 1

)
(5.97)

Since tr
[
Ovar′

]
is dimensionless we can set the variational mass m to unity m = 1, in the

r.h.s. of (5.97) (see Appendix G). Using the explicit form (5.65) for the propagator G(x)
and integrating over the x angular variables via

∫
dDx = SD

∫∞
0

dxxD−1 with x = |x| we
obtain

tr
[
Ovar′

]
= 22−D Γ

(
2−D

2

)

Γ
(

D
2

)
∫ ∞

0

dxxD−1



[
1− 2

[x
2

] 2−D
2
KD−2

2
(x)

Γ
(

2−D
2

)
]− d

2

− 1


 . (5.98)

Let us first consider this integral for finite (but a priori large) d, and study its convergence.

b. IR convergence:

At large x the integral is convergent. Indeed the massive propagator is exponentially de-
creasing as G(x) ≃ exp(−|x|). For finite d, and thanks to the −1 that comes from the
subtraction of the disconnected part, the integrand in (5.97) is also exponentially decreasing
at large x.
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c. UV divergences:

The small-x behavior of the integral (5.97) has in fact already been studied in Sect.(IV.C).
It was shown that this behavior is governed by the MOPE (4.48) and is related to the UV
divergences at one loop of the model. The integrand in (5.98) behaves as

∫ ···
0

dxxǫ−D−1
C0

with C0 given by (4.83). We thus recover the expected UV divergence at ǫ ≤ D, which is
proportional to the insertion of the operator 1l. This UV divergence appears in the series
representation (5.89) of tr

[
Ovar′

]
as the onset of the nonsumability of the series3. Indeed,

this series is

tr
[
Ovar′

]
= 2G(0)

∞∑

n=1

Pn(d)

2nn!
In with Pn = d(d+ 2) · · · (d+ 2n− 2) , (5.99)

and In =
∫

x
[G(x)/G(0)]n ∼ n− D

2−D at large n. It is easy to check that the series (5.99)

behaves as
∑

n n
−1+ d

2
− D

2−d and is convergent only if ǫ > D.
Since the model is defined for ǫ < D by dimensional regularization, the analytic continu-

ation of the integral (5.97) is its finite part (in the sense of distribution theory). Therefore
tr
[
Ovar′

]
is defined for ǫ > 0 by

tr
[
Ovar′

]
= 2G(0) × f.p.

∫

x

([
1− G(x)

G(0)

]− d
2

− 1

)
, (5.100)

or equivalently by the resummation of the series (5.99) by a zeta-function prescription.
For ǫ = 0 the integral has another UV divergence, which is canceled by the (∇r)2 coun-

terterm of the renormalized theory. We shall discuss this point later.

d. large-d limit: We can now take the limit of (5.99) when

d→∞ , ǫ > 0 fixed .

Since in this limit

G(x)→ 1

2π
K0(|x|) , G(0)→ 1

4π

d

4− ǫ
we obtain

tr
[
Ovar′

]
= d

1

4− ǫ f.p.

∫ ∞

0

dxx
[
e(4−ǫ)K0(x) − 1

]
+ O(1) . (5.101)

From the short distance behavior of the 2-dimensional propagator K0(x) ≃ log(1/x), the
last integral is

T1(ǫ) = f.p.

∫ ∞

0

dxx
[
e(4−ǫ)K0(x) − 1

]
=

∫ ∞

0

dxx
[
e(4−ǫ)K0(x) − 1− x−4+ǫ

]

and is UV finite for 0 < ǫ < 2. Thus we recover that tr
[
Ovar′

]
= O(d) in this case.

T1(ǫ) has a single pole at ǫ = 2, as expected. It is UV divergent when ǫ → 0. This will
be studied later.

3 This nonsumability has of course nothing to do with the large-order behavior we are after.
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2. tr

[(
Qvar′

)2
]

and its large-d limit for ǫ > 0:

We now perform the same analysis for tr [Q2]. We have, using (5.61)

tr

[(
Qvar′

)2
]

=

∫
ddk1

(2π)d

ddk2

(2π)d
Q̂var′

k1,−k2
Q̂var′

k2,−k1
=

∫
ddk1

(2π)d

ddk2

(2π)d
e−(k2

1+k2
2)Gm(0) ×

×
∫

x1

∫

x2

[
e−k1k2Gm(x1) − 1 + k1k2Gm(x1)

] [
e−k1k2Gm(x2) − 1 + k1k2Gm(x2)

]

(5.102)

Setting m = 1 and performing the k integrations we get

4G(0)2

∫

x1

∫

x2

{[
1−

[
G(x1) +G(x2)

2G(0)

]2
]− d

2

−
[
1−

[
G(x1)

2G(0)

]2
]− d

2

−
[
1−

[
G(x2)

2G(0)

]2
]− d

2

+ 1

− d
G(x1)G(x2)

4G(0)2



[
1−

[
G(x1)

2G(0)

]2
]− d

2
−1

+

[
1−

[
G(x2)

2G(0)

]2
]− d

2
−1

− 1



}

(5.103)

This integral is IR and UV finite as long as ǫ > 0. When ǫ = 0 we recover the UV divergence
when both x1 and x2 → 0.

Now in the large-d limit, ǫ fixed, since G(0) ∼ d and G(x) ∼ 1 we can expand the [· · · ]−d/2

and get

3d(d+ 2)

16G(0)2

∫

x1

∫

x2

G(x1)
2G(x2)

2 + O(d−1) =
3

16
(2D − ǫ) (2 +D − ǫ) + O(d−1)

≈ 3
(
1− ǫ

4

)2

+ O(d−1) (5.104)

This expansion is not valid for x1 and x2 = 0 when ǫ = 0 and this gives the 1/ǫ UV pole
(coupling constant renormalization), but this is an effect exponentially small in the large-d
limit. We have thus checked the fact that

tr

[(
Qvar′

)2
]

= O(1) (5.105)

3. tr

[(
Qvar′

)k
]

and its large-d limit for ǫ > 0:

Calculation of higher powers can be done along the same line. We get

tr

[(
Qvar′

)k
]

=
(
1− ǫ

4

)k

+ O(d−1) . (5.106)

VI. 1/d CORRECTIONS TO THE LARGE d LIMIT

In this section we study the first 1/d correction to the variational solution, which was
shown to be valid for large d, ǫ being kept fixed.
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A. 1/d diagrammatic

We first recall in this subsection how is constructed and organized the 1/d expansion,
following the ideas of our first paper [14]. We have performed the rescaling (5.91) so that
the variational mass m is set to unity. This rescaling is detailled in Appendix G. We denote
by c0 the normalized tadpole amplitude4 and the integration measure over d-momenta k is
now normalized so that we have

m = 1 , c0 = (4π)−D/2Γ((2−D)/2) = ,

∫

k

e−k2c0 = 2c0 (6.1)

The exact instanton potential is in these units of the form

V inst(r) = 2c0

∞∑

n=0

1

2nn!

(−1

2c0

)n

µn : (r2)
n
: , (6.2)

where now the normal products are defined with respect to the unit variational mass m = 1,
i.e.

: : = : :m=1

and the coefficients µn are of order 1 in the large-d limit, and are found to be

µn = −1 +
δn
d

+O(d−2) (6.3)

in the large-d limit, with δn = δn(D, d) given by a self-consistent equation that we recall
later. We remind the reader that if we set the µn = −1 we recover the variational instanton
V inst

var .

order n 0 1 2 3 4 · · ·

2n− vertex · · ·

couplings c0(d/2 − 2µ0) µ1 + 1 −µ2

2c0
µ3

(2c0)2
−µ4

(2c0)3
· · ·

O(1/d) c0(d/2 + 2− 2δ1/d)
δ1
d

1
2c0

−1
(2c0)2

−1
(2c0)3

· · ·

FIG. 5 Self energy (n = 0), mass (n = 1) and interaction (n ≥ 2) vertices and couplings in the U

expansion (the symmetry factors 1/(2nn!) for the vertices are not written).

The perturbative diagrammatics is obtained by writing

V inst(r) =
1

2
r2 + U(r) (6.4)

4 c0 is denoted C in [14].
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and treating U as a perturbation. The corresponding 2n-vertices and couplings are schemat-
ically depicted on Fig. 5. The last line represents the couplings which have to be kept at
order 1/d. The propagator is the usual bosonic propagator with unit mass G(x). The one-
loop tadpole graph is absent since it is subtracted by the normal-product prescription. The
external r-space indices a = 1, · · · , d flow along the closed lines as in a standard O(n) model.

= 1 + + + + · · ·

FIG. 6 The chains of bubbles in the large-d expansion

It was shown in [14] that the diagrams can be reorganized in a 1/d expansion by summing
all the chains of bubbles, as depicted in Fig.6. More precisely, the propagator for the chain
is given by the geometric series (in Fourier transform w.r.t. x space)

= H(p) =

[
1 + µ2

d

4c0
B(p)

]−1

, (6.5)

p being the D-momentum flowing through the chain, and B(p) the bubble amplitude (one-
loop diagram)

= B(p) =

∫

p

eipxG(x)2

=
1

π

arcth
(
p/
√

4 + p2
)

p
√

4 + p2
=

1

π

arcsinh (p/2)

p
√

4 + p2
when D = 2

(6.6)

For zero momentum, we have

B(0) =
2−D

2
c0 . (6.7)

In practice we also have to consider the chains with n ≥ 1 or n ≥ 2 bubbles. They are
depicted as follows, with the associated amplitude H(1)(p) and H(2)(p)

= + + + · · ·

= H(1)(p) =

[
1 + µ2

d

4c0
B(p)

]−1

− 1
(6.8)

= + + · · ·

= H(2)(p) =

[
1 + µ2

d

4c0
B(p)

]−1

− 1 + µ2
d

4c0
B(p)

(6.9)

At the diagrammatic level this reorganisation of perturbation theory is very similar to what
is done in the 1/N expansion for the (linear or non-linear) sigma models, where the bubble
chain is the propagator for an auxiliary σ field, and the interaction involves only rrσ and
σk (k ≥ 3) terms. The analytic structure of the perturbation theory is nevertheless quite
different, in particular for the UV and IR divergences of the theory, as already discussed in
[14], and as we shall see below.
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vertex · · ·

coupling µ1 + 1
√

−µ2

2c0
1√
2c0

µ3

(−µ2)3/2
1

2c0
−µ4

(−µ2)2 · · ·

coupling at order 1
d

δ1
d

1√
2c0

− 1√
2c0

1
2c0

FIG. 7 The vertices contributing to −V inst(r) and their couplings in the large-d-reorganized per-

turbative expansion.

After this resummation the new vertices with their couplings are depicted in Fig.7. The
crucial point is that in the limit d → ∞, ǫ fixed, since D → 2 the tadpole coefficient c0
diverges as d so that

µ2
d

2c0
→ −8π

(
1− ǫ

4

)
= O(1) (6.10)

and the bubble propagator H(p) is of order O(1), while the vertices are of order 1/
√
d, 1/d,

etc. It was shown in [14] that only a finite number of diagrams contribute to a given order
in 1/d, and explicit calculations where done at the first non-trivial order.

With these notations we have found in [14] that at order 1/d the following diagrams
contribute to the expectation value of the exponential (or vertex) operator

〈eikr(0)〉V = e−
k2

2
c0




1 − k2




+ + + +




+ (k2)
2




(6.11)
The symmetry factors of the diagrams are not written, they are respectively 1/2, 1/4, 1/2,
1/4, 1/4 and 1/8 for the diagrams in (6.11). No r-space indices flow through the unclosed
line5 diagram is (taking into account the couplings and the symmetry factors)

=
1

2
(1 + µ1)

∫

x

G(x)2 =
2−D

4
(1 + µ1)c0

5 This is different from the following graph considered in [14], whose amplitude differs by a factor of d d.

=
d

2
(1 + µ1)

∫

x

G(x)2
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Similarly for the last diagram

=
1

8

−µ2

2c0

∫

x

∫

y

G(x)2G(y)2H(x− y)

The exact instanton saddle-point equation, which is (once again)

V̂ (k) + 〈eikr(0)〉V = 0 (6.12)

fixes the µn’s. In particular µ1 is given by

µ1 = −1

d

∫

k

k2 V̂ (k) e−
k2

2
c0 (6.13)

and using (6.12) and (6.11) at order 1/d we get the equation for µ1 (i.e. δ1) which reads
diagrammatically

+
2c0
d



−k4




+ + + +




+ k6




= 0 , (6.14)

where k4 and k6 mean the average value of k4 and k6 respectively with the Gaussian weight
e−k2c0 . Since

k4 =
d(d+ 2)

(2c0)2
≃
(
d

2c0

)2

, k6 =
d(d+ 2)(d+ 4)

(2c0)3
≃
(
d

2c0

)3

(6.15)

are of order O(1) we recover that µ1 = −1 +O(1/d).

B. The Hessian O

We now show how this method to construct a 1/d expansion can be applied to compute
the matrix elements of the Hessian S ′′ and of the associated operator O. We start from the
expression for O in momentum space

Ôk1k2 =

∫

x

〈
eik1r(o)eik2r(x)

〉conn

V
=

∫

x

〈
eik1r(o)eik2r(x)

〉
V
−
〈
eik1r(o)

〉
V

〈
eik2r(x)

〉
V

(6.16)

and we use our perturbative rules to expand the e.v. 〈· · · 〉V in 1/d.

1. O at order 1:

At leading order O(1), we get (5.77) that we can represent as a sum over diagrams with
n ≥ 1 propagators between o and x, integrated over x

Ô
(0)
k1k2

=

∫

x

e−(k2
1+k2

2)c0/2
[
e−k1k2G(x) − 1

]

=

∞∑

n=1

e−k2
1c0/2e−k2

2c0/2(ik1 · ik2)
n n lineso x =

∞∑

n=1

xn lineso

(6.17)
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where the integration over x and the symmetry factor 1/n! of the graphs are implicit. We
have introduced here an additional diagrammatic notation, which will be very convenient in
the following discussion.

2. A diagrammatic representation for the vertex V̂ (k):

The circles in the last graph are a symbol for the factors which depend respectively on
k1 and k2 and are attached to the vertices o and x. More precisely, the circle represents the
exponential e−k2c0/2 and each line entering into the circle represents an additional (multi-
plicative) factor ik, with an external space index a carried by the line. Thus the following
picture, a circle with n external lines, represents the factor

k

1

2

n

= e−k2c0/2 (ika1) · · · (ikan) . (6.18)

3. O at order 1/d:

Now we make the perturbative expansion and keep the diagrams which contribute to O

at order O(1/d) only. We find that only (!) 21 different (classes of) diagrams contribute

Ô
(1)
k1,k2

=
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

.

(6.19)
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4. Diagrammatic for the mass renormalization and V :

Moreover, Eq. (6.14) for the mass renormalization µ1 may be rewritten at order O(1/d)
with our notations as

= + + +O(1/d2) . (6.20)

While Eq.(6.11) for V reads

− V̂ (k) = + + + + + + +O(1/d2) (6.21)

Note that in Eq. (6.19) the first 4 diagrams of lines 1 and 2, and the 4 diagrams of line 3 can
be absorbed into a mass shift m = 1 → m = 1− in the leading contribution represented
in (6.17). The same mass shift absorbs the diagrams 2–5 in Eq.(6.21) for V .

C. The zero-mode projector P0

We now compute the projector onto the zero-modes

P̂0k1k2
=

ik1V̂ (k1) · ik2V̂ (k2)
1
d

∫
k
k2V̂ (k)2

(6.22)

1. P0 at order 1

We have already seen that at leading order in the 1/d expansion
∫
k
k2V̂ (k)2 = d and since∫

x
G(x) = Ĝ(0) = 1

m2 = 1 so that with our diagrammatic notations

P̂0

(0)

k1k2
=

∫

x

(−k1k2)e
−k2

1c0/2e−k2
2c0/2G(x) = . (6.23)

Thus the projector P0 subtracts the one-line diagram in O (see Eqs.(5.86)-(5.87)).

2. P0 at order 1/d

We can now compute explicitely the first correction in 1/d to P0, using (6.21) for V . It
is easy to see that the numerator in (6.22) gives all the diagrams in the lines (rows) 1 and
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2 of (6.19) with n = 1 line between the two points o and x.

(−k1 · k2)V̂ (k1)V̂ (k2) = +

+ + + + +

+ + + + + +

(6.24)

The denominator is computed from the explicit form of V given by (6.20)-(6.21). In fact it
is easy to see, using (6.11), that

1

d

∫

k

k2V̂ (k)
2

= 1− 2
δ1
d

+O(1/d2) = 1− − − − +O(1/d2)
(6.25)

and since Ĝ(0) = 1 we can write × = , etc. We obtain that only (!)
16 diagrams contribute to P0; the final result is

P̂0k1k2
= + + + +

+ + + + + +

+ + + + + + + O(1/d2)
(6.26)

We note that the denominator gives all the one-line reducible diagrams (with only a single

line joining o and x) with a tadpole-like graph attached to the line. The diagrams ,

and although one-line-reducible, are not contained in (6.26).
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3. An all order argument relating P0 with tadpole graphs

A simple general argument shows that the denominator in (6.22), given at first order by
the tadpole diagrams depicted in (6.25), is given at all orders by the tadpole diagrams with
two truncated external legs attached to the same vertex. In diagrammatic language we shall
show that

1− − − − · · · =
1

d

∫

k

k2 V̂ (k)2 (6.27)

The l.h.s. of (6.27) is nothing but

1− − − − · · · =
1

d

〈
V ′′(r(o)

)〉
V

with V ′′(r) =
∑

a

∂2V (r)

∂ra∂ra
(6.28)

(the two r derivatives pick two legs out of the vertex V (r)). We can rewrite it as

V ′′(r(o)
)

=

∫

r

V ′′(r) δ
(
(r− r(o)

)
=

∫

k

(−k2) V̂ (k) eikr(o) (6.29)

and using the exact equation (6.12) for the instanton potential, we get

〈
V ′′(r(o)

)〉
V

=

∫

k

(−k2) V̂ (k)
〈
eikr(o)

〉
V

=

∫

k

k2 V̂ (k)2 (6.30)

Q.E.D.
(6.27) implies that P0 will contain all the tadpole chains with tadpole graphs attached at

the o and x end-points, of the form

P0 = (6.31)

D. Final result for Q = O− P0

As a consequence the subtracted operator Q = O−P0 is given at order O(1/d) by the same
diagrams as those depicted in Eq.(6.19) for O, with the simple restriction that the diagrams
in the first two lines of (6.19) must have at least 2 lines joining the two end-points (n ≥ 2),
and that the diagrams in the third line must have at least one non-dressed line joining the
two end-points (n ≥ 1), while for the diagrams in the fourth line, there is no additional
restriction (no constraints on the number n of simple lines, n ≥ 0). Using equation (6.20)
for µ1 we can rewrite it as a sum over only 12 graphs (instead of 21!)

Q̂
(1)
k1,k2

= 2
n>1 lines

+
n>1 lines

+
n>1 lines

+ 2
n>1 lines

+
n>1 lines

+
n>1 lines

+ 2
n>0 lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

.

(6.32)
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E. The determinant D

We now compute the log of the determinant of instanton fluctuations

L = log(D) = tr log(1l−Q) = −
∞∑

k=1

1

k
tr(Qk) (6.33)

1. Diagrammatic representation of the trace

With our rescalings (see Appendix G) each trace still reads

Tk = tr(Qk) =

∫

k1

· · ·
∫

kk

Q̂k1,−k2Q̂k2,−k3 · · · Q̂kk ,−k1 (6.34)

and with the representation for the kernel Q, we have to compute integrals over k of the
form,
∫

k

e−k2c0(−ika1) · · · (−ikam) (ikb1) · · · (ikbn) = (−1)
m−n

2 (2c0)
1−m+n

2

∑

pairing

δ.. · · · δ.. . (6.35)

Using Wick’s theorem we can represent each term by pairing of lines between the left Q and
the right Q, as already discussed when we introduced the diagrammatic necklace represen-
tation for L. This is depicted below

= m lines entering

{ }
n lines exiting (6.36)

∫

k

= (−1)
m−n

2 (2c0)
1−m+n

2 . (6.37)

For instance for m = n = 2

= + + (6.38)

and for m = 3, n = 1

= + + . (6.39)

The vertical dotted line indicates that no M-momenta p flows through the vertex, since
each Q is attached to a different replica of the manifoldM. With these graphical notations,
if we represent the kernel Q by the “bead”

Q = (6.40)

tr[Qk] is represented by the k-bead necklace (with periodic boundary condition between the
left and right dashed vertical lines)

tr[Q] = , tr[Q2] = , tr[Qk] = .

(6.41)
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2. tr [Q]

We first consider the term k = 1. We have already seen that at leading order in 1/d

tr
[
Q(0)

]
=

∫

k

Q̂
(0)
k,−k =

∫

k

∫

x

e−k2c0
(
ek2G(x) − 1− k2G(x)

)
= O(d) (6.42)

(Q(0) = O(0) − P0
(0)). This can be depicted graphically as

tr
[
Q(0)

]
=

∞∑

n=2

(2c0)
1−n

[

n lines

]

=
∞∑

n=2

(2c0)
1−n

[
+ +

]
+ O(1/d)

(6.43)

and one checks easily that the first graph is of order O(d), the second and the third of order
O(1), since each closed loop carries a factor of d, and there are periodic boundary conditions
between the left and right vertical dashed lines.

It is easy to see that the trace of the first order correction is of order O(1)

tr[Q(1)] = tr
[
O(1) − P0

(1))
]

= O(1) (6.44)

and that at this order it is given by the following 12 diagrams

2
n>1 lines

+
n>1 lines

+
n>1 lines

+ 2
n>1 lines

+
n>1 lines

+
n>1 lines

+2
n>0 lines

+
n lines

+
n lines

+
n lines

+
n lines

+ n lines

.

(6.45)

This corresponds to a specific, but complicated analytical expression, that we do not write
here.

Finally it is quite easy to check that higher order diagrams that contribute to the term
of order O(d−r) of Q, will contribute to the terms of order O(d1−r) of tr[Q].

3. tr
[
Q2
]

We have seen in Sect. V.C that tr
[
Qvar′2

]
was of order O(1). Since Qvar′ = Q(0) we

could have expected that the next order correction Q(1) would contribute by a term of order
O(1/d) to tr[Q2]. We shall see that this is not exact, but that there are nevertheless a lot
of simplifications, and that a simple subclass of diagrams contributes at order O(1).
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In fact there are simply two beads which contribute at leading order to tr[Q2]. These are

→ + . (6.46)

More precisely, the only 2-bead necklaces which are of order O(1) are

+ + + + .

(6.47)
A careful but not difficult analysis shows that each of these diagrams is of order O(1), and
that all the other possible diagrams are of order O(1/d).

The first diagram contributes by

=
1

2
d2 (2c0)

−2B(0)2 = 2

[
d

4c0
B(0)

]2

(6.48)

(we have taken into account the different contractions of the vertices of (6.38) which give
this diagram). The four last one give the square opf a single bead amplitude

[
+

]2
(6.49)

with the single bead amplitude

+ =
1

2c0

(
1

2
dB(0) +

1

4
d2 1

2c0
B(0)2H(0)

)
=

dB(0)

4c0

[
1 +

d B(0)
4c0

1 + µ2
d B(0)
4c0

]
,

(6.50)
where we used (6.5) and (6.6).

We thus see that the chain of bubbles contributes already to tr[Q2] at the leading order
O(1). In the large-d limit, ǫ being fixed, since µ2 → −1 and dB(0)/4c0 → 1− ǫ/4 we get

tr[Q2] = 2
(
1− ǫ

4

)2

+

(
4

ǫ
− 1

)2

+ O(1/d) . (6.51)

4. tr
[
Qk
]
, k > 2

The same analysis can be done for the general term tr[Qk]. Here also the only diagrams
that contribute to order O(1) are those of (6.46), and more precisely those with the beads
of (6.50). It follows that at leading order

tr[Qk] =
[

+
]k

=

[
4

ǫ
− 1

]k

+ O(1/d) . (6.52)

We shall comment later on the meaning of the pole in 1/ǫ.
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5. Summation of the log series

We see that, except for more complicated graphs coming from the k = 1 and k = 2 terms,
the whole series (6.33) for L = log(D) contains the series −

∑
k>1

1
k
(4/ǫ− 1)k which can be

resummed formally as a logarithm, so that (the second term compensates for the missing
term in the sum giving the log)

L = −tr
[
Q(0) + Q(1)

]
+

[
4

ǫ
− 1

]
+
[
1− ǫ

4

]2
+ log

[
2− 4

ǫ

]
+ O(1/d) . (6.53)

This last series is not convergent if ǫ < 2 and the argument of the logarithm is negative,
hence L has an imaginary part ±π.

In fact this is not surprising, and is a feature of the model, since we have in fact recovered
the unstable eigenvalue λmin = 1 − λ− of S” of the Hessian S”, which indeed gives an
imaginary part ±π to L. We show this fact in the next section.

F. The unstable mode

It was shown in [14] and in Sect. III.C.2 by general arguments that as long as 0 ≤ ǫ < D
the Hessian S”[V inst] has one single negative eigenvalue λmin < 0, corresponding to the mode
of unstable fluctuations around the instanton configuration.

In appendix F we derive a variational estimate for an upper bound for this λmin. This
estimates is given by Eq. (F16) and becomes in the large-d limit

λvar
min =

−2ǫ(D − ǫ)
(2−D)(2D − ǫ) + ǫ2

→ 2− 4

ǫ
when D → 2, ǫ fixed . (6.54)

This is precisely the argument of the log in (6.53).
Here we show that this is not a coincidence, and that the variational bound λvar

min is
saturated in the limit d→∞, ǫ finite, so that the infinite series of necklace diagrams, with
beads made themselves out of chains of bubbles of (6.50) reconstructs precisely the logarithm
of the unstable eigenvalue log(λmin).

λmin = 2− 4

ǫ
when d→∞, ǫ fixed . (6.55)

To obtain this result, we shall simply take the following ansatz Ψ− for the unstable eigenmode

Ψ̂−(k) =
1

2
k2 e−k2c0/2 (6.56)

and show that at leading order

(1l−Q) Ψ− = (2− 4/ǫ) Ψ− + O(1/d) . (6.57)

Let us first compute Q(0)Ψ−

Q̂(0)Ψ̂−(k1) =

∫

k2

Q̂
(0)
k1,−k2

Ψ̂−(k2) =
1

2
e−k2

1c0/2

∫

k2

e−k2
2c0k2

2

∫

x

[
e−k1k2G(x) − 1 + k1k2G(x)

]

=
1

2
2c0 e−k2

1c0/2

∫

x

(
e

k21
4

G(x)2

c0

(
k2
1

4

G(x)2

c20
+

d

2c0

)
− d

2c0

)
.

(6.58)
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In the limit d→∞ since c0 ∼ d the dominant term is

1

2

d

4c0
k2
1 e−k2

1c0/2

∫

x

G(x)2 ≃ d

4c0

1

4π
Ψ̂−(k1) =

(
1− ǫ

4

)
Ψ̂−(k1) . (6.59)

Note that we may represent graphically Ψ̂− and Q̂Ψ̂− by

Ψ̂− = , Q̂Ψ̂− = (6.60)

(where the little handle represents δab) and that the dominant contribution (6.59) at large
d corresponds simply to the diagram

Q(0) Ψ− ≃ = B(0)
1

2c0

d

2
Ψ− . (6.61)

Note that the rightmost little loop is just = d/2.
We can now compute in the large-d limit the contribution of Q(1)Ψ−. It is given a priori

by all the diagrams of (6.19) inserted into (6.60). However a careful but easy analysis shows
that the only diagram which contributes finally at leading order O(1) is the chain of bubbles,
that appears already in (6.50)

Q(1)Ψ− ≃ = B(0)H(0)
−µ2

2c0

d

2
B(0)

1

2c0

d

2
Ψ−

=
4

ǫ

(
1− ǫ

4

)2

Ψ− when d→∞
. (6.62)

Now if we consider the graphs that appear in the higher-order terms Q(r) of the 1/d
expansion of Q, one can see that when applied to Ψ− they also give only terms of order at
most O(1/d). Hence we have

QΨ− = Q(0)Ψ− + Q(1)Ψ− +O(1/d) (6.63)

and combining (6.59) and (6.62) we obtain (6.57). Q.E.D.

G. The zero-mode measure

Finally, we have to compute the 1/d correction to the weight W for the collective-
coordinate measure for the instanton. According to (3.55), this weight is given by

W = gd/D

[
1

2π d

∫

r

(∇V )2

]d/2

= gd/D

[
1

2π d

∫

k

k2V̂ (k)2

]d/2

, (6.64)

and using the explicit form for V , and in particular (6.25) we get (for D → 2)

W =
[ g
2π

]d/2

g
4−ǫ
2 e−δ1(ǫ)

(
1 +O(1/d)

)
, (6.65)

where δ1(ǫ) is the coefficient for the mass correction at order 1/d defined by (6.3). δ1(ǫ) is
of order O(1) in the large-d limit, its exact value is given by the self-consistent equation
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(6.13)-(6.20). The large-d limit for δ1(ǫ) was already obtained in [14]. It is given by the
integral

δ1(ǫ) =
1

4− ǫ

∫ ∞

0

dp p
[
− log

[
1−

[
1− ǫ

4

]
J(p)

]
−
[
1− ǫ

4

]
J(p)

]
, J(p) =

2 arcsinh(p/2)

p
√

1 + p2/4
,

(6.66)
which is convergent as long as ǫ > 0.

VII. THE LIMIT ǫ = 0 AND THE RENORMALIZED THEORY

We are interested in the renormalized theory in which the UV divergences have been
subtracted and the limit ǫ→ 0 has been taken. We have already discussed in Section IV the
UV divergences and how they are renormalized. Here we discuss this limit in more detail
and its interplay with the large-d limit. Our main result is that the 1/d expansion is plagued
by IR divergences when ǫ = 0, so that the limits d→∞ and ǫ→ 0 do not simply commute.
As we shall see in our discussion, this does not mean that our instanton calculus does not
make sense at ǫ = 0, but rather that when ǫ = 0 the large-d limit is of a different nature
and contains non-analytic terms in d such as logarithms of d.

A. Minimal subtraction schemes

To study the renormalized theory at a given dimension d we must first specify a renor-
malization scheme. We shall use the minimal subtraction scheme (MS) such that the field
and coupling-constant counterterms in the original action subtract the poles at ǫ = 0 (see
Eqs. (4.89)-(4.90)). In fact the definition of a MS scheme requires some care. Indeed, since
ǫ = 2D−d(2−D)/2 depends both on D and d (the manifold and bulk space dimensions) the
limit ǫ→ 0 to construct the renormalized theory of aD-manifold in d = dc(D) = 4D/(2−D)
dimension can be taken in different ways. These different limits corresponds to different
renormalized theories which differ by a finite renormalization of the field and the coupling
constant, i.e. these limits correspond to different renormalization schemes.

1. Definition of the MS-D and MS-d schemes

1. MS-D scheme: A first scheme is to work at fixed manifold dimension D = Dc and to
take the limit d→ dc(Dc) = 4Dc/(2−Dc). Then ǫ = (dc − d)(2−Dc)/2. This allows
direct comparison with the field theoretical calculations for SAW and polymers, since
for Dc = 1 and ǫ = ε/2 where ε = 4−d is the parameter of the standard Wilson-Fisher
expansion.

2. MS-d scheme: Another scheme, more natural for 2-dimensional manifolds (D = 2),
is to fix d = dc and to take the limit ǫ → 0 by varying D. In this case ǫ = (2 +
dc/2)(D −Dc) with Dc = Dc(dc) = 2dc/(4 + dc).
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2. Relation between the schemes

In both schemes we take as counterterms

Z(br) = 1− br
C1(Dc, dc)

ǫ
, Zb(br) = 1 + br

1

2

C2(Dc, dc)

ǫ
(7.1)

and the relation between the bare fields r and coupling constant b and renormalized ones rr
and br is

r = Z1/2rr , b = brµ
ǫZbZ

d/2 . (7.2)

We see that both ǫ and d appear explicitly in the second relation for b. At one loop it gives

b = µǫbr

[
1 + br

1

2

C2 − dC1
ǫ

+ · · ·
]
. (7.3)

In the MS-d scheme the last term gives

C2 − dC1 = C2(Dc, dc)− dcC1(Dc, dc) (7.4)

while in the MS-D scheme it gives

C2 − dC1 = C2(Dc, dc)− dcC1(Dc, dc) + ǫ
2C1(Dc, dc)

2−Dc

. (7.5)

We see that renormalization in the MS-D and the MS-d schemes with the same subtraction
mass scale µ amounts to a finite coupling-constant renormalization

bMS−d = bMS−D + b2MS−D

C1

2−Dc

(7.6)

or equivalently that the MS-d subtraction scale µMS−d and the MS-D subtraction scale µMS−D

are related by

log

[
µMS−d

µMS−D

]
=

2

2−D
C1

C2 − dC1
. (7.7)

Let us also note that we recover the combination of counterterms C2 − dC1 that appears in
the result (4.112) for the coefficient B (defined by Eq. (4.110)) of the UV pole in 1

ǫ
for the

effective action S[V ] (see Eq. (4.104)) and for L = tr logS ′′[V ].

B. Variational mass subtraction scale

Now for simplicity and in order to study more easily the large-d limit of the renormalized
theory we shall work with the normalizations of Appendix G where x and r are rescaled as
x→ mvarx, r→ mvar

(2−D)/2 and the coupling constant b is redefined by b→ mvar
ǫ−Db so that

the variational mass is now set to unity (mvar = 1) in all the calculations. Since the rescaling
of the coupling constant amounts to g → mvar

−Dg, this last rescaling amounts to choosing as
subtraction scale a multiple of the variational mass (µ→ µmvar) in the renormalized theory.

In this normalization the field and coupling-constant counterterms (as defined in (4.91))
C1 = C1(Dc, dc) and C2 = C2(Dc, dc) in the action become (see Appendix G and in particular
Eqs. (G30)-(G31))

C1 =
−SD

2D

[
c0
d0

]1+ d
2

, C2 =
2S2

D

(2−D)2

Γ[D/(2−D)]2

Γ[2D/(2−D)]

[
c0
d0

]1+ d
2

. (7.8)
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The logarithm of the renormalized instanton determinant Lr is still given by (4.108)

Lr = L +
(
g

1
D
r µL

)−ǫ
[
C1

ǫ
〈(∇r)2〉V +

C2

2ǫ

∫

r

V (r)2

]
. (7.9)

We have seen that in the large-d limit (ǫ fixed), the first counterterm is of order one C1 = O(1)
while the second one is exponentially small, C2 ∼ O(exp(−d)). For our discussion of the
variational approximation and of the large-d limit we only have to consider the wave-function
counterterm C1 = C1(D, dc(D)) = C1(Dc(d), d) which is given explicitly when ǫ = 0 by

C1 = − 4

D

(4π)D/2

Γ[D/2]

[
Γ[(2−D)/2]

−Γ[(D − 2)/2]

] 2+D
2−D

= −4

d

(4π)
2d

4+d

Γ[d/(4 + d)]2

[−Γ[−4/(4 + d)]

Γ[4/(4 + d)]

]− d
2

(7.10)

C. Renormalized theory in the variational approximation for finite d

We first consider the renormalized instanton determinant in the variational approxima-
tion, but for finite embedding space dimension d, following the lines of Sect. V.D. We thus
approximate L = log det′[S ′′] by L(0) = −tr

[
Q(0)

]
(as defined by Eq. (6.42)). This gives,

after integration over k and using (G11),

L(0) = −tr
[
Q(0)

]
= −

∫

k

e−k2c0

∫

x

[
ek2G(x) − 1− k2G(x)

]
= d−2c0

∫

x

([
1− G(x)

c0

]− d
2

− 1

)
.

(7.11)
To renormalize consistently L we must take for the condensate 〈(∇r)2〉V in the counterterm
in (7.9) its value in the variational approximation

〈(∇r)2〉V → 〈(∇r)2〉m=1 = d

∫

p

p2

p2 + 1
= −dc0 (7.12)

(we use dimensional regularization), and neglect the coupling-constant counterterm C2, since
there is no coupling-constant renormalization in the variational approximation. Thus we
obtain for the renormalized log in the MS-D scheme

L(0)
ren = lim

ǫ→0, D fixed

[
L(0) − dc0

(
g

1
D
r µL

)−ǫ C1(D)

ǫ

]
= −Bvar

[
1

D
log(gr) + log(µL)

]
+ L

(0)
MS−D

(7.13)
with

Bvar = −dc(D)C1(D)c0(D) =
32

(2−D)2

[
Γ[(2−D)/2]

−Γ[(D − 2)/2]

] 4
2−D

(7.14)

and

L
(0)
MS−D = lim

ǫ→0,D fixed

[
L(0) − dc0

C1(D)

ǫ

]
. (7.15)

Integrating over the angular degrees of freedom of x we can rewrite L(0) as

L(0) = d− 2c0(D)SD I , I = f.p.

∫ ∞

0

dxxD−1

([
1− G(x)

c0

]− d
2

− 1

)
, (7.16)
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where the finite part prescription “f.p.” deals with the short-distance divergence at x = 0
still present when ǫ > 0. The UV divergence of I comes from the short-distance behavior of
the propagator G(x), obtained from (4.33)

G(x) = c0 − d0 x
2−D +

c0
2D

x2 − d0

2(4−D)
x4−D +O(x4) . (7.17)

This implies that the integrand in I behaves at small x as

I ≃
∫ ···

0

dx

[
c0
d0

]d
2
[
xǫ−D−1 +

d

4D

c0
d0

xǫ−1 − d

4(4−D)
xǫ+1−D +O(xǫ+1)

]
. (7.18)

The first term gives the UV pole at ǫ = D, which is subtracted by dimensional regularization,
and is dealt with by the f.p. prescription. The second term gives the UV pole at ǫ = 0.
The third one gives a non-singular pole at ǫ = D − 2, but will be important in the large-d
limit. Now we use the explicit result (7.8) for C1, which implies that we can rewrite the
counterterm in (7.15) as

dc0
C1(D)

ǫ
= −2c0SD

[
c0
d0

]1+
dc(D)

2 d

4D

∫ 1

0

dxxǫ−1 . (7.19)

Thus this counterterm cancels the pole at ǫ = 0, but we must notice that since we use the
MS-D scheme, there is a slight difference between the coefficient of the xǫ−1 term in (7.18)
and (7.19): the first one contains [c0/d0]

1+d/2 and the second one [c0/d0]
1+dc(D)/2. Since

d = dc(D)− 2ǫ/(2−D) this gives a difference of order O(ǫ) for the residue of the poles at
ǫ = 0, hence a term of order O(1) in the limit ǫ → 0. We carefully rewrite the expression

(7.15) for L
(0)
MS−D as

L
(0)
MS−D = lim

ǫ→0, D fixed

{
d+

dc0
4D

[
c0
d0

] 2+D
2−D 1

ǫ

[
1−

[
c0
d0

] −ǫ
2−D

]
− 2c0SD I′

}

I′ =

∫ ∞

0

dx

[
xD−1

[[
1− G(x)

c0

]− d
2

− 1

]
−
[
c0
d0

] d
2

xǫ−D−1 − d

4D

[
c0
d0

]1+ d
2

xǫ−1θ(1− x)
]

(7.20)

θ(1− x) = 1 if x < 1, 0 if x > 1 is the Heaviside step function. This integral representation
is a priori valid for ǫ > 0 but is now convergent if we take the limit ǫ → 0. We can
interchange this limit and the small x integration and obtain, using dc(D) = 4D/(2 − D)
and SD = 1/(2−D)d0,

L
(0)
MS−D = d+

c0
(2−D)2

[
c0
d0

] 2+D
2−D

log

[
c0
d0

]
− 2

2−D
c0
d0

I′

I′ =

∫ ∞

0

dx

[
xD−1

[[
1− G(x)

c0

]− 2D
2−D

− 1

]
−
[
c0
d0

] 2D
2−D

x−D−1 − 1

2−D

[
c0
d0

] 2+D
2−D

x−1θ(1− x)
]

(7.21)

This last integral over x is UV and IR convergent as long as D < 2. It can be computed
numerically.
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For D = 1 we have c0 = 1/2, d0 = 1/2 and G(x) = e−|x|/2, and we obtain

L = 4− 2I′ , I′ =

∫ ∞

0

dx
[[

1− e−x]
]−2 − 1− x−2 − x−1θ(1− x)

]
= ζ(0) = −1

2
(7.22)

Details of the calculation: We compute the integral

L = 4− 2I′ , I′ =

∫ ∞

0

dx
[[

1− e−x]
]−2 − 1− x−2 − x−1θ(1 − x)

]
.

First we put a regulator ε, and notice that the last term is here to subtract the pole in ε

I′ = lim
ε→0

J(ε)− 1

ε
, J(ε) = f.p.

∫ ∞

0

dxxε
[[

1− e−x]
]−2 − 1

]
.

Now

J(ε) =

∞∑

n=1

(n+ 1)

∫ ∞

0

dxxε e−nx =

∞∑

n=1

(n+ 1)Γ(ε+ 1)n−ε−1 = Γ(ε+ 1)
(
ζ(ε) + ζ(ε+ 1)

)

Now we use

ζ(0) = −1

2
, ζ(1 + ε) =

1

ε
+ γE +O(ε) , Γ(1 + ε) = 1− γEε+O(ε2)

and obtain

J(ε) =
1

ε
− 1

2
+O(ε) hence I = −1

2

But note that Mathematica r© 5 gives the result directly. For D 6= 1 this integral representation

d 0 2 4 6 8 10 12 14 16 20

L
(0)
MS−D 2 4.01 5 6.60 9.16 13.0 18.5 25.9 35.6 62.7

TABLE I

allows easy numerical integration. This gives the following results, presented on Table I and

Figure 8. Finally, we see on the numerical results that L
(0)
MS−D diverges when d → ∞ (i.e.

when D → 2). As we shall see later, it behaves as

L
(0)
MS−D ≃ (2eγE)−4 d3 (7.23)

and this asymptotic behavior is reached as soon as d ≃ 20, as shown on Fig. 9.
Details of the calculation: To compute the integral I′ numerically, it is more convenient to separate the

integral over x ∈]0, 1] and over x ∈ [1,∞[

I′ = I′
1 + I′

2 , I′
1 =

∫ 1

0

dx [· · · ] , I′
2 =

∫ ∞

1

dx [· · · ] . (7.24)

For the second one we can integrate directly the first term, and explicitly the counterterms and get

I′
2 = − 1

D

[
c0
d0

] 2D

2−D

+ I′′
2 , I′′

2 =

∫ ∞

1

dxxD−1

[[
1− G(x)

c0

]− 2D

2−D

− 1

]
. (7.25)

For the first one it is better to over-subtract it, in order to improve the integration at x = 0 and the study

of the large-d limit, and write

I′
1 = − 1

D
− D

(2−D)2(4 −D)

[
c0
d0

] 2D

2−D

+ I′′
1 (7.26)
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FIG. 8 L = L
(0)
MS−D as a function of the external dimension d.
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FIG. 9 L(0)(d) (black curve) in Log-Log coordinates compared to its large-d asymptotics (grey

curve, straight line).

I′′
1 =

∫ 1

0

dx

[
xD−1

[
1− G(x)

c0

]− 2D

2−D

−
[
c0
d0

] 2D

2−D

x−D−1 − 1

2−D

[
c0
d0

] 2+D

2−D

x−1 +
D

(2−D)(4 −D)

[
c0
d0

] 2D

2−D

x1−D

]
.

(7.27)

Both integrals I′′
1 and I′′

2 are convergent for any D < 2 and have a smooth limit when D → 2.
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D. Do the limit d→∞ and the limit ǫ→ 0 commute?

1. An apparent paradox

For ǫ > 0 the variational approximation L(0) for L has a regular large-d limit. We have
studied it already in Sect. V.D.2. It is of order O(d) and is given by the convergent integral

L(0) = d

(
1− 1

4− ǫ f.p.

∫ ∞

0

dxx
[
e(4−ǫ)K0(x) − 1

])
, (7.28)

which is the large-d limit of the integral (7.16) (K0(x) is the Modified Bessel function of the
2nd kind).

This integral can be computed numerically. To study its UV structure, we use the small
x expansion for the 2D propagator

K0(x) = − log(x/2)− γE +
1

4
x2 (− log(x/2) + 1− γE) +O(x4) (7.29)

The integrand in (7.29) behaves at small x as

[eγE/2]ǫ−4

(
xǫ−3 +

4− ǫ
4

xǫ−1 (− log(x/2)− γE + 1) +O(x1+ǫ log x)

)
− 1 . (7.30)

The first term xǫ−3 gives the UV pole at ǫ = 2, and is subtracted by the f.p. prescription.
The second term xǫ−1 gives the poles at ǫ = 0 but the log x gives in fact a double pole, so
that

L(0) ≃ − d 4e−4γE

(
1

ǫ2
+

3

4 ǫ
+O(1)

)
. (7.31)

There seems to be a discrepancy between this calculation and the results of the previous
section:

• Here we take the limit d→∞, then ǫ→ 0; L(0) has a UV pole ∝ d/ǫ2

• Previously we took the limit ǫ→ 0, then d→∞; L(0) has a UV pole ∝ d2/ǫ

Clearly the limits ǫ→ 0 and d→∞ do not simply commute.

2. Resolution of the paradox

This apparent paradox can be understood if we use the results of the previous section
to study carefully how the bare quantity L(0) = d − tr[O(0)] behaves when both ǫ → 0 and
d → ∞. L(0) is given by (7.16) and in that limit the dominant contribution is the integral
I, and more precisely the terms of order x−1 when x→ 0 in the integral (7.18) for I. There
are two such terms, the dominant one of order xǫ−1 (which will give the UV pole at ǫ = 0),
and the subdominant one of order xǫ+1−D. These two terms combine so that in the large-d,
small-ǫ limit, we have

L(0) ≃ − d
2

ǫ
+

d2

ǫ+ 2−D with ǫ = 2D − d

2
(2−D) . (7.32)
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If we take the limit ǫ → 0 with d finite and large (hence 2−D small but non-zero) the
first term is singular, and we recover the standard single UV pole, while the second one
stays finite. Renormalization within the MS-scheme amounts to subtracting the first term
and we recover

L
(0)
MS-D ≃

d2

2−D =
d3

4D
. (7.33)

All the other terms contributing to L
(0)
ren are at most of order d2. Thus we recover the fact

that the renormalized L is of order O(d3).
If we now take the limit d→∞ with ǫ non-zero but small, we rewrite (7.32) as

L(0) ≃ − d2(2−D)

ǫ(ǫ+ 2−D)
= − 2d(2D − ǫ)

ǫ(ǫ+ 2−D)
≃ − 8d

ǫ2
(7.34)

and we recover the fact that the bare L is of order O(d) but with a double pole when ǫ→ 0.
Thus (7.32) contains both (7.33) and (7.34).

3. Discussion

Of course in the full theory, it is the first limit (ǫ → 0 then d → ∞) which must be
considered to study the large-d behavior of the renormalized theory. At the level of the
variational approximation framework, from the previous calculations one can show that at

large-d the variational renormalized log det L
(0)
MS-D has a regular large-d asymptotic expansion

in powers of 1/d,

L
(0)
MS-D = l00d

3 + l01d
2 + l02d + l03d

0 + · · · (7.35)

with the l0n’s real and finite.
Indeed, setting ǫ = 0, starting from (7.21), using equations (7.24)-(7.27) and the fact

that c0/d0 is analytic in 1/d (c0/d0 = 1 + O(1/d)), one sees that the only possible non-
analytic terms are the integrals I′′

1 and I′′
2. Now the mass= 1 propagator G(x) is analytic

in 1/d ∼ 2−D, except at x = 0, where it has a log(x) singularity when D = 2. At x = ∞
it behaves as exp(−x) for any D and it is then easy to see that I′′

2 is analytic in 1/d. The
integral I′′

1 given by (7.27) behaves at D = 2 as
∫
0
dxx log x and its nth derivative with

respects to D behaves as
∫
0
dxx logn x and is convergent for any n. Hence we deduce that

I′′
1 too has an (asymptotic) expansion in 2−D ∼ 1/d. Q.E.D.

Thus the variational renormalized theory at ǫ = 0 scales with d as d3 (and not as d),
but still is amenable by a 1/d expansion. As we shall see in the next section, the situation
becomes more complicated when we deal with the corrections to the variational approxima-
tion. Indeed, the perturbative expansion studied in Sect. VI is plagued with infra-red (IR)
divergences at ǫ = 0, in addition to the UV divergences, and we shall argue that this means
that the renormalized theory contains non-analytic terms such as log(d)’s in the large-d
limit.

E. Renormalized theory: first 1/d correction and IR divergences

1. The IR divergences at ǫ = 0

In section VI we have isolated the classes of diagrams in the expansion of the kernel Q

which give a contribution of order O(1) in L = tr log[1l−Q]. This analysis is valid provided
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that ǫ > 0. Indeed, as long as ǫ > 0 the individual diagrams are IR and UV convergent, and
the summation over the diagrams in each class in also convergent.

If we now take the limit ǫ→ 0, IR problems may occur when summing these diagrams.
First we consider the diagrams that contribute to tr[Q(1)], depicted in (6.45). In each of

the 11 classes of diagrams in (6.45) the sum over the n lines joining the left to the right
contribute to a similar sum as the sum considered in Sect. V.D.1 at leading order, i.e. to
integrals of the form

∫

x

∫

k

(
e−k2(c0−G(x)) − e−k2(c0)

)
× · · · ≃ 2c0

∫

x

(
[1−G(x)/c0]

−d/2 − 1
)
× · · ·

These integrals are UV and IR finite when ǫ > 0 (with a finite-part prescription to deal
with the singularity at x = 0). When ǫ = 0 they are still IR finite (the x-integration is
convergent at |x| → ∞ since the propagator G(x) is massive, hence exponentially decaying
at large distance). On the other hand, these integrals are UV divergent when ǫ = 0 (there
is a singularity at x = 0 which gives a 1/ǫ UV pole) but this divergence is dealt by the
renormalization procedure.

Now the second infinite sum in the 11 classes of (6.45) is given by the “chain-of-bubbles”
propagator of the 1/d expansion

H(p) = = 1 + + + + · · ·

given by (6.5) and depicted in Fig.6. Combining the results of sect. VI.A, in particular (6.5),
(6.6) and (6.10), we easily obtain that in the limit d→∞, ǫ finite, this propagator is

H(p) =
[
1−

(
1− ǫ

4

)
J(p)

]−1

with J(p) =
2

p

arcsinh(p/2)√
1 + p2/4

= π B(p) (7.36)

(we use the notations of [14] for J(p), B(p) is the bubble amplitude (6.6) at D = 2). For
large p the UV behavior of H is

H(p) ≃ 1 + (4− ǫ) log p

p2
+ · · · as p→∞ (7.37)

and does not raise additional UV problems. For small p its IR behavior is

H(p) ≃ 1

p2/6 + ǫ/4
as p→ 0 . (7.38)

As long as ǫ > 0, the IR behavior of H is that of a massive scalar field with effective mass

meff =
√

3ǫ/2 , (7.39)

to be compared with the variational mass mvar = 1. However, when ǫ = 0, this propagator
becomes massless meff = 0 and since we are dealing with an effective theory in two dimensions
(D = 2), IR divergences occur! Indeed, in the diagrams of (6.45) there are two sources of
IR divergences:

1. Firstly, the mass shift depicted by is given by the solution of (6.20) which involves
tadpole diagrams with the propagator H(p) at zero momentum p = 0, which gives
potential powerlike IR divergences ∝ H(0) since

H(0) =
4

ǫ
.



84

2. Secondly, both the tadpole diagrams in the r.h.s. of (6.20) and the other diagrams in
(6.45) contain internal loops with the propagator H(p). Integration over the internal
loop momentum gives logarithmic IR divergences since

∫

p

H(p) =
3

2π
log(1/ǫ) + · · ·

If we now consider the diagrams which contribute to tr[Q(k)], k ≥ 2, depicted in (6.47),
they also contain the zero-momentum propagator H(0) = 4/ǫ. Their amplitudes at large d
are given by (6.52) and have a powerlike IR divergence in 1/ǫk.

This IR problem was in fact first discovered by the authors in [14], and its significance for
the calculation of the instanton action studied. It was shown in [14] that these IR divergences
exist for the instanton profile V (r), but cancel in the first 1/d correction to the instanton
action Sinst. As we shall see now, some partial cancellations of IR divergences also occur in

the contributions of the fluctuations around the instanton, but the first 1/d correction L
(1)
ren

to the renormalized fluctuation contribution Lren is still IR divergent at ǫ = 0.

2. Cancellation of IR divergences in the mass shift δ1

We first look at the mass shift δ1 depicted by and solution of (6.20). We have already
computed δ1 in [14] and δ1 is in fact IR finite when ǫ → 0. We refer to sect. 6.5 and
Appendix B of [14] for the details of the calculation, the final result being given by Eqs. (135),
(137) & (138) of [14], i.e. the integral

δ1 =
4− ǫ
2− ǫ 2π

∫

p

(
− log [H(p)]−

(
1− ǫ

4

)
J(p)

)

=
4− ǫ
2− ǫ

∫ ∞

0

dp p
(
− log

[
1−

(
1− ǫ

4

)
J(p)

]
−
(
1− ǫ

4

)
J(p)

)

=
4− ǫ
2− ǫ

∫ ∞

0

dv sinh v
(
− log

[
1−

(
1− ǫ

4

) v

sinh v

]
−
(
1− ǫ

4

) v

sinh v

)

= 7.5583 . . . for ǫ = 0 .

(7.40)

This integral is IR and UV convergent even for ǫ = 0, since it behaves at small p as
∫
p
1 and

at large p as
∫
p
p−4 log2(p).

To prove the IR finiteness of δ1 it is sufficient to rewrite (6.20) as

= + + =


 + +


 =


 × + +


 .

(7.41)
Since no momentum flows through the first (vertical) H line we have

=
1

2c0

4

ǫ
, while =

d

2
B(0) =

d

2

1

4π
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is finite, and the last two diagrams contain log(ǫ) IR divergences. However, one can easily
check that these IR divergences cancel. Indeed the coefficient of the log is obtained by using
that as long as

∫
p
f(p) is not itself IR-divergent,

∫

p

f(p) =

∫

p

H(p)× f(0) + infrared convergent terms

=
3

2π
ln(1/ǫ)f(0) + infrared convergent terms . (7.42)

This means that any H line is to be replaced by 3
2π

log(1/ǫ) and treated as if no
momentum flows through it. We thus obtain

=
3

2π
log(1/ǫ)

1

2c0
+ O(1) with =

d

2

1

8π

while for the second graph

= − 3

2π
log(1/ǫ)

1

2
+ O(1) .

The coefficient of the log(1/ǫ) IR divergences is therefore zero, since

+ =
3

2π
log(1/ǫ)

(
d

4c0

1

8π
− 1

2

)
≃ − 3

16π
ǫ log(1/ǫ)

Thus eq. (7.41) for δ1 is of the form

δ1 =
1

ǫ
[δ1 +O(1)] ⇒ δ1 = O(1) when ǫ = 0 . (7.43)

3. IR divergences in Q(1)

We now perform the same analysis for the first 1/d correction to the Hessian Q, Q(1),
calculated in Sect.VI. The Fourier transform of Q(1) is given by the graphs of (6.32). For
reasons that will become clear later, let us separate Q(1) into 4 parts

Q̂(1) = Q̂(1a) + Q̂(1b) + Q̂(1c) + Q̂(1d) (7.44)

Q̂(1a) is the sum of the graphs which contain the mass shift

Q̂(1a) = 2
n>1 lines

+ 2
n>1 lines

+ 2
n>0 lines

(7.45)

Q̂(1b) is the sum of the graphs which are “really irreducible”

Q̂(1b) =
n>1 lines

+
n>1 lines

+
n>1 lines

+
n>1 lines

+
n>0 lines

+
n lines

+
n>1 lines

+
n>0 lines

+
n>0 lines

(7.46)
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Q̂(1c) is the sum of the 4 graphs

Q̂(1c) = + + + (7.47)

and Q̂(1d) is the single remaining graph.

Q̂(1d) = . (7.48)

Q̂(1a) is IR finite since the mass shift is IR finite.

Q̂(1a) = O(1) . (7.49)

Q̂(1b) and Q̂(1c) have a logarithmic IR divergence in log(1/ǫ). By the same argument as
above, the coefficient of the IR divergence is obtained by removing the H propagator in the
graph, so that

Q̂(1b) =
1

2c0

3

2π
log(1/ǫ) D̂(1b) + O(1) (7.50)

with

D̂(1b) =
n>1 lines

+
n>1 lines

+
n>1 lines

+
n>1 lines

+
n>0 lines

+
n lines

+
n>1 lines

+
n>0 lines

+
n>0 lines

. (7.51)

Similarly for Q̂(1c) we have

Q̂(1c) =
1

2c0

3

2π
log(1/ǫ) D̂(1c) + O(1) (7.52)

with

D̂(1c) = + + + . (7.53)

Finally Q̂(1d) has an IR pole in 1/ǫ, since the bubble propagator carries zero momentum,

Q̂(1d) = O(1/ǫ) . (7.54)

4. Partial IR cancellations in tr[Q(1)]

Now come the IR cancellations in tr[Q(1)]. We first consider the second term. We notice

that the diagrams in (7.51), which contribute in D̂(1b), are obtained by two mass insertions

in the diagrams which contribute to Q̂(0),

Q̂(0) = n>1 lines (7.55)
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and more explicitly, since a mass insertion corresponds to (minus) a derivative with respect
to m2 (where m is the variational mass in the propagators)

D̂
(1b)
k1,k2

=
1

2

∂2

∂(m2)2

(∫

x

〈
eik1r(o) eik2r(x)

〉conn

m
− d
)∣∣∣∣

m=1

=
1

2

∂2

∂(m2)2 Q̂
(0)
k1,k2

∣∣∣∣
m=1

. (7.56)

The effect of the derivative on the propagators from o to x is easy to understand. The
tadpoles with one or two mass insertions are generated by the derivative acting on the circle
(6.18) at o or x.

The kernel D̂(1b) is clearly non-zero, but it is traceless for ǫ = 0. Indeed,

tr
[
D̂(1b)

]
=

1

2

∂2

∂(m2)2 tr
[
Q(0)

]∣∣∣∣
m=1

(7.57)

and tr
[
Q(0)

]
scales with the mass m like

tr
[
Q(0)

]
= mD−ǫ tr

[
Q(0)

]∣∣
m=1

. (7.58)

Therefore, since in the large-d limit, D = 2, we have

tr
[
D(1b)

]
= −ǫ(2− ǫ)

8
tr
[
Q(0)

]
(7.59)

and formally6 tr
[
D(1b)

]
= 0 when ǫ = 0.

Similarly we can compute the IR coefficient D̂(1c) for the 3rd term and its trace. We
obtain easily the explicit result

tr
[
D(1c)

]
= 4π c0 ǫ

2(1− ǫ/4) = d ǫ2/4 . (7.60)

It is also zero when ǫ→ 0.

Details of the calculation: We have

=
1

4

(
1

4π

)2

(−k2
1)(−k2

2)(−k1k2) e−(k2
1+k2

2)c0/2

=
1

2

(
1

4π

)
(−k2

1)(−k1k2) e−(k2
1+k2

2)c0/2

=
1

2

(
1

4π

)
(−k2

2)(−k1k2) e−(k2
1+k2

2)c0/2

= (−k1k2) e−(k2
1+k2

2)c0/2

we integrate over k1 = −k2 to obtain the trace and we use the fact that

d

4c0
= 4π(1− ǫ/4)

Q.E.D.

6 One must be cautious since tr
[
Q(0)

]
has an UV pole at ǫ = 0, so there is a mixture of IR and UV

singularities, that we shall discuss later.
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The final result is therefore that the IR divergence of tr[Q(1)] comes only from the last single
diagram in (7.48), which gives Q(1d)! It is a single IR pole in 1/ǫ, since

Q̂
(1d)
k1,k2

=
1

4

(
1

4π

)2
1

2c0

4

ǫ
(−k2

1)(−k2
2)e

−(k2
1+k2

2)c0/2 (7.61)

hence

tr[Q(1d)] =
4

ǫ

(
1− ǫ

4

)2

. (7.62)

5. IR divergence and the unstable mode

We now look at the IR singularity in the other terms of the expansion for L,

L = tr log[1l−Q] = −
∞∑

k=1

1

k
tr[Qk] .

We have shown in section VI.E that the next terms tr[Qk] are of order O(1) and can be
computed explicitly at that order, since they are given by the contribution of two diagrams

only (see (6.46)) in Q, namely the single bubble diagram , which is IR finite, and

the diagram , which is nothing but the IR divergent diagram of (7.48). Thus

we see that all the IR divergences of L(1), i.e. the term of order O(1) in the 1/d expansion
of L are contained in the last term of (6.53), namely in the summation of the log series

L(1) ≃ log

(
2− 4

ǫ

)
+ IR finite (but UV divergent) term when ǫ→ 0 . (7.63)

Now we have shown in Sect. VI.F that this IR singular log(2 − 4/ǫ) is nothing but the
contribution of the smallest (and negative) eigenvalue of the Hessian S ′′[V ] associated to the
unstable eigenmode (dilation) for the instanton

λmin = 2− 4

ǫ
< 0 . (7.64)

The conclusion of our analysis of the IR divergence of L = log det′[S ′′] is that, at least at
order 1/d, the IR divergence can be attributed entirely to the contribution of the smallest
eigenvalue. This is in fact quite natural, since IR divergences must come from the large
distance properties of the fluctuations around the instanton configuration.

6. A conjecture for the large-d behavior of the unstable mode

This IR divergence in our large-d estimate of the negative eigenvalue λmin for the instanton
Hessian does not mean that λmin is IR singular when ǫ = 0, but rather that λmin does not
behave in the same way when d→∞, depending on whether ǫ > 0 or ǫ = 0.

• If ǫ > 0, we have seen that λmin = O(1) when d→∞.
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• If d is finite and we take the limit ǫ→ 0, we have also λmin = O(1), as can be checked
explicitly for the case d = 4, ǫ = 0, where we recover the classical φ4

4 instanton for the
O(n = 0) model for SAW.

• Therefore we expect that the IR pole in (7.64) means simply that when we first take
ǫ = 0, then d→∞, λmin is no more of order O(1), but becomes infinite (λmin →∞).

In fact we conjecture that for the renormalized theory, λmin scales as d

λmin(ǫ = 0, d) ≃ O(d) when d→∞ (7.65)

by analogy with the behavior of the leading term L(0) which is found to behave as

d

ǫ
· 1

ǫ
when d→∞ then ǫ→ 0

d

ǫ
· d when ǫ→ 0 then d→∞

(7.66)

The first d
ǫ

being an UV pole, and only the last 1
ǫ
∼ d being IR. Even if this form of the

conjecture is not correct, it is clear that once again for the unstable mode the limits ǫ→ 0
and d→∞ do not commute.

VIII. CONCLUSION

In this paper we have shown how to compute at one loop the fluctuations around the
instanton in the self-avoiding manifold model, and how this is related to the normalization
for the large order asymptotics for the SAM model. We have shown that the perturbative
counterterms which make the SAM model UV finite in perturbation theory do renormalize
(at one loop) the instanton contribution. We have constructed a systematic 1/d expansion,
and studied the first terms of this expansion and the interplay between the 1/d expansion
and renormalization.

Although we have obtained many results in this article, and checked at one loop the
consistency of the instanton calculus for the SAM model, several points deserve further
studies:

• It would be interesting to get a better understanding of how to resum the IR diver-
gences present in the 1/d expansion for the renormalized theory at ǫ = 0, or to find
another approximation scheme which does not suffer from IR divergences.

• We have checked that the instanton factor obtained by our method is for D = 1 (self-
avoiding walk) equal to the factor obtained by field theoretical methods. However, it
would be interesting in this case to compare the approximate result that we obtain via
the large-d limit with the exact result (as was done for the instanton action in [14]).

• A practical application of the theoretical results obtained in this paper would be to
compare our large-order asymptotics with our explicit calculations at 2-loop order
for the scaling exponents for the SAM [22, 23]. Since the non-perturbative effects
become small when d is large, it is expected (and checked numerically) that the 2-loop
estimates for the critical exponents are reliable for large d. Such a study would help
our understanding of the domain of validity of the 2-loop calculations, and perhaps
suggest better resummation procedures than those used previously.
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• For renormalized local field theories, in addition to instantons, other contributions
occur in the large-order asymptotics, denoted renormalons. They are associated both
to the short-distance behavior of the theory (UV renormalons) and to its large-distance
behavior (IR renormalons). We expect that such effects occur also for the SAM model
at ǫ = 0, since for D = 1 it is equivalent to the φ4 theory, but it is not known how
to treat these renormalon effects (if they are present) in the framework of the SAM
model, which is a multi-local theory.
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APPENDIX A: Measure and normalizations for the functional integral

In this appendix we precise the normalization for the functional integration over the fields
and the treatment of the zero modes.

1. DeWitt metric and measure for the functional integral

We consider the free membrane model. The functional measure D[r] is normalized as
follows. We start from the DeWitt metric G over the manifold configuration space C = {r(x)}

G(δr, δr) =
µ2

0

2π

∫

M
dDx |δr(x)|2 =

µ2
0

2π
‖δr‖2

2
. (A1)

‖ . . . ‖2 is the L2 norm overM. This metric depends explicitly on an (arbitrary) normaliza-
tion mass scale µ0.

The corresponding measure is defined (formally) by D[r] =
∏

x ddr(x)
√

det G. This cor-
responds to the normalization

∫
D[r] exp

(
−µ

2
0

2

∫

M
dDx r(x)2

)
= 1 . (A2)

With this normalization, a quadratic form A with kernel Aa
b, i.e. (Ar(x))a =∫

dDyAa
b(x, y)r

b(y), yields

∫
D[r] exp

(
−1

2

∫

M
dDx

∫

M
dDy r(x)A(x, y)r(y)

)
= det

[
A/µ2

0

]−1/2
. (A3)

To evaluate the partition function for the free membrane

Z0 =

∫
D[r] exp

(
−1

2

∫

M
dDx∇r(x)2

)
,

we must treat separately the zero modes r0(x) = r0 of the scalar Laplacian ∆x over M and
the fluctuations r̃ orthogonal to the zero mode, G(r0, r̃) = 0. Let G(0) be the metric for the
collective coordinate r0 of the zero mode induced on the “moduli space” of minima of the
action r(x) = r0 by the DeWitt metric

G(δr0, δr0) =
µ2

0

2π

∫

M
dDx |δr0|2 =: G

(0)
ab δr

a
0δr

b
0 ⇒ G

(0)
ab =

µ2
0

2π
Vol(M)δab . (A4)

Hence the measure is

dµ(r0) = ddr0

√
det
(
G

(0)
ab

)
= ddr0

[
µ2

0

2π
Vol(M)

]d/2

. (A5)

The integration over the modes r̃ orthogonal to the zero modes gives

(
det′

[
−∆/µ2

0

])−d/2
, (A6)
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where det′ is the reduced determinant, that is the product over the non-zero eigenvalues of
the operator −∆/µ2

0. Hence

Z0 =

∫
dµ[r0]

(
det′

[
−∆/µ2

0

])−d/2
=

∫
ddr0 Z0 (A7)

with the partition function for the marked manifold Z0

Z0 =

(
det′

[−∆

µ2
0

]
2π

µ2
0 Vol(M)

)−d/2

. (A8)

2. Zeta-function regularization

The det′ requires UV regularization for its definition. We use the standard zeta-function
regularization (see for instance [13] and [24]).

log(det′[−∆/µ2
0]) = tr′(log[−∆/µ2

0]) = − d

ds
ζ(s)

∣∣∣∣
s=0

, (A9)

where the zeta-function ζ(s) for the operator A = −∆/µ2
0 is defined by the sum over the

non-zero eigenvalues λi

ζA(s) =
∑

λi 6=0

λ−s
i (A10)

for Re(s) large enough, and by analytic continuation down to s = 0. tr′ means the trace
over the subspace orthogonal to Ker(A) ( w.r.t. to the metric G).

The operator −∆ scales with the internal size L of the manifold M as L−2. Therefore
ζ(s) scales as

ζ(s) = (Lµ0)
2s ζ̄(s) , (A11)

where ζ̄(s) is a scale invariant zeta function which depends on the shape of M but not on
its size L.

If there is no global conformal anomaly, ζ(s) is analytic around s = 0 and ζ ′(0) =
ζ̄ ′(0) + 2 log(Lµ0)ζ(0). Moreover, for any such A, one has

ζA(0) = − dim(Ker(A)) = − number of zero modes of A . (A12)

Indeed, one can show that if A has no zero-mode, for instance A = −∆ +m2, then ζA(0) =
tr(1) = 0 (this is analogous to the celebrated rule δ(0) = 0 in dimensional regularization), and
if A has N zero modes, ζA(s) = limǫ→0[ζA+ǫ(s)−Nǫ−s], therefore ζA(0) = limǫ→0[ζA+ǫ(0)−
N ] = −N . The Laplacian ∆ has one zero mode, and therefore

ζ(0) = −1 , ζ ′(0) = ζ̄ ′(0)− 2 log(Lµ0) . (A13)

Using the fact that the size of the manifold is defined as

L = Vol(M)1/D (A14)

we obtain for the partition function

Z0 = Ld(2−D)/2

[
eζ̄′(0)

2π

]d/2

. (A15)

The dependence on the mass scale µ0 used to define the measure D[r] has disappeared, as
expected in the absence of a conformal anomaly.
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3. Conformal anomaly

It is known that there is no conformal anomaly if

1. D = 1 and the manifold has no boundary (closed loop). This corresponds to a ring
polymer.

2. D = 2, the manifold has no boundary and has Euler characteristics χ = 0. This
corresponds to a closed membrane with the topology of a torus (or a Klein bottle).

3. D non-integer. The model is defined by dimensional regularization, as detailed in [13].
This is the relevant case for the ǫ-expansion.

If there is a conformal anomaly, ζ(0) 6= −1 and there is an additional power of Lµ0 in the
partition function Z0, which depends explicitly on the scale µ0. For instance for D = 2
(membrane) it is known that

ζ(0) = −1 +
c

6
χ , with c = 1 the central charge for the free boson . (A16)

Hence
Z0 ∝ (Lµ0)

χ d/6 . (A17)

APPENDIX B: Integration paths for the functional integration over V [r]

In this appendix we discuss in more detail via the steepest descent method the functional
integration over V (r) and the relative position of the instanton V inst and of the integration
contour over V , as the argument θ of the coupling constant b varies in [−π, π]. This is
required to treat properly the contribution of the unstable eigenmode of the Hessian S ′′[V ]
for the instanton.

For general θ ∈ [−π, π] we know from (3.28) that the functional integral for the rescaled
potential V (r) is normalized so that

∫
D[V ] exp

(
e−iθ

2g

∫
ddr V (r)2

)
= 1 (B1)

(g is real positive). The effective action for V is given in (3.35)

Sθ[V ] = E [V ] − e−iθ

2

∫
ddr V (r)2 (B2)

and for large V is dominated by the last term
∫
V 2. The steepest descent integration path

for V (r) in C is such that (at least for large |V |)

Arg(V ) =
π + θ

2
(B3)

(see figure). Thus it turns anti-clockwise from the positive real axis for θ = −π to the
imaginary axis for θ = 0 to the negative real axis for θ = π.

For general θ the instanton V inst
θ is an extremum of Sθ[V ]. For negative coupling (θ =

±π), the instanton is known. It is the solution found and studied in [14], V inst
±π = V inst; it is
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Re V

Im V

θ=0θ=0

θ=π θ=−π

FIG. 10 Integration path for V as a function of θ = Arg(b)

real and negative; it lies on the steepest descent integration path given by Eq. (B3). Let us
start from the case θ = π, i.e. b lies above the discontinuity along the negative real axis, and
look at what happens when θ → 0. From the solution for the instanton at θ = π, V inst(r),
the instanton for general θ < π , V inst

θ (r), is obtained by analytic continuation from real r to
complex r. Indeed, we know from [14] that for a general V (r), under a scale transformation

V (r) → Vλ(r) = λ
2D

2−DV (λr) (B4)

the two terms in the effective action S[V ] scale respectively as

E [Vλ] = λ
2D

2−D E [V ] ;

∫

r

V 2
λ = λ

2ǫ
2−D

∫

r

V 2 . (B5)

If we assume that the instanton V inst(r), obtained in [14] for real r, can be continued
analytically to complex r’s, then it is enough to take instead of a real scaling factor λ a
complex phase factor

λ = eiω (B6)

and to choose as phase

ω+
θ = (π − θ) 2−D

2(D − ǫ) (B7)

to know that (
eiω
) 2D

2−D V inst
(
eiωr
)

(B8)

with ω = ω+
θ an extremum of Sθ[V ]. Therefore the instanton for θ < π is

V inst
θ (r) = ei(π−θ) D

(D−ǫ) V inst
(
ei(π−θ) 2−D

2(D−ǫ) r
)
. (B9)

It is clear that this instanton V inst
θ is now a complex field configuration, since it involves both

a“global Wick rotation” in r space and the multiplication by a global phase. In particular
for θ = 0 (real positive coupling constant) the instanton is

V inst
θ=0 (r) = e

iπ D
(D−ǫ) V inst

(
e
iπ 2−D

2(D−ǫ) r
)

. (B10)
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The same argument applies for θ ∈ ]−π, 0]. If we start from the same real instanton at
θ = −π and deform it to θ = 0 we obtain another instanton, which is the complex conjugate

configuration V
inst

θ=0 of the instanton obtained by starting from θ = π.
How is V inst

θ located with respect to the steepest descent integration path over V (r)?
Rather than considering the functional integral over V (r) for real r’s, it is more convenient
to rotate the space coordinate r in the complex plane. This is equivalent to deforming the
time contour in the complex plane when dealing with time correlation functions in finite
temperature QM and FT. Consider as bulk-space coordinates r̂ defined as

r̂ = eiω+
θ r (B11)

and make the change of variables in the functional integral for V

V (r) → V̂ (̂r) = V (r) , r̂ real . (B12)

The functional measure becomes D̂[V̂ ], the measure for V̂ , and from (B1) it is normalized
so that ∫

D̂[V̂ ] exp

(
e−iθ

2g
e−idω+

θ

∫
ddr̂ V̂ (̂r)

2
)

= 1 . (B13)

The steepest descent integration path for V̂ is therefore the line with argument Ω̂+
θ

Arg(V̂ ) = Ω̂+
θ =

π + θ + d ω+
θ

2
= π +

π − θ
2

D

D − ǫ (B14)

(remember that ǫ = 2D− d(2−D)/2). In the new variable V̂ the instanton differs from the
original real instanton V inst by a pure phase (see Eq. (B9))

V̂ inst
θ (r̂) = ei(π−θ) D

D−ǫV inst(r̂) . (B15)

Since V inst is real and negative, its argument is π and therefore V̂ inst
θ (r̂) has a fixed argument

(independent of r̂) Ω̂inst
θ given by

Arg
(
V̂ inst

θ (r̂)
)

= Ω̂inst
θ = π + (π − θ) D

D − ǫ . (B16)

For θ < π, Ω̂inst
θ is larger than Ω̂+

θ

Ω̂inst
θ > Ω̂+

θ if θ < π and ǫ < D . (B17)

This means that the instanton lies below the integration path for V̂ , see figure 11. When
θ → π the integration path becomes the real axis (with the standard orientation from −∞
to =∞), while the complex instanton V̂ inst becomes the real (and negative) instanton V inst.

With this result the steepest descent integration prescription for the unstable mode
around the instanton at θ = π is fixed. We boldly denote by V this mode. The inte-
gration path from 0 to −∞ has to start from V = 0 (the real vacuum, minimum of the
action S[V ]), go on the real negative axis up to the instanton V inst < 0 which is a local
extremum of S[V ] with action S inst = S[V inst] > S[V = 0] = 0, then “turn right” (see
figure 12) in the upper half complex plane in order for the action to continue to increase,
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Re V

Im V

θ = π

θ < π

θ = 0

FIG. 11 The integration path for V̂ and the instanton V̂ inst for θ = π, 0 < θ < π and θ = 0 (we

have set ǫ = 0).

θ=−π

θ=π

Instanton classical vacuum V=0

FIG. 12 Steepest descent integration paths for the unstable mode for θ = ±π.

while leaving the instanton below, then go to −∞. The first part of the contour (from V inst

to ∞) contributes only to the real part of the partition function Z for negative coupling
(and is dominated by the classical vacuum V = 0). The second part of the contour (from
−∞ to V inst) contributes to the imaginary part of Z; in fact the dominant contribution to
the imaginary part comes from half the Gaussian integral in the imaginary direction at the
instanton ∫ V inst

V inst+i∞
dV (B18)

and gives a factor

− i
1

2

∣∣det
(
S ′′[V inst]

)∣∣−1/2
(B19)
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when compared to the full contribution of the Gaussian integral (the factor −i comes from
the integration path, the factor 1/2 from the fact that we integrate the unstable mode from
i∞ to 0, not from i∞ to −i∞).

The same argument shows that for θ → −π the instanton is above the real axis. Therefore
for the unstable mode the steepest-descent integration path has to stay below the real axis,
with factor

i
1

2

∣∣det
(
S ′′[V inst]

)∣∣−1/2
.

These are the results used in Section III.C.2.

APPENDIX C: SAW: D = 1 SAM versus O(n = 0) field theory

In this appendix we recall the “Laplace-De Gennes” equivalence between the zero-
component O(n = 0) φ4 field theory and the (weakly) self-avoiding walk model, which
corresponds to the case D = 1 for the SAM model. The first part of this appendix (sect.
1–3) is basically textbook material, recalled here to fix the notations and the normalizations.
We then show that the standard instanton calculus for the O(n = 0) model gives the same
result as our instanton calculus for the SAM model in the special case D = 1. This provides
an important check for the consistency of our method.

1. Free Field and Brownian walk:

The action for the scalar free field in d-dimensional space is (note the factor 1/4, which
is not the most commonly used 7)

S0[φ] =

∫

r

1

4
(∇rφ)2 +

m2

2
(φ)2 . (C1)

The 2-points correlation function is

G0(r1, r2;m
2) = 〈φ(r1)φ(r2)〉0 = 〈r1|

1

−∆/2 +m2
|r2〉 =

∫ ∞

0

dL e−Lm2 〈r1|eL∆/2|r2〉 , (C2)

and is the Laplace transform with respect to L of the heat kernel K(r1, r2;L) = 〈r1|eL∆/2|r2〉,
which admits the random-walk representation

K(r1, r2;L) = 〈r1|eL∆/2|r2〉 =

∫

r(0)=r1
r(L)=r2

D[r] e−
∫
L

1
2
(ṙ)2ds (C3)

7 Two choices of normalizations are convenient for polymers: Here we use S0[φ] =
∫
r

1
4 (∇rφ)

2
+ m2

2 φ
2,

which corresponds to having the polymer action Spolymer =
∫
x

1
2 (∇r(x))

2
. The other convenient choice

is to use S0[φ] =
∫
r

1
2 (∇rφ)2 + m2

2 φ
2, which corresponds to Spolymer =

∫
x

1
4 (∇r(x))2. This is the choice

most often taken, see e.g.[4]. Here we employ the first choice, since we want to use the most convenient

normalization for the polymer action. We also note that for both choices, e−Lm2

, with L the length of

the polymer is the weight in the Laplace-De Gennes transform.
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with ṙ = dr/ds. To check the normalization, use the semi-classical estimate for the small-L
limit of the r.h.s. of (C3), K ≃ exp (−|r|2/2L) and check that 2∂K/∂L = ∆K. In particular
at coinciding points

〈φ(r1)
2〉0 = 〈r1|

1

−∆/2 +m2
|r1〉 =

∫ ∞

0

dL e−Lm2 〈r1|eL∆/2|r1〉 (C4)

and the heat kernel at coinciding points admits the closed random-walk representation:

K(r1, r1;L) = 〈r1|eL∆/2|r1〉 =

∫

r(0)=r(L)=r1

D[r] e−
∫
L

1
2
(ṙ)2ds = Z0(r1)|D=1;L . (C5)

It is the partition function for a closed 1-dimensional membrane (i.e. a closed polymer, or a
loop) with length L, attached to the point r1. Similarly for the one-loop connected diagram

1

2
〈φ(r1)

2φ(r2)
2〉conn

0 =
1

2

[
〈φ(r1)

2φ(r2)
2〉0 − 〈φ(r1)

2〉0〈φ(r2)
2〉0
]

=

[
〈r1|

1

−∆/2 +m2
|r2〉
]2

=

∫ ∞

0

dL e−Lm2

∫ L

0

dL1

∫
D[r] δd(r(0)− r1)δ

d(r(L1)− r2) e−
∫

L
1
2
(ṙ)2ds

=

∫ ∞

0

dL e−Lm2

L−1 R(2)
0 (r1, r2)

∣∣∣
D=1,L

. (C6)

This means that the first derivative w.r.t. m2 of the l.h.s. of (C6) is the Laplace transform of

the 2-point correlation functionR(2)
0 for a free closed loop with length L. Similarly connected

correlators of a product of N φ2 operators are associated to N -point correlation functions
for the closed loop.

2. SAW and O(n = 0) field theory:

It is well-know that this equivalence extends to the Edwards Model, defined with the
normalizations as in (2.12). The O(n)-invariant φ4 model is defined by the action

S[~φ] =

∫
ddr

1

4

(
∇r
~φ
)2

+
t

2
(~φ 2) +

b

8
(~φ 2)2 (C7)

with ~φ a n-component real vector field:

~φ = {φa; a = 1, n} (C8)

t = m2 is the squared mass, b is the coupling constant.
The model is equivalent to the Edwards model of polymer with (weak) 2-chain repulsive

contact interaction, as defined by the model of (2.12) for the D = 1 case. The equivalence
holds thanks to the very same Laplace transform between correlation functions as in the
free case (b = 0). It is valid to all orders in perturbation theory, that is as an asymptotic

series expansion for small b. The operator 1
2
~φ2(r) is represented by a δ-distribution, or more
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formally8

1

2
~φ2(r) ↔

∫
dDx δ(r(x)− r) . (C9)

For instance, for the 1-point correlators we have

lim
n→0

2

n

〈
1

2
~φ(r1)

2

〉
=

∫ ∞

0

dL e−LtZ(r1)
∣∣
L

(C10)

and for the two-points correlators

lim
n→0

2

n

〈
1

2
~φ(r1)

2 1

2
~φ(r2)

2

〉
=

∫ ∞

0

dL e−Lt L−1R(2)(r1, r2)
∣∣
L

(C11)

etc. . .

3. Instanton calculus and large-orders for the O(n) field theory

We now recall the principle of instanton calculus and large-order estimates for the scalar
O(n) φ4 field theory, following the standard references. This example is useful, since in the
limit of n = 0 it describes polymers, i.e. D = 1 membranes. The field is a n-component real

vector field ~φ(r), ~φ = (φa; a = 1, n). The action is the O(n)-invariant φ4 action

S[~φ] =

∫
ddr

1

2

(
∇r
~φ
)2

+
t

2
(~φ 2) +

b

8
(~φ 2)2 (C12)

t = m2 is the squared mass, b the coupling constant. We are interested in observables O[~φ]
which are local monomials in φ with degree do in φ, the simplest being the energy operator
E

E[r1] = (~φ)2(r1) ; degree(E) = dE = 2 . (C13)

The expectation value for the observable O is given by the standard formula

〈O〉 =

∫
D[~φ]O[~φ] e−S[~φ]

/∫
D[~φ] e−S[~φ] . (C14)

We are interested in the large orders of the perturbative series expansion in b. As we
have seen, we have to use the dispersion relation in the complex-b plane and consider what
happens for small b close to the negative real axis, where b is complex and its argument is
close to ±π. Therefore we rescale the field

φ = |b|−1/2ϕ ; with θ = Arg(b) . (C15)

This gives

S[φ] =
1

|b| Sθ[ϕ] ; Sθ[ϕ] =

∫
ddr

1

2
(∇rϕ)2 +

t

2
(ϕ 2) +

eiθ

8
(ϕ 2)2 (C16)

8 Note the factor of 1
2 . Intuitively it is there to compensate for the fact that the two fields of ~φ2 can be

contracted in two different ways. This also leads to a relative factor of 4 between the interactions (2.12)

and (C7).
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so that

〈O[φ]〉 = |b|−
dO
2 〈O[ϕ]〉θ,|b| = |b|−

dO
2

∫
D[ϕ]O[ϕ] e−Sθ[ϕ]/|b|
∫
D[ϕ] e−Sθ[ϕ]/|b| . (C17)

For small positive b the functional integral is dominated by the constant classical saddle
point

~ϕ0(r) = ~ϕ0 = 0 (C18)

constant and absolute minima of Sθ for θ = 0. The functional integral is in fact well defined
as long as −π < θ < +π. Now along the cut at b < 0, that is for θ = ±π, another real
extremum of the action Sθ becomes important, the instanton

~ϕi = ~ϕi(r; r0, ~u0) = ϕi(r − r0)~u0 . (C19)

The instanton is characterized by its position r0 in space, and its orientation ~u0 in the
internal n-dimensional space (~u0 being a unit vector in Rn). ϕi(r) is the real finite-action
solution of the equation

−∆rϕi + t ϕi −
1

2
(ϕi)

3 = 0 , (C20)

which is rotationally invariant around the origin (i.e. depends only on |r|) and is non-zero
except for |r| → ∞ (or equivalently ≥ 0, this is enough to define it uniquely).

The contribution of the instanton in the functional integral is at one loop proportional
to

e
− 1

|b|
Sθ(ϕi) [Det′ [S ′′

θ (~ϕi)]]
−1/2

. (C21)

The measure for the collective coordinate r0 (the position of the instanton) is easily obtained,
since the metric is

hab =
1

2π|b|

∫
ddr

1

d
(∂a~ϕi∂b~ϕi) =

1

2π|b|d ‖
~∇ϕi‖22 δab . (C22)

Hence the measure is

dµ(r0) = ddr0

[
1

2π|b|d‖
~∇ϕi‖22

] d
2

. (C23)

The measure for the internal coordinate ~u0 (the orientation) is

dµ(~u0) = d~u0

[
1

2π|b|

∫
ddr ~ϕ 2

i

]n−1
2

=

[
1

2π|b|‖~ϕi‖22
]n−1

2

(C24)

with d~u0 the standard measure on the unit sphere Sn−1 in Rn. For the O(n) invariant
observables which are of interest to us, the integration over Sn−1 can be performed explicitly,
giving the factor Ωn (the volume of the unit sphere in Rn)

Ωn =

∫

Sn−1

dµ(~u0) = Vol(Sn−1) =
2 π

n
2

Γ(n/2)
. (C25)

Note that this volume factor Ωn vanishes as n when n→ 0. However, since O(n) invariant
observables such as ~ϕ2/n behave in the background of the instanton ~ϕi as ϕ 2

i /n and are
therefore of order 1/n, the factors n and n−1 compensate to give a finite n→ 0 limit.
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Now the Hessian is a n× n matrix in internal space,

S ′′
ab(r, r

′) =
∂Sθ(ϕ)

∂ϕa(r)∂ϕb(r′)
= δab(−∆ + t) −

(
δab ~ϕ

2/2 + ϕaϕb
)
. (C26)

Hence for the instanton background ~ϕi = ϕi ~u0 the Hessian can be written as the product
of the longitudinal operator

S ′′
l = −∆ + t− 3

2
ϕ2

i (C27)

times n− 1 transverse operators

S ′′
⊥ = −∆ + t− 1

2
ϕ2

i . (C28)

S ′′ = S ′′
l ⊗ (S ′′

⊥)n−1 . Note that S ′′
l has d zero modes ψ0

l µ = ∂µϕi and that S ′′
⊥ has one zero

mode ψ0
⊥ = ϕi, so S ′′ has d+ n− 1 zero modes. Thus

det′(S ′′) = det′(S ′′
l ) det′(S ′′

⊥)n−1 (C29)

and in the n = 0 limit

det′(S ′′)
∣∣
n=0

=
det′(S ′′

l )

det′(S ′′
⊥)

. (C30)

S ′′
l has one (and only one) eigenvector ψ−

l with negative eigenvalue λ−l < −2t. Therefore
detS ′′

l < 0 9 .
To understand which signe must be chosen for the square-root of the negative determinant

[det(S ′′)]−1/2 ( +i or −i ?) we have to consider the steepest-descent integration path for the
global ϕ variable. It has to go from Argϕ = π ± θ/4 to ∓θ/4, hence for θ = +π it is as
depicted on Fig. C.3.

Hence the instanton contributes to the imaginary part of an observable by a coefficient

∓ i

2
|det′(S ′′

l )|−1/2
if θ = ±π . (C31)

The rest goes into the real part together with the contribution of the classical vacuum ϕ0.
Putting things together, and using Eq. (3.12) we obtain for the imaginary part at b < 0

of the e.v. of the O(n) invariant observable O and for arg(b) = θ = ±π

Im〈O〉 = ∓ 1

2
|b|−dO/2 e−

1
|b|

(
S[ϕi]−S[ϕ0]

) ∣∣∣∣∣
det′(S ′′

l [ϕi])
(
det′(S ′′

⊥[ϕi)]
)n−1

det(S ′′[ϕ0])n

∣∣∣∣∣

− 1
2

×

[
1

2π|b|d‖
~∇ϕi‖22

] d
2
[

1

2π|b|‖ϕi‖22
]n−1

2

Ωn

∫
ddr0 (O[ϕi[r0]]−O[ϕ0])

(C32)

9 This is true for d < 4, for d = 4 there is no instanton solution for t > 0, for t = 0 there is an instanton

with an additional zero mode ψ0

l, s = (r∇r + 1)ϕi corresponding to the scale invariance of the massless

theory under scale transformation ϕ(r)→ λϕ(λr). The instanton at d = 4 is obtained from the instanton

for d < 4 by taking the limit d→ 4, t ∝ 4− d.
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(c)

(a)

(b)

FIG. 13 Steepest descent integration path for the global ϕ variable for θ = 0 (a), θ = π (b) and

θ = −π (c). The black dot represents the classical vacua ϕ = 0 and the white dots the 2 instanton

saddle-points ϕ = ±ϕi.

while of course
Re(〈O〉

)
= O(ϕ0) . (C33)

In particular for n = 0 and O a product of energy operators E defined as

O1[r1] = lim
n→0

1

n

(
~φ(r1)

)2
(C34)

O2[r1, r2] = lim
n→0

1

n

(
~φ(r1)

)2(~φ(r2)
)2

(C35)

and omitting the i subscript for “instanton”, we obtain

Im〈O1〉 = ∓ 1

2
|b|− d+1

2 e−
1
|b|

Si

∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
− 1

2

(2π)
1−d
2

[‖∇ϕi‖22
d

] d
2

‖ϕi‖2 (C36)

Im〈O1[r1, r2]〉 = ∓ 1

2
|b|− d+3

2 e
− 1

|b|
S

∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
− 1

2

(2π)
1−d
2

[‖∇ϕ‖2
2

d

] d
2

‖ϕ‖−1
2 ϕ2⋆ ϕ2(r1 − r2)

(C37)

⋆ denotes the usual convolution product f ⋆ g(r) =
∫

dr′f(r′)g(r′ + r). Note also a few useful
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results

ϕ0 = 0 → S[ϕ0] = 0 (C38)

S[ϕi] =
1

8

∫
ddrϕ4

i (C39)
∫

ddr
(
∇ϕi

)2
= − t

∫
ddrϕ2

i +
1

2

∫
ddrϕ4

i . (C40)

4. Instanton calculus for the SAW model of polymers

Since the Edwards model for SAW is the inverse Laplace transform w.r.t. t = m2 of the
O(n) model, instanton calculus must take into account this transformation and is (slightly)
modified, as is explained here.

The action for the SAW model is

S[φ] =

∫
1

4
(∇φ)2 +

t

2
φ2 − |b|

8
(φ2)2 . (C41)

We have by inverse Laplace transform, for a closed polymer of length L

Z(r;L) =

∫ +i∞

−i∞

dt

2iπ
eLt 〈O1(r; t)〉 (C42)

R(r1, r2;L) = L

∫ +i∞

−i∞

dt

2iπ
eLt 〈O2(r1, r2; t)〉 . (C43)

So we consider the effective action

S[φ, t] =

∫ [
1

4
(∇φ)2 +

t

2
φ2 − |b|

8
(φ2)2

]
− t L . (C44)

To factorize |b| and L we must rescale both φ, t and r with

φ(r) = |b|
−d

2(d−2) L
−1
d−2

√
2ϕ(r′) , r = |b| 1

d−2 L
1

d−2 r′ , t = |b| −2
d−2 L

−2
d−2 τ (C45)

The action becomes

S[φ, t] = 2 [|b|Lǫ]−
2

d−2 S[ϕ, τ ] ; ǫ =
4− d

2
, (C46)

and the effective action is now

S[ϕ, τ ] = S[ϕ]− τ

2
; S[ϕ] =

∫ (
1

4
(∇~ϕ)2 +

τ

2
~ϕ2 − 1

4

(
~ϕ2
)2
)
. (C47)

The effective coupling constant is

beff =
1

2

[
|b|Lǫ

] 2
d−2

(C48)

instead of |b|.
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The instanton is given by the saddle point equations

~ϕ = ϕ~u0 ; −∆

2
ϕ+ τϕ− ϕ3 = 0 ;

∫
ϕ2 = 1 (C49)

and the Hessian is

S ′′ =

[
S ′′ ~ϕ

~ϕt 0

]
. (C50)

It can still be separated into its transverse part, which is n−1 times the transverse operator
S ′′
⊥

S ′′
⊥ = −∆

2
+ τ − ϕ2 (C51)

times the longitudinal part

S ′′
l =

[
S ′′

l ϕ

ϕt 0

]
; S ′′

l = −∆

2
+ τ − 3ϕ2 , (C52)

which has d translational zero modes, namely the Ψµ =

[
ψµ

0

]
since ϕ · ψµ =

∫
ϕ∂µϕ =

1
2

∫
∂µϕ

2 = 0. It is then easy to show, denoting by P0 the projector onto the kernel of S ′′
l

generated by its zero modes, and defining the “inverse” of S ′′
l as

[
1

S ′′
l

]′
=
(
S ′′

l + P0

)−1 − P0 (C53)

that10

det′S ′′
l = det

(
S ′′

l + P0 ϕ

ϕt 0

)
= det

(
S ′′

l + P0

)
det
(
− ϕt(S ′′

l + P0)
−1ϕ

)

= − det′S ′′
l

(
ϕ ·
[

1

S ′′
l

]′
· ϕ
)
. (C54)

But it turns out that [
1

S ′′
l

]′
· ϕ = − 1

2τ
(r · ∇+ 1)ϕ . (C55)

Indeed, one can check that r∇ϕ as well as ϕ are orthogonal to ψµ and an explicit calculation
shows that [

−∆

2
+ τ − 3ϕ2

]
(r · ∇+ 1)ϕ = −2τ ϕ . (C56)

It follows that the additional factor in the determinant (which comes from the integration
over τ at the saddle point) is

−
(
ϕ ·
[

1

S ′′
l

]′
· ϕ
)

=
1

2τ

∫
ϕ(r∇+ 1)ϕ = − d− 2

4τ

∫
ϕ2 = − d− 2

4τ
(C57)

10 This is an application of the general formula for the determinant of bloc square matrices det

[
A B

C D

]
=

det [A] · det
[
D − CA−1B

]
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τ is > 0 if d < 4, so this factor is negative for 2 < d < 4, but the integration path over τ is
also imaginary (it goes from −i∞ to +i∞). Thus the integration over τ gives the factor

(2π)−1 |b| −2
d−2 L

−2
d−2 (C58)

(coming from the measure dτ
2iπ

) times

∣∣∣∣∣
2π

beff
d−2
4τ

∣∣∣∣∣

1/2

(C59)

coming from the Gaussian integration. This gives

[
π
d− 2

τ

]−1/2

|b| −1
d−2L

−d
2(d−2) . (C60)

For the observable φ2/n the integration over the zero modes gives

2|b| −d
d−2L

−2
d−2

Ωn

n

∫
ϕ2 = 2|b| −d

d−2L
−2
d−2 (C61)

times the measure and determinant factors

[ ‖ϕ‖2
2πbeff

]−1/2 [‖∇ϕ‖2
2πbeffd

]d/2 ∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
−1/2

=
[
π|b| 2

d−2L
4−d
d−2

] 1−d
2

[‖∇ϕ‖2
d

]d/2 ∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
−1/2

.

(C62)
Putting things together we get

ImZ(r;L) = ∓ 1

2
L

−d
2

[
|b|Lǫ

]−2d
d−2 e−(2S−τ)

[
|b|Lǫ
] −2

d−2
∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
− 1

2
[‖∇ϕ‖22

πd

]d
2
(
d− 2

4τ

)− 1
2

.

(C63)
Remember that |b|Lǫ is dimensionless. We show below that with our normalizations and the
equation for the instanton.

τ = (4− d)S ; ‖~∇ϕ‖2 = 2dS . (C64)

This simplifies slightly (C63)

ImZ(r;L) = ∓ 1

2
L

−d
2

[
|b|Lǫ

]−2d
d−2 e−(d−2)S

[
|b|Lǫ
] −2

d−2
∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
− 1

2
[
2S

π

]d
2
[
4(4− d)S
d− 2

] 1
2

.

(C65)

5. d→ 4 limit and scale invariance

The O(n) model at d = 4 (ǫ = 0) becomes scale invariant and the instanton has an
additional zero mode associated with dilations. For the SAW model nothing special occurs
when ǫ → 0 (as far as global scale transformations are concerned). Here we show in detail
how the dilation zero mode is absorbed in the transformation O(n) → SAW, and the form
of the instanton and of the large-order results at ǫ = 0.
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We first derive a few exact results. If ϕ is the instanton, solution of (−∆
2

+ τ)ϕ− ϕ3 = 0

and the Hessian is S ′′
l = −∆

2
+ τ − 3ϕ2 then

[
1

S ′′
l

]′
ϕ = − 1

2τ
(r∇ + 1)ϕ (C66)

[
1

S ′′
l

]′
ϕ3 = −1

2
ϕ (C67)

(
ϕ3
∣∣ (r∇ + 1)ϕ) =

∫
ϕ3(r∇+ 1)ϕ =

∫
(1 + 1

4
r∇)ϕ4 =

4− d
4

∫
ϕ4 (C68)

= −2τ
(
ϕ3

[
1

S ′′
l

]′
ϕ) = −2τ (ϕ

[
1

S ′′
l

]′
ϕ3
)

(C69)

= τ (ϕ|ϕ) = τ

∫
ϕ2 . . (C70)

The instanton action is

S =

∫
1

4
(∇ϕ)2 +

τ

2
ϕ2 − 1

4
ϕ4 =

∫
1

2
ϕ(−∆

2
+ τ)ϕ− 1

4
ϕ4 =

1

4

∫
ϕ4 . (C71)

Hence ∫
ϕ2 =

4− d
τ

S ;

∫
(∇ϕ)2 = 2 d S ;

∫
ϕ4 = 4S . (C72)

Now remember that τ is fixed by the normalization
∫
ϕ2 = 1. In the limit d→ 4, we must

take the limit τ → 0 to get the finite-action instanton. The general solution of the equation
−∆ϕ = 2ϕ3 at d = 4 is

ϕ(r)d=4 =
2r0

r2 + r20
; with corresponding action Sd=4 =

2

3
π2 . (C73)

r0 is the instanton size. The size is arbitrary for the massless d = 4 theory by scale invariance.
For r≫ r0, ϕ satisfies the linearized equation −ϕ′′− d−1

r
ϕ′+2τϕ = 0 and is a Bessel function

ϕ(r) ∝ r1−d/2Kd/2−1(
√

2τ r) (C74)

and is such that

ϕ(r) ≃ C r2−d for r0 ≪ r≪ 1/
√
τ ; ϕ(r) ∝ e−r

√
2τ for r≫ 1/

√
τ . (C75)

To match this behavior with the large-r behavior of the instanton at d = 4, the constant C
must behave as

C(d) = 2r0 (1 +O(ε)) with ε = 4− d . (C76)

For fixed r0, we must let τ → 0, but at which rate? The evaluate this, use the equation
(C72) which tells us that τ

∫
ϕ2 ≃ εSd=4 when ε → 0. When evaluating

∫
ϕ2 in this limit,

it is easy to see that it is the contribution of the domain r0 ≪ r ≪ 1/
√
τ which dominates

the integral, so that

∫
ϕ2 = Ωd

∫ ∞

0

dr rd−1ϕ(r)2 ≃ 2 π2

∫ 1/
√

τ

r0

dr rd−1
(
C r2−d

)2 ≃ 2 π2 (2r0)
2 ln(1/r0

√
τ) .

(C77)
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Therefore τ goes indeed to zero as d→ 4 according to

ε = 4− d ≃ 6 τ r20 ln
(
1/τ r20

)
. (C78)

Now if we consider the polymer, we have to keep its length L = 1 fixed, hence
∫
ϕ2 = 1.

Then the instanton size r0 has to vanish together with τ as ε→ 0.

1 =
ε

τ
S =⇒ τ ≃ ε

2 π2

3
=⇒ r0 ≃

1

2π
√

ln(1/ε)
. (C79)

Finally, we are interested in the smallest positive eigenvalue λ+ of the Hessian S ′′
l and the

corresponding eigenvector ψ+. As ε → 0 we expect that λ+ → 0 and ψ+ → (r∇ + 1)ϕ the
zero-mode for scale transformations. In this limit λ+ can be estimated as follows

(ϕ|
[

1

S ′′
l

]′
ϕ) ≃ (ϕ|ψ+)

1

λ+
(ψ+|ϕ)

1

(ψ+|ψ+)
. (C80)

But the l.h.s. is equal to

−2− d
4τ

(ϕ|ϕ) ≃ 1

2 τ
(ϕ|ϕ) =

1

2 τ
. (C81)

Using the asymptotics obtained for ϕ in the ε→ 0 limit

ϕ(r) ≃ 2 r0 r−2 =⇒ ψ+(r) ≃ −2 r0 r−2 for r0 ≪ r≪ 1/
√
τ (C82)

we obtain

(ψ+|ϕ) ≃ −(ϕ|ϕ) = −1 (ψ+|ψ+) ≃ (ϕ|ϕ) = 1 for ε→ 0 . (C83)

Hence the smallest positive eigenvalue of S ′′
l vanishes as ε when d→ 4, as expected

λ+ ≃ 2 τ ≃ 4π2

3
ε for ε→ 0 . (C84)

Thus in the limit d→ 4 the Hessian S ′′
l gets an additional zero mode, so that the zero-mode

subtracted determinant det′ is discontinuous at d = 4 (limd→4 det′ [S ′′
l ] 6= det′ [limd→4 S

′′
l ]),

but we can write in the semiclassical estimates

det′ [S ′′
l ] ≃d→4 λ+ · det′

[
S ′′

l

∣∣
d=4

]
. (C85)

The singular factor τ
1
2 in eq. (C63), which comes from the integration over t, is canceled

by the λ+ in det′S ′′
l , as expected, since we cannot have IR divergences in the semiclassical

estimate at d = 4. We get the IR-finite result

ImZ(r;L) = ∓ 1

2
L−2 |b|−4 e

− 4 π2

3 |b|

∣∣∣∣
det′S ′′

l

det′S ′′
⊥

∣∣∣∣
− 1

2 16 π2

9
, (C86)

where the IR singular terms coming from the dilation zero mode have disappeared. The UV
divergences are contained in the two determinants det′[S ′′].
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6. Comparison SAM versus O(n) field theory for the coefficient of the instanton

We are now ready to check that the determinant factor for the instanton obtained by
our method (non-local SAM model) is equal to the coefficient C86 obtained by instanton
calculus in the O(n = 0) local field theory.

We have already checked in [14] that forD = 1 the instanton corresponds to the instanton
for the φ4 field theory.

For D = 1 the free energy density E [V ] is nothing but the ground state energy E0 of a
particle with unit mass in the potential V , i.e. the lowest eigenvalue E0 of the Hamiltonian
operator

H = − ∆r

2
+ V (r) (C87)

acting on functions over Rd. We denote ψ0 the corresponding ground-state wave function.

E [V ] = E0 ; H ψ0 = E0 ψ0 ; ‖ ψ0 ‖2 =

∫

r

ψ2
0 = 1 . (C88)

The saddle-point equation is (using first order perturbation theory)

V (r) = − δE [V ]

δV (r)
= −〈ψ0|

δH

δV (r)
|ψ0〉 = − |ψ0(r)|2 . (C89)

So it can be written as the non-linear Schrödinger equation + constraint

−1

2
∆rψ0 − E0 ψ0 − ψ3

0 = 0 ; E0 such that

∫

r

ψ2
0 = 1 . (C90)

This is equivalent to the saddle-point equation for the polymer instanton

−∆ϕ + τϕ − 1

2
ϕ3 = 0 ; τ such that

∫
ϕ2 = 1 (C91)

by the identification
ψ0(r) = ϕ(r) E0 = −τ . (C92)

In particular for L = 2 this gives ψ0 = ϕ/2, r = r′ and E0 = τ/2.
Using second order perturbation theory we have

δ2E0

δV (r1)δV (r2)
= 2ψ0(r1)〈r1|

[
1

E0 −H

]′
|r2〉ψ0(r2) , (C93)

where as in a previous section the “inverse prime” of an Hermitian operator means the
inverse of this operator restricted to the subspace orthogonal to its kernel

[
1

E0 −H

]′
=

1

E0 −H + P0

− P0 ; P0 = |ψ0〉〈ψ0| . (C94)

If we denote by φ0 the operator which multiplies any function ψ by ψ0

ψ0 : ψ → ψ0ψ , (C95)
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we rewrite (C93) as

δ2E0

δV (r1)δV (r2)
= 〈r1|2ψ0

[
1

E0 −H

]′
ψ0|r2〉 . (C96)

The second derivative of the effective action Γ is thus

Γ′′ = 1 + 2ψ0

[
1

E0 −H

]′
ψ0 . (C97)

If there where no problems with the zero modes, we could write

det

[
1 + 2ψ0

[
1

E0 −H

]
ψ0

]
=

det(H − E0 − 2ψ2
0)

det(H − E0)
=

det(−∆/2−E0 − 3ψ2
0)

det(−∆/2− E0 − ψ2
0)

(C98)

quite similar to the ratio of determinants

det (S ′′
l )

det (S ′′
⊥)

(C99)

but the zero modes require some care. Let

A = H − E0 = −∆/2− E0 − ψ2
0 (C100)

B = H − E0 − 2ψ2
0 = −∆/2− E0 − 3ψ2

0 (C101)

ψ0 is the zero mode of A and since ∂µA = B, Vµ = ∂µψ0 are the d zero modes of B, while
Wµ = ψ0∂µψ0 are the d zero modes of Γ′′ (as can be seen by using Wµ = −∂µV/2, or by
direct calculation).

We use the following simple result. Let E be a hermitian operator. If E has zero
modes, let n = dim(Ker(E)) and Φi a basis of Ker(E) and K0 =

∑
i |Φi〉〈Φi| the projector

on Ker(E). Let F be another hermitian operator such that its restriction to Ker(E),
F ′ = K0FK0 is invertible. Then

det[E+ǫF ] = ǫndet′(E) det(F ′) with of course det(F ′) = det
[
〈Φi|F |Φj〉

]
. (C102)

Now we consider
Γ′′

ǫ = Γ′′ + ǫ1 , (C103)

and obviously
det
(
Γ′′

ǫ

)
= ǫddet′

(
Γ′′) . (C104)

Rewrite

Γ′′
ǫ = 1 + ǫ− 2ψ0

1− P0

H −E0 + αP0
ψ0 (C105)

(this does not depend on the real number α). Then, since we now deal with invertible
operators, we have

det
(
Γ′′

ǫ

)
= det

[
(1 + ǫ)− 2ψ2

0

1− P0

H − E0 + αP0

]

= det

[(
(1 + ǫ)(H −E0 + αP0)− 2ψ2

0(1− P0)
) 1

H − E0 + αP0

]

=
det [(1 + ǫ)(H −E0)− 2ψ2

0 + ((1 + ǫ)α + 2ψ2
0)P0]

det [H −E0 + α]
. (C106)
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Obviously
det [H − E0 + α] = α det′ [H −E0] . (C107)

Now consider the (non-hermitian) operator in the numerator

Bǫ = (1 + ǫ)(H − E0)− 2ψ2
0 + ((1 + ǫ)α + 2ψ2

0)P0 , (C108)

which is not very different from the hermitian operator

Cǫ = (1 + ǫ)(H − E0)− 2ψ2
0 . (C109)

If ψ is a vector orthogonal to Ker(H −E0), i.e. 〈ψ|ψ0〉 = 0 (or P0ψ = 0) we have

Bǫψ = Cǫψ . (C110)

So the only difference between Bǫ and Cǫ is when applied to ψ0

Bǫψ0 = (1 + ǫ)αψ0 ; Cǫψ0 = −2ψ3
0 . (C111)

In a basis of the eigenvectors ψi of H − E0, Bǫ and Cǫ have respectively the form

Bǫ =

(
(1 + ǫ)α bj

0 dij

)
; Cǫ =

(
a bj
bi dij

)
(C112)

with

a′ = (1 + ǫ)α a = −2

∫
ψ4

0 bi = −2

∫
ψ3

0ψi dij = (1 + ǫ).... . (C113)

Thus
det
(
Bǫ

)
= (1 + ǫ)α det(dij) (C114)

while
det
(
Cǫ

)
=
(
a− b · d−1 · bt

)
det(dij) . (C115)

Now B = Cǫ=0 has d zero modes, the Vµ = ∂µψ0, hence

det
(
Cǫ

)
= ǫddet′(B) det

[〈Vµ|H −E0|Vν〉
‖Vµ‖2

]
. (C116)

We have

‖Vµ‖2 =

∫ (
∂µψ0

)2
=

1

d

∫
|~∇ψ0|2 , (C117)

and since (H − E0)Vµ = 2ψ2
0Vµ

〈Vµ|H − E0|Vν〉 = 2

∫
ψ2

0∂µψ0∂νψ0 =
2

d

∫
ψ2

0

∣∣~∇ψ0

∣∣2 δµν , (C118)

since ψ0 is invariant by rotation. Hence

det

[〈Vµ|H −E0|Vν〉
‖Vµ‖2

]
=

[
2

∫
ψ2

0 |~∇ψ0|2∫
|~∇ψ0|2

]d

. (C119)
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It remains to calculate the coefficient a− b · d−1 · bt. For this we use the fact that

1

a− b · d−1 · bt = 〈ψ0|
1

Cǫ
|ψ0〉 , (C120)

which follows from (C112). Now a simple calculation shows that

B
(
~r · ~∇ψ0 + ψ0

)
= (−∆/2−E0 − 3ψ2

0

)(
~r · ~∇ψ0 + ψ0

)
= 2E0ψ0 (C121)

and since ψ0 is orthogonal to the kernel of B we can write

lim
ǫ→0

1

Cǫ

ψ0 =
1

B
ψ0 =

1

2E0

(
~r · ~∇ψ0 + ψ0

)
. (C122)

Therefore, integrating by part and using the fact that ‖ψ0‖2 =
∫
ψ2

0 = 1 we obtain

lim
ǫ=0

1

a− b · d−1 · bt =
1

2E0
〈ψ0|~r · ~∇ψ0 +ψ0〉 =

1

2E0

∫
ψ0

(
~r · ~∇ψ0 +ψ0

)
=

2− d
4E0

. (C123)

Hence finally

det′
[
Γ′′] =

2− d
4E0

[
2

∫
ψ2

0 |~∇ψ0|2∫
|~∇ψ0|2

]d
det′

[
H − E0 − 2ψ2

0

]

det′
[
H −E0

] . (C124)

Putting this result into (3.50) we get (using the fact that V = −ψ2
0)

ImZ(b) = ∓1

2

∫
ddr0

[
V
∥∥∇ψ0

∥∥2

πd

]d/2 [
2− d
4E0

]−1/2

e−VS

∣∣∣∣
det′B

det′A

∣∣∣∣
−1/2

(C125)

to be compared to (C86).
For this remember that we are dealing with rescaled fields and couplings (with tildes).

So we go back to the original variables by rescaling

r→
[
|b|LD

]− 2−D
2(D−ǫ) r ; V → |b|− D

D−ǫL− Dǫ
D−ǫ . (C126)

It gives for D = 1

r→
[
|b|L

]− 1
d−2 r ; V → |b|− 2

d−2L− 4−d
d−2 . (C127)

Since Z(b) =
∫

ddrZ(b) we obtain

ImZ(b) = ∓1

2
|b|− 2d

d−2L− d(6−d)
2(d−2)

[∥∥∇ψ0

∥∥2

πd

]d/2 [
2− d
4E0

]−1/2

e−|b|−
2

d−2 L
− 4−d

d−2 Γ

∣∣∣∣
det′B

det′A

∣∣∣∣
−1/2

.

(C128)
This is the same as (C86) since

E0 = −τ , B = S ′′
l , A = S ′′

⊥ , ψ0 = ϕ , Γ = E0 +
1

2

∫
ψ4

0 = (d− 2)S (C129)
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APPENDIX D: Usefull formulas for derivatives of traces and determinants

To compute the Hessian matrix (5.39) of the variational energy Evar given by (5.28) we
need to compute the matrix derivatives

∂2

∂M∂M
tr
[
MD/2

s

]
and

∂2

∂M∂M

(
det
[
M

D−2
2

var 1l + M
D−2

2
s

])−1/2

with Ms =
1

2
(M + Mt)

(D1)
the symmetrized of the matrix M, at the special value M = Mvar1l. To compute these
derivatives it is useful to define the matrix Q(ij) = ei ⊗ ej as the matrix which on the line i
and row j is 1 and is 0 elsewhere11, so that for any matrix A = {Aij}

∂A

∂Aij
= Q(ij) ,

∂As

∂Aij
=

1

2

(
Q(ij) + Q(ji)

)
. (D2)

Using this we can compute the first derivatives

∂

∂Aij
tr
[
Aα
]

= α tr
[
Q(ij)A

α−1
]

,
∂

∂Aij
det
[
A
]

= det
[
A
]
tr
[
Q(ij)A

−1
]

(D3)

and using the important formula

Q(ij)Q(kl) = Q(il) δjk . (D4)

the second derivatives for the trace

∂

∂Aij

∂

∂Akl

tr [Aα
s ]

A=A1l

=
α(α− 1)

2
Aα−2 (δikδjl + δjkδil) (D5)

and for the determinant (n being the dimension of the matrix, so that det[A1l] = An)

∂

∂Aij

∂

∂Akl

[det(Aα1l + Aα
s )]−

1
2

A=A1l

=
(2Aα)−

n
2

16A2

(
α2δijδkl + α(2− α)(δilδjk + δikδjl)

)
(D6)

APPENDIX E: Instanton condenstates

Here we show that if V (r) is the instanton potential, and S its action, we have the exact
identities

〈V (r)〉V = −
∫

r

V (r)2 = −2
(
1− ǫ

D

)−1

S (E1)

〈(∇r)2〉V = −d
2

∫

r

V (r)2 = −d
(
1− ǫ

D

)−1

S , (E2)

where the e.v. 〈 〉V refers to the auxiliary model of a free (non-self-interacting) manifold
trapped in the potential V (r), with action

SV [r] =

∫

x

1

2
(∇r)2 + V (r) (E3)

11 i.e. Q(ij) =
{
Qkl

(ij) = δikδjl

}
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The first equality in (E1) follows from the instanton equation of motion 〈ρ〉+ V = 0 and
from

〈V (r(x0))〉V =

∫

r

V (r) 〈δ(r− r(x0))〉V =

∫

r

V (r) 〈ρ(r)〉V , (E4)

while the second equality comes from a simple result of [14], rederived in Appendix F, see
Eqs. (F6) and (F8).

The first equality in (E2) follows from the equations of motion for the auxiliary model
with action (E3) and the instanton equation. If we made the change of variable

r(x) → λ r(x) (E5)

in the functional integral we obtain (up to contact terms proportional to δD(0) which vanishe
in dimensional regularization, and which correspond to the normal-product definition of the
composite operator (∇r)2 = :(∇r)2 :0)

〈(∇r)2〉V + 〈r·∇rV (r)〉V = 0 . (E6)

Now we can rewrite this second term as

〈r·∇rV (r)〉V =

∫

r

r·∇rV (r) 〈δ(r− r(x0))〉V (E7)

and using the instanton equation and integrating by part we rewrite it as

〈r·∇rV (r)〉V = −
∫

r

r·∇rV (r)× V (r) = − 1

2

∫

r

r·∇r

(
V (r)2

)
=

d

2

∫

r

V (r)2 . (E8)

Q.E.D.
Then we use (E1) to obtain the second equality in (E2).

APPENDIX F: A variational bound for the smallest (negative) eigenvalue

In this section we derive a bound for the (negative) smallest eigenvalue λ− of the Hessian
S” which is associated to the unstable mode. The basic idea is as follows: The instability is
visible by studing a rescaling of r and correspondingly x, V and E . The unstable mode has
a non-vanishing overlap with this dilaton, which leads to a variational bound.

First of all, we recall the rescaling

r −→ rλ = λr (F1)

x −→ xλ = λ
2

2−D x (F2)

V (r) −→ Vλ(r) = λ
2D

2−DV (λr) . (F3)

Under this rescaling the two terms of the effective action scale as

E [V ] −→ E [Vλ] = λ
2D

2−DE [V ] (F4)

F [V ] −→ F [Vλ] = λ
2ǫ

2−DF [V ] . (F5)

Now we consider the full effective action

S[Vλ] = E [Vλ] + F [Vλ] . (F6)
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The saddle-point equations for the instanton inforce

0 = λ
d

dλ
S[Vλ]

∣∣
V =V inst =

2D

2−DE [V
inst] +

2ǫ

2−DF [V inst] , (F7)

which implies

E [V inst] = − ǫ

D
F [V inst] (F8)

The dilaton-mode is

(
λ

d

dλ

)2

S[V inst
λ ] =

(
2D

2−D

)2

E [V inst] +

(
2ǫ

2−D

)2

F [V inst] =
4ǫ(ǫ−D)

(2−D)2
F [V inst] . (F9)

Note that it does not matter, due to (F7), of how one exactly defines the dilaton: one could
use λ2d2/dλ2 instead.

On the other hand

(
λ

d

dλ

)2

S[V inst
λ ] = (ψ · S” · ψ)

∣∣∣
V =V inst

(F10)

with

ψ(r) = λ
d

dλ
V inst

λ (r) . (F11)

Expanding in eigenmodes,

ψ · S” · ψ
∣∣∣
V =V inst

=
∑

i

(ψ · ei)λi (ei · ψ) ≥ λmin (ψ · ψ) . (F12)

Therefore we have the exact bound

λmin ≤
(ψ · S” · ψ)

(ψ · ψ)
=

(
λ d

dλ

)2 S[V inst
λ ](

d
dλ
V inst

λ (r) · d
dλ
V inst

λ (r)
) . (F13)

Using

λ
d

dλ
Vλ =

2−D
2D

V + r∇V (r) (F14)

one obtains the still exact bound

λmin ≤ −
ǫ(D − ǫ)

2D2

∫
r
V 2(r)

∫
r

[
V (r) + 2−D

2D
r∇V (r)

]2 . (F15)

This bound can of course not be calculated exactly, if we do not know exactly the instan-
ton potential V . However, we can use the variational approximation for V inst to calculate
the r.h.s. of (F15) approximately. Using for V (r) the Gaussian V (r) = exp(−r2/2) (all
normalizations and the width cancel at the end), one obtains

λmin ≤ λvar
min =

− 2ǫ(D − ǫ)
(2−D)(2D − ǫ) + ǫ2

. (F16)
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APPENDIX G: Normalization w.r.t. the variational mass mvar in the variational and

post-variational calculations

In this appendix we discuss the rescaling used in the variational and large-d calculations
of Sect. V, where all quantities are expressed in units of the variational mass scale m.
This rescaling is in fact quite simple and natural, but it might become confusing in some
calculations, so we present it here carefully and thoroughly.

1. The rescaling for x, r and g

The variational mass m satisfies the equation (5.14), which amounts to

mD−ǫ = 2c0(4πc0)
d/2 , (G1)

where c0 = c0(D) is the tadpole

c0 = (4π)−D/2Γ((2−D)/2) = . (G2)

As in [14] we perform the rescalings x→ x in D-space and r→ r in d-space, with

x = m−1x , p = mp ; r = m(D−2)/2)r , k = m(2−D)/2k (G3)

in order to set the variational mass to unity m → m = 1. In the new units the instanton
potential V is and its Fourier transform are rescaled as V → V with

V (r) = mDV (r) . (G4)

In addition we also redefine the measure over r in d-space (and the corresponding measure
over k in reciprocal space) as

∫
ddr →

∫

r

with

∫

r

= mǫ−D

∫
ddr = mD

∫
ddr (G5)

∫
ddk

(2π)d
→

∫

k

with

∫

k

= mD−ǫ

∫
ddk

(2π)d
= m−D

∫
ddk

(2π)d
. (G6)

With this new measure the definition of the Fourier transform V̂ of V in d-space is changed
into

V̂ (k) =

∫

r

e−ikrV (r) ; V (r) =

∫

k

eikrV̂ (k) (G7)

and using (G4) the rescaling for the Fourier transform V̂ of the potential V is V̂ → V̂ with

V̂ (k) = V̂ (k) . (G8)

Finally since the functional integration measure D[V ] over V is normalised by (B1) which
involves the measure over r and the effective coupling constant g, (this is equivalent to
state that the metric G(δV, δV ) = (−e−iθ/4πg)

∫
r
δV (r)2 over the space of V configurations

depends on g and the measure over r), the rescaling of the r-integration measure (G5)
amounts to a rescaling of the effective coupling constant g → g with

g = mDg (G9)

or equivalently of the original coupling constant b→ b with

b = mD−ǫb . (G10)
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2. Consequences

a. Normalization for integrals and distributions

With these normalizations all powers of m disappear in the variational and post-
variational calculations, but we have to be careful when we perform Gaussian integrals.
Indeed the following Gaussian integral gives

∫

k

e−k2c0 = 2c0 , (G11)

where c0 is given by (G1). Indeed, we have using (G6) and the equation (G1) for the
variational mass∫

k

e−k2c0 = mD−ǫ(4πc0)
−d/2 = m−D(4πGm)−d/2 = m−D2m2Gm = 2c0 . (G12)

One has also to take into account the fact that the Dirac distribution in r space is now

δ(r) = mD−ǫδd(r) such that

∫

r

δ(r) = 1 . (G13)

b. Action and Hessians

Once this is done, all the results for the instanton and the large orders still hold without
any factorm, in particular (3.51)-(3.53). The effective action S for the potential V is rescaled
into S[V ] given simply by

S[V ] = E [V ] +
1

2

∫

r

V 2 , and is such that S[V ] = mDS[V ] , (G14)

as well as its functional derivatives S ′[V ] = mDS ′[V ], S ′′[V ] = mDS ′′[V ], etc. The instanton
equation (3.41) is still

V̂ (k) +
〈
eikr(o)

〉
V

= 0 (G15)

and the Hessian is still given by (4.2)- (4.3), i.e. (in reciprocal space)

S ′′ = 1l−O with 1lx1,x2
= δ(x1 − x2) , O = −E ′′ i.e. Ô

k1,k2
[V ] =

∫

x

〈
eik1r(o)eik2r(x)

〉conn

V

(G16)
The logarithm of the Hessian is now

L = L = log det′[S ′′] = tr log
[
1l−Q

]
= −

∞∑

k=1

1

k
tr
[
Qk
]

(G17)

with in particular

tr
[
Q
]

=

∫

k

Q̂
k,−k

, tr
[
Q2
]

=

∫

k1

∫

k2

Q̂
k1,−k2

Q̂
k2,−k1

, etc. . (G18)

Finally the zero-mode measure factor W is rescaled as expected

W = md W , W =

[
1

2πd

∫

r

(∇rV )2

]d/2

. (G19)
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c. Instanton

In particular, this gives the variational instanton potential (obtained by replacing the e.v.
in the instanton potential 〈 〉V by e.v. in the quadratic potential 〈 〉m=1 in (G15))

V̂ inst
var (k) = −e−k2c0/2 and by Fourier transform V inst

var (r) = −2c0 2d/2 e−r2/(2c0) . (G20)

The instanton potential expanded in normal products w.r.t. the unit variational mass (i.e.
: :=: :m=1) reads

V (r) = 2c0

∞∑

n=0

1

2nn!

(−1

2c0

)n

µn :
(
r2
)n

: (G21)

µn =
1

d(d+ 1) · · · (d+ n− 1)

∫

k

(
−k2

)n
V̂ (k)e−

k2

2
c0 . (G22)

d. Renormalized quantities and counterterms

Finally let us see how the UV counterterms and the renormalized action transform under
this rescaling. In Sect. IV.D.2 the one-loop counterterm ∆1S for the effective action S was
found to be given by (4.104)

∆1S[V ] = − C1

ǫ

1

2

〈
(∇r)2

〉
V
− C2

ǫ

1

4

∫

r

V (r)2

and the renormalised effective action Sren[V ] was

Sren[V ] = S[V ]− g
D−ǫ

D
r (µL)−ǫ∆1S[V ] .

If we now perform the rescalings it is easy to see that

〈
(∇xr)

2
〉

V
= mD

〈
(∇xr)

2
〉

V
and

∫

r

V (r)2 = mD

∫

r

V (r)2 . (G23)

We define the rescaled renormalized couplings br and g
r
as for the bare couplings (G9)-(G10)

gr = mDg
r

and br = mD−ǫbr . (G24)

Then the rescaled renormalized effective action Sren[V ] defined by

Sren[V ] = mDSren[V ] (G25)

is given by

Sren[V ] = S[V ]− gD−ǫ
D

r
(µL)−ǫ∆1S[V ] (G26)

with the rescaled one-loop counterterm ∆1S[V ] given by

∆1S[V ] = mǫ∆1S[V ] (G27)

and using (G23) we write ∆1S[V ] as

∆1S[V ] = − C
1

ǫ

1

2

〈
(∇xr)

2
〉

V
− C

2

ǫ

1

4
V (r)2 (G28)
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with the rescaled counterterms

C
1

= mD−ǫ
C1 and C

2
= mD−ǫ

C2 . (G29)

Now we use the explicit perturbative results (4.85)-(4.87) for the counterterms C1 and C2

and Eq. (G1) for the variational mass m and obtain for the counterterms C
1

and C
2

C
1

= −SD

2D

[
c0
d0

]1+ d
2

, C
2

=
2SD

(2−D)2

Γ[D/(2−D)]2

Γ[2D/(2−D)]

[
c0
d0

]1+ d
2

, (G30)

where we remind that

SD = 2 πD/2/Γ[D/2] , c0/d0 = −22−D Γ[(2−D)/2]/Γ[(D − 2)/2] (G31)

and in the limit d→∞, ǫ fixed, C
1

is of order O(1) since

C
1

= −π 23−ǫ e−(4−ǫ)γE [1 +O(1/d)] , γE Euler’s constant . (G32)

while C
2

is exponentially small.

3. Final results

With these notations, the final results for the large orders have the same form, with the
unrescaled quantities replaced by the rescales ones.

In the bulk of the paper, when we use these normalisations, we rely on (G11) and (G21)
and omit the underlinings ⋆ for all the quantities and the fields such as x, r, V , g, S etc.


