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Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We
study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an
external field. We show how the full statistics of these jumps is encoded in the functional-renormalization-group
fixed-point functions. This allows us to obtain the size distribution P (S) of static avalanches in an expansion
in the internal dimension d of the interface. Near and above d = 4 this yields the mean-field distribution
P (S) ∼ S−3/2e−S/4Sm where Sm is a large-scale cutoff, in some cases calculable. Resumming all 1-loop

contributions, we find P (S) ∼ S−τ exp
“
C(S/Sm)1/2 − B

4
(S/Sm)δ

”
where B,C, δ, τ are obtained to first

order in ε = 4− d. Our result is consistent to O(ε) with the relation τ = τζ := 2− 2
d+ζ

, where ζ is the static
roughness exponent, often conjectured to hold at depinning. Our calculation applies to all static universality
classes, including random-bond, random-field and random-periodic disorder. Extended to long-range elastic
systems, it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible
with τ = 2 − 1

d+ζ
to O(ε = 2 − d). We discuss consequences for avalanches at depinning and for sandpile

models, relations to Burgers turbulence and the possibility that the relation τ = τζ be violated to higher loop
order. Finally, we show that the avalanche-size distribution on a hyper-plane of co-dimension one is in mean-
field (valid close to and above d = 4) given by P (S) ∼ K 1

3
(S)/S, where K is the Bessel-K function, thus

τhyper plane = 4
3

.

I. INTRODUCTION

A hallmark of complex non-linear systems, as well as sys-
tems with quenched disorder or inhomogeneities, is that the
response to an applied field is very often not smooth but in-
volves jumps, bursts or avalanches. This is true for domain
walls in a magnet responding to a change in external mag-
netic field, leading to the Barkhausen noise [1, 2], the flux
lattice in type-II superconductors upon varying the field [3]
the contact line of a liquid partially wetting a disordered sub-
strate when emptying the container [4, 5], or piles of granu-
lar material when adding grains [6]. Other examples are mo-
tion of cracks in brittle materials, dry friction [7] and earth-
quakes [8, 9]. This jerky behaviour often arises as a non-
equilibrium phenomenon, but it may also occur at equilib-
rium, in systems with many metastable states, as they switch
from one global minimum to another when an external pertur-
bation is applied. The statistics of these jumps ubiquitously
exhibits scale invariance and self-organized criticality as in
sandpiles[10], with power-law tails for the probability of rare
large events: if one defines an event size S, the probability
distribution behaves as P (S) ∼ S−τ , up to some large-size
cutoff Sm, e.g. imposed by the finite system size.

An outstanding question is the degree of universality of the
jump statistics. This can in principle be answered in particular
prototype models, but even then it turns out to be rather diffi-
cult to obtain analytical results. One such class of models are
sandpile automata which are dynamical systems where small
events can trigger large avalanches [10–13]. There, some
beautiful results have been obtained analytically, but the full
avalanche statistics, including the distribution of avalanche
sizes P (S), has not yet been obtained in the cases of phys-
ical interest, such as spatial dimensions d = 2, 3. Mean-field
theories [14, 15] predict τ = 3/2 and various scaling argu-
ments have been constructed [10–13, 16, 17], not all in mu-
tual, agreement especially for d = 2. Among these, the con-

jecture τ = 2 − 2/d seems to be the best guess [18, 19] in
d = 3, but most often one has resorted to extensive numerics.

Another class of prototype models are random field Ising
magnets (RFIM) in an external field H . There one may study
either the changes in the ground state as H is varied or the
non-equilibrium zero-temperature dynamical evolution from
an initial state. Tuning the system near the critical values of
field and disorder where the macroscopic magnetization jump
vanishes, one can study finite-size avalanches, and these are
found to exhibit self-organized criticality. Extensive numeri-
cal work has been carried out to determine avalanche-cluster
statistics [20]. In parallel, the avalanche size distribution was
studied [21] using a a field theoretic RG approach in an ex-
pansion in d = 6 − ε. However, since the RG used there is
based on the dimensional reduction property, which is well
known to fail for even simpler disordered problems, as well
as for the static RFIM, the status of the result of Ref. [21],
τ = 3/2 + O(ε2) remains to be clarified. Furthermore it
has been recently argued, mostly on the basis of numerics,
that the avalanche statistics for the RFIM ground state and for
its non-equilibrium dynamics are not distinct but belong to
the same universality class [22]. Hence, another outstanding
question is to clarify the possible differences between equilib-
rium and non-equilibrium avalanches in the RFIM, and in a
broader class of models.

Elastic systems pinned by a quenched random substrate
provide yet another frequently used model for avalanche phe-
nomena. In the statics they are known to exhibit glassy phases
where the Gibbs measure, while localized near a minimal en-
ergy configuration, does exhibit jumps at low temperature due
to the presence of many low-lying metastable states. As an
external force f is applied, the system exhibits a depinning
transition: at T = 0 it starts moving at non-zero velocity
only for f > fc. The motion near the depinning threshold
fc has been studied extensively numerically and is known to
proceed by avalanches [23–26]. These are actually not ob-
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vious to define non-ambiguously in the moving phase, hence
some of the literature on the subject is qualitative. Under-
standing these avalanche statistics is however a challenging
question, since elastic plates driven by springs exhibit stick-
slip motion, which provide a first step to model complex sys-
tems such as earthquakes In Ref. [8] a very simple model
for avalanches, mean-field in inspiration, was proposed and
solved, and yields again the value τ = 3/2. Surprisingly,
there is to this day no first-principle derivation of even this
simple mean-field behaviour, within this class of models. Be-
sides extensive numerics, the main theoretical result is a con-
jecture for the size exponent near depinning, equivalent to
τ = τζ = 2 − 2/(d + ζ), based on a scaling argument and
some unproven assumptions [27, 28]. Thus there is the need
for an analytic tool to approach this problem. The Functional
RG (FRG), a powerful field-theoretic method to deal with dis-
ordered elastic systems in the statics [29–44] and in the driven
dynamics [27, 45–53], as well as with random field models
[54–61], has been quite succesful at computing for instance
the roughness properties of the displacement field u(x), in a
dimensional d = 4 − ε expansion. Following the procedure
proposed in [62–64], the numerical determination of the pre-
dicted FRG fixed-point functions in dimensions d = 1, 2, 3
have confirmed the theory to high precision, up to two-loop
accuracy both in the statics [65] and at quasi-static depinning
[66]. This was an important test, given that the field theory
is quite non-standard: the coupling constant is a function of
the field, ∆(u) = −R′′(u), the renormalized second cumu-
lant of the pinning force, and the zero-temperature effective
action is non-analytic, e.g. ∆(u) exhibits a cusp at u = 0.
However, until now no calculation of avalanche distributions
has been even attempted using FRG. In fact, possible difficul-
ties in handling the fast-jump motion within the field theory
have been emphasized [46], and it was unclear whether it was
possible at all.

The aim of this paper is to show that one can extract the
avalanche statistics from the FRG in a controlled way. It is a
priori quite involved as it requires the calculation of the non-
analytic part (the cusp) of all cumulants of the renormalized
disorder, which encode the jump distribution. However, it
turns out to be feasible in the end, as we find that remark-
ably simple self-consistent equations are obeyed by suitable
generating functions. As an application we compute the dis-
tribution of avalanche sizes from first principles in an expan-
sion in d = 4− ε. We derive the mean-field result and obtain
a 1-loop, i.e. O(ε) prediction for P (S). Here we study the
case of static avalanches, also called shocks, which are de-
fined as jumps between distinct global minima of the energy
upon changing an external field. The most convenient setting
is to add an external harmonic well with a variable central
position, i.e. consider an elastic interface in a random poten-
tial tied to a harmonic spring. As a function of the spring
position, the center of mass of the interface changes in dis-
crete jumps. We study all static universality classes including
random-bond, random-field and random-periodic disorder, as
well as long-range elastic systems. We obtain not only the
exponent τ but the full scaling function of the avalanche dis-
tribution. The latter is (almost fully) universal with respect

to small scales, and the dependence in the large scales, i.e. in
S/Sm, is calculable. A short summary of some of our main
results, together with a parallel numerical study, has recently
appeared [26] and here we provide the necessary details of the
approach and of the calculation. Although we do not directly
study depinning here, there are connections between static and
dynamical FRG, the main idea of the method being similar.
As found in a companion study [67] of avalanches at depin-
ning, the results of the present paper are most likely to hold
also for depinning to one loop. Since for some observables,
such as the roughness exponent ζ, differences between statics
and depinning within the FRG appear only at two loop [32],
the question of the difference between non-equilibrium and
static avalanches remains open and requires a 2-loop study
[67]. Note that to our knowledge, while avalanches near de-
pinning have received a lot of attention, the static avalanches
and shocks defined here have not. Their connection to the
Burgers equation [62, 63], which provides their d = 0 limit,
helped formulate the problem in a way amenable to FRG cal-
culations.

Let us also point out that there are interesting relations be-
tween the depinning in the random periodic class, i.e. charge
density waves (CDW), and sandpile automata[24, 68]. Sand-
pile automata are also related to spanning trees and loop
erased random walks [18, 19, 69–74], and this has lead to
recent FRG predictions for the latter [75]. Hence the present
work is also relevant to sandpile models. An important issue is
the status of the conjecture τ = τζ , which in sandpile models
reads τ = τζ=0 consistent with a value ζ = 0 for CDW de-
pinning. Of course, in the present paper the question becomes
whether such a relation also exists in the statics. Finally, let
us note that our results extend beyond disordered systems. In-
deed in some complex dynamical systems, the randomness
lies in the initial condition, and avalanches or shocks appear
in the course of a non-linear deterministic evolution. This is
the case for the sandpile automata (e.g. in the conserved en-
ergy ensemble) as well as for the problem of decaying Burg-
ers turbulence. The latter is indeed intimately connected to
the pinning problem, and to the FRG, as is recalled below.
Therefore the methods introduced in this article should find
applications in a much broader class of non-linear complex
systems, possibly including turbulence and spin glasses.

The outline of the article is as follows. In Section II we
define the model of an elastic manifold in a random poten-
tial and a harmonic well. In Section III we give the expected
scaling form for shock ditributions. In Section IV we detail
the connection to FRG functions. In Section V we present
the tree-level calculation which leads to the mean-field result.
In Sections VI and VII we present the 1-loop resummation
and in Section VIII we discuss the result for P (S). The lo-
cal avalanche-size distribution is discussed in section IX. Ex-
tensions to non-local elasticity are given in Section X. More
technical material is relegated to various appendices.

Note that we will not review manifolds in random poten-
tials, for which we refer to [76, 77], nor static FRG methods
for which we refer to [78] for a pedagogical introduction and
to [36, 63] for details of the FRG calculations.
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II. MODEL

We consider an elastic interface parameterized by a one
component (N = 1) displacement field noted u(x) ≡ ux. It
is subjected to a random potential V (u, x) and to a harmonic
well centered at ux = wx. It is defined by the Hamiltonian:

H[u;w] =
1
2

∫
q

g−1
q |uq − wq|2 +

∫
x

V (ux, x) (1)

where we denote
∫
x

=
∫
ddx and the Fourier transform uq =∫

x
eiqxux and

∫
q

=
∫

ddq
(2π)d

. A cutoff at small scale x ∼ a or
q ∼ Λ, is implicit everywhere. In most of the paper we focus
on the choice of a standard local elasticity:

g−1
q = Kq2 +m2 (2)

and often set K = 1 for convenience. The bare disorder is
assumed to be short range in internal space, statistically trans-
lationnaly invariant, with a bare second cumulant:

V (u, x)V (u′, 0)
c

= δ(x− x′)R0(u− u′) (3)

whose precise form is unimportant, apart from some global
features which determine the universality classes, mainly (i)
random bond (RB) with R0(u) a short range (SR) function,
(ii) random field (RF) with R0(u) ∼ −σ|u| a long range (LR)
function, (iii) random periodic (RP), with R0(u) a periodic
function of period (arbitrarily) set to unity.

To study the equilibrium statics we define the renormalized
potential V̂ as the free energy of the system, and the renor-
malized force as its functional derivative w.r.t wx:

e−V̂ [w]/T =
∫
Duxe−H[u;w]/T (4)

V̂ ′x[w] =
∫
x′
g−1
xx′(wx′ − 〈ux′〉) (5)

gxx′ =
∫
k

gkeik(x−x′) (6)

where 〈. . .〉 denotes thermal averages over H[u;w] in a given
disorder realization and [. . .] is reserved for arguments of
functionals, while (. . .) is used for arguments of functions.
For further details and notations we refer to [62–66] where
this model and the observables where introduced and studied.

In this article we are mostly interested in energy minimiza-
tion as w is varied in a given realization of the random poten-
tial V (x, u), i.e. the T = 0 problem. At T = 0 the minimum-
energy configuration is denoted ux[w]; and ux(w) for w uni-
form, thus dropping the expectation value. V̂ [w] becomes the
minimum energy,

V̂ [w] = min
ux
H[u;w] . (7)

and for a uniform wx = w one defines the ground state energy
of the system per unit volume:

V̂ (w) := L−dV̂ [{wx = w}] (8)

Ld being the volume of the system. Its derivative w.r.t w:

V̂ ′(w) = m2(w − u(w)) (9)

u(w) = L−d
∫
x

ux(w) (10)

coincides with the force per unit volume exerted by the spring.
We are ultimately interested in the small-mass limit m → 0
where scale invariance becomes manifest. As shown previ-
ously [30, 65, 76, 77, 79, 80], the optimal interface is statisti-
cally self-affine with (u(x)− u(0))2 ∼ |x|2ζ and a roughness
exponent ζ which depends on the class of disorder, and with a
ε = 4− d expansion [32]: ζ = ε/3 for RF, ζ = 0 for RP, and
ζ = 0.2083ε + 0.00686ε2 for RB (ζ = 2/3 in d = 1). This
holds for scales Lc < L < Lm, where Lc is the Larkin length
(here of the order of the microscopic cutoff) and Lm ∼ 1/m,
the large scale cutoff induced by the harmonic well. It is use-
ful to picture the interface as a collection of (L/Lm)d regions
pinned almost independently.

Note that in this article we study the static problem where
the interface finds the global energy minimum for eachw. The
function u(w) is then a single valued monotonically increas-
ing function ofw. One can also study the quasi-static dynamic
problem where w(t) grows very slowly as a function of time,
and the interface visits a deterministic sequence of metastable
states [64]. In that case u(w) is history dependent, although
due to the no-passing theorem [81] different initial conditions
converge to the same asymptotic trajectory as w is increased
by an amount larger than Lζm [66]. In the m → 0 limit this
is a method to study avalanches near the depinning transition.
It is different from the more standard method where the force
is increased infinitesimally while remaining below threshold
f < fc, and in a sense it is a cleaner method since it pro-
duces a steady state for avalanches without getting closer to
threshold, i.e. without changing the cutoff length which re-
mains Lm ∼ 1/m. The study of this case requires dynamical
FRG and will be performed in [67].

III. OBSERVABLES

We now define a few useful observables and notations, fo-
cusing on the simplest case of a parabola centered around a
uniform wx = w. We also discuss their expected scaling form
in the limit m→ 0, confirmed later via the FRG analysis.

A. Energy fluctuations

The renormalized potential defined in (4) is a random func-
tion of w and of the bare random potential V (u, x). Hence
one can define its cumulants as averages over the bare random
potential:

V̂ (w1)V̂ (w2)
c

= L−dR(w1 − w2) (11)

V̂ (w1) . . . V̂ (wn)
c

= L−(n−1)d(−1)nŜ(n)(w1, . . . wn) .
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We denote S̄(n)(w1, . . . , wn) the same expectation values
for non-connected averages and use that R̂ = R. Note
that connected averages scale with system size as indicated,
while non-connected do not. In the limit m → 0 one ex-
pects that they take the scaling form Ŝ(n)(w1, . . . , wn) ∼
md−nθ ŝ(n)(mζw1, . . . ,m

ζwn) with θ = d− 2 + 2ζ.

B. Force fluctuations

One defines the cumulants of the renormalized pinning
force:

m4(u(w1)− w1)(u(w2)− w2)
c

= L−d∆(w1 − w2) (12)

m2n(u(w1)− w1) . . . (u(wn)− wn)
c

= (−1)nV̂ ′(w1), . . . , V̂ ′(wn)
c

= L−(n−1)d(−1)nĈ(n)(w1, . . . , wn) (13)

and similarly with C̄(n) for non-connected averages. (The
same remark as above applies for the system size depen-
dence). In the first line of Eq. (12) the connected av-
erage can be replaced by a non-connected average, since
u(w1)− w1 = 0 (as shown by parity and statistical trans-
lational invariance of the disorder). One has the relation
Ĉ(n)(w1, . . . , wn) = (−1)n∂w1 . . . ∂wn Ŝ

(n)(w1, . . . , wn)
and ∆(w) = −R′′(w). In the limit m → 0 one ex-
pects that they take the scaling form Ĉ(n)(w1, . . . , wn) ∼
m2n−(n−1)d−nζ ĉ(n)(mζw1, . . . ,m

ζwn), and

∆(w) = Adm
ε−2ζ∆̃(mζw) , (14)

where a convenient choice of the constant Ad is given below,
see (B3).

C. Shock observables

Consider a uniform w. It is reasonable to assume (and
confirmed by numerical studies[26, 65]) that ux(w) consists
of smooth parts, which become constant in the scaling limit
ux(w) ∼ m−ζ as m → 0, and jumps, also called shocks, or
static avalanches, that it can be decomposed as

ux(w) =
∑
i

Sxi θ(w − wi) (15)

u(w) =
1
Ld

∑
i

Siθ(w − wi) (16)

Si =
∫
x

Sxi . (17)

Here Si is the “size” of the shock labelled i, and θ(x) the
unit-step function. To each environment corresponds a unique
set of ux(w), and a unique set {(wi, Si)}. From this one
defines the normalized probability of an (infinite) sequence

p(. . . ;w1, S1; . . . wn, Sn; . . .). One can also define the 1-
point probability-density

ρ(S,w) =
∑
i

δ(S − Si)δ(w − wi) , (18)

so that the total number of shocks in an interval of size w is
Nw =

∫
dS
∫ w

0
ρ(S,w). We will assume that Nw is propor-

tional to w. This is equivalent to

ρ(S,w) = ρ0P (S) = ρ(S) , ρ0 =
∫ ∞
Smin

dSρ(S) (19)

where P (S)dS is the normalized probability that a given
shock has a size in the interval [S, S+dS] and ρ0dw is the av-
erage total number of shocks in an interval dw, i.e. the shock
density, assumed here to be a finite number. Note that the mass
m provides a scale ensuring convergence at large S, while the
notation Smin refers to the avalanche size at the small scale
cutoff of the model, which in some cases will be explicitly
needed to ensure convergence at small S of our scaling forms,
see below. The statistical translational invariance of the disor-
der, together with parity implies:

u′(w) ≡ 1
Ld

∑
i

Siδ(w − wi) ≡
1
Ld

∫ ∞
Smin

dSSρ(S) = 1 .

(20)
This also gives

L−dρ0〈S〉 = 1 , (21)

where here and below 〈Sn〉 :=
∫

dSSnP (S) are normalized
moments.

We now consider the m → 0 limit. One expects, and later
verifies that the shock distribution takes the following scaling
form (see [24, 26]):

ρ(S) = LdmρS−τ ρ̃(Smd+ζ) . (22)

where ρ̃(s = 0) is a constant and ρ̃(s) has a fast decay to zero
at large s, suppressing large avalanches. This form involves a
priori two exponents ρ and τ . However if one assumes τ < 2,
which is found to always hold here, the constraint (20) implies
a relation between the two exponents obtained by writing, as
m→ 0:

1
Ld

∫ ∞
Smin

dSSρ(S) = mρ−(2−τ)(d+ζ)

∫ ∞
0

dsss−τ ρ̃(s) = 1

ρ = (2− τ)(d+ ζ) ,

∫ ∞
0

dss1−τ ρ̃(s) = 1 , (23)

It also implies a constraint on the scaling function. From now
on we denote Sm the scale at which the avalanche sizes are
cut by the mass m. It behaves at small mass as

Sm = cm−(d+ζ) . (24)

For now it is defined up to a multiplicative constant c, for
which we make a convenient choice below.
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We must now distinguish two cases where the distribution
is qualitatively different:

(i) τ < 1 :
In that case the total shock density

ρ0 = Ldm(d+ζ)

∫ ∞
0

dss−τ ρ̃(s) (25)

is given by a convergent integral at small s = cS/Sm (it al-
ways converges at large s). Hence the normalized avalanche
size distribution P (S) takes the simple scaling form [89]:

P (S) = S−1
m p(S/Sm) (26)

p(x) = c1−τx−τ ρ̃(cx)
1∫∞

0
dyy−τ ρ̃(y)

(27)

controlled by a unique scale Sm. The scaling function p(x)
for the probability satisfies:∫ ∞

0

p(x)dx = 1 ,

∫ ∞
0

xp(x)dx =
1

c
∫∞

0
dyy−τ ρ̃(y)

(28)
It is itself a probability (therefore the notation p(x)).

Two known examples with τ < 1 are (for review see [63]):
(i) the Sinai model, which corresponds to the d = 0 limit of
the random field RF case, i.e. ζ = 4/3, and also to the de-
caying Burgers equation with initial uncorrelated velocities.
There the scaling function p(s) is known, with τ = 1/2 and
p(s) ∼ s5/2 exp(−αs3) at large s (ii) d = 0 short range ran-
dom potential, also known as Kida turbulence in Burgers lit-
erature, which corresponds to ζ = 1. There p(s) = 1

2se
−s2/4.

(ii) 2 > τ > 1:
Here the total shock density in the small-mass limit Smin �

Sm is controlled by small shocks:

ρ0 =
∫ ∞
Smin

ρ(S)dS ≈ Ldmρ S
1−τ
min

1− τ
. (29)

The normalized size-distribution can then be written for S �
Smin as:

P (S) = C〈S〉S−2
m (S/Sm)−τf(S/Sm) (30)

C−1 =
∫ ∞

0

dxx1−τf(x) (31)

with Cf(x) = c2−τ ρ̃(cx), using (21). Since f is not normal-
izable, it is not a probability, hence the notation. The normal-
ization integral (31) of

∫
dSSP (S) converges at small S and

does not depend on the small-scale cutoff [90] However the
integral

∫
dSP (S) is divergent if we extend the form (30) to

small S. It means that

〈S〉 ∼ kS2−τ
m Sτ−1

min , (32)

with k = (1 − τ)/(Cf(0)). This is an approximate value,
obtained setting

∫∞
Smin

dSP (S) = 1 and extending the form
(30) down to Smin. Note that although 〈S〉 =

∫
dSSP (S) is

a convergent integral at small S, its actual value depends on

the precise cutoff at small scale. This is because, for τ > 1,
almost all avalanches are in size of the order of the UV cutoff
Smin. Despite that fact however, all moments 〈Sp〉 with p >
τ−1 are controlled by rare avalanches of size∼ Sm, the large-
scale cutoff. For τ > 1 it is only this part of the distribution,
i.e. for S � Smin, which is universal, up to a multiplicative
constant.

Finally, in the case τ = 1 both phenomena are present. We
will not study this case here.

IV. CONNECTION WITH FRG FUNCTIONS

The hypothesis of a finite density of shocks implies that the
functions Ĉ(n)(v1, . . . , vn) and C̄(n)(v1, . . . , vn) are contin-
uous and have no ambiguities at coinciding points; i.e. choos-
ing a given order for its arguments one can take the limit of
coinciding arguments, and the result does not depend on the
chosen order.

The derivatives of Ĉ(n)(v1, . . . , vn) however are distribu-
tions and they do contain information about shock statistics as
we now show.

A. Cusp

Let us start with the second moment (12). Taking deriva-
tives w.r.t. w1 and w2 one finds:

−m−4L−d∆′′(w1 − w2) = u′(w1)u′(w2) + 1

= L−2d
∑
i

S2
i δ(w1 − wi)δ(w1 − w2)

+ L−2d
∑
i 6=j

SiSjδ(w1 − wi)δ(w2 − wj) + 1 , (33)

where we have used the decomposition in shocks (16) and
separated in the double sum the contributions from the same
shock and from different shocks.

Hence the second derivative is the sum of a δ singularity
and a smooth part:

−∆′′(w) = m4L−d
∫

dSS2ρ(S)δ(w)

+m4L−d
∫

dS1dS2S1S2ρc(S1, S2, w) , (34)

where

ρc(S1, S2, w1 − w2)

=
∑
i 6=j

δ(S1 − Si)δ(S2 − Sj)δ(w1 − wi)δ(w2 − wj)
c

.

(35)

Note that ρ(S) and the connected joined 2-shock size-density
ρc(S1, S2) are proportional to the size of the system. Integrat-
ing around zero yields [91]:

−2∆′(0+) = m4L−d
∫

dS S2ρ(S) = m4 〈S2〉
〈S〉

(36)
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using (21). This provides a rather nice interpretation of the
FRG function ∆(w) in terms of shocks: the cusp gives di-
rectly the second moment of the shock size, and the remain-
ing smooth part of the function gives the correlation of the
sizes of two (distinct) shocks at different points. A non local
generalization of this formula is given in (F12).

Let us now verify the scaling for small m. From the above
one finds:

−2∆′(0+) = c̃m4Sm = cc̃mε−ζ (37)

with c̃ := c−1
∫∞

0
ds s2−τ ρ̃(s) =∫∞

0
ds s2−τf(s)/

∫∞
0

ds s1−τf(s) (the latter for τ > 1
only). This has the expected fixed-point scaling (14) with
−∆̃′(0+) = cc̃/(2Ad). Below, we will make the convenient
choice c̃ = 2 to fix the arbitrariness in definition of Sm.

This correspondence can be extended to higher moments.
For illustration, let us consider the third moment:

u′(w1)u′(w2)u′(w3)

= L−3d

∫
dS S3ρ(S)δ(w1 − w2)δ(w1 − w3)

+
[
δ(w1 − w2)L−3d

∑
i 6=j

S2
i Sjδ(w1 − wi)δ(w3 − wj)

+ 2perm
]

+ L−3d
∑

i 6=j 6=k 6=i

SiSjSkδ(w1 − wi)δ(w2 − wj)δ(w3 − wk)

(38)

From this expression one can integrate∫ w
0

dw1

∫ w
0

dw2

∫ w
0

dw3 and obtain

[u(w)− u(0)]3 = L−3d

∫
dS S3ρ(S)w +O(w2) . (39)

This can be generalized to any order, as discussed in appendix
A.

Note that in dimension d = 0 the field m2(w−u(w)) iden-
tifies with the velocity field of a 1-dimensional fluid which
evolves in time t = m−2 according to the Burgers equation
with random initial conditions. The linear cusp of the third
moment, Eq. (39) is the analogous for Burgers turbulence to
the famous exact result of Kolmogorov for Navier Stokes in
the inertial range, both models exhibiting similarities. We will
not discuss these connections further here, see Ref. [62, 63],
but since the manifold problem is a d > 0 generalization of
the Burgers equation, we will call Kolmogorov moments mo-
ments such as (39) and their generalizations.

B. Kolmogorov cumulants and generating function

We now generalize the results of the previous section and
construct a very useful generating function which resums all
shock-size moments.

Since we are interested in the jump sizes, it is convenient
to define the Kolmogorov cumulants (by analogy with the fa-
mous K41 paper [82], as discussed above):

[u(w)− w − u(0)]n
c

= m−2nL−(n−1)dK(n)(w) (40)

K(2)(w) = 2(∆(0)−∆(w)) , (41)

where all K(n) have a large-L limit, and K(1) = 0. We find
that they are proportional to moments of the shock-size distri-
bution:

K(n)(w) = m2nL−d
∫

dS Snρ(S)|w|(sign w)n +O(w2)

= m2n 〈Sn〉
〈S〉
|w|(sign w)n +O(w2) (42)

Note that the leading small-w coefficient, the cusp, is
the same for [u(w)− w − u(0)]n

c
, [u(w)− w − u(0)]n and

[u(w)− u(0)]n. We thus study the generating function:

eλLd[u(w)−w−u(0)] − 1 =
∞∑
n=2

λn

n!
Lnd[u(w)− w − u(0)]n

=
∞∑
n=2

λn

n!

∫
dS Snρ(S)|w|(signw)n +O(w2), (43)

The following generating function hence has a finite large-L
limit:

G(λ) := L−d(eλLd[u(w)−w−u(0)] − 1)

= L−d
∫
ρ(S)(cosh(λS)− 1)|w|

+L−d
∫
ρ(S)(sinh(λS)− λS)w +O(w2) (44)

For positive w > 0 this yields:

G(λ) = Ẑ(λ)w +O(w2) (45)

Ẑ(λ) =
1
〈S〉

(〈eλS〉 − 1− λ〈S〉) (46)

Hence by computing the cusp ofG(λ) one has direct access to
the characteristic function of the shock-size distribution. The
formula (44) is also derived in appendix A by another method.
In the following we reserve the notation Z(λ) := λ + Ẑ(λ)
and the notation Z̃ for the rescaled version of Z (see below).

V. TREE AND IMPROVED TREE CALCULATION

We now compute the cumulants Ĉ(w1, . . . , wn) and from
them, the Kolmogorov cumulants and the generating function
G(λ). We use several methods which give equivalent results:
a calculation using replicas, one without replicas and a graph-
ical representation using static or dynamic graphs.

In this Section we obtain the form of G(λ) to lowest order
in the ε expansion (i.e. zero-th order). It is essentially a tree-
level calculation, although some loops can be incorporated, as
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we discuss. In a diagrammatic language, one defines suitable
trees where the building blocks contain loops, which are re-
summed here. Since we restrict to a uniform w, i.e. to zero
external momentum, all trees carry zero momentum q = 0.
This is why the calculations to this order look very similar to
calculations on a d = 0 toy model.

A. Method using replicas

The cumulants Ĉ are contained in the generating functional
W [w] for connected correlations (for more definitions see Ref.
[62]). We focus on a uniform wx = w, in which caseW [w] =
LdW (w) and

W (w) =
m2

2T

∑
a

w2
a +

1
2!T 2

∑
ab

R(wab)

+
∞∑
p=3

1
p!T p

∑
a1...ap

Ŝ(p)(wa1 , . . . , wap) , (47)

where wab = wa − wb. It can be obtained via a Legen-
dre transform from the effective action per unit volume, i.e.
Γ(u) = L−dΓ[u] for a uniform field ux = u:

W (w) + Γ(u) =
m2

T

∑
a

uawa (48)

Γ(u) =
m2

2T

∑
a

u2
a −

1
2!T 2

∑
ab

R(uab)

−
∞∑
p=3

1
p!T p

∑
a1...ap

S(p)(ua1 , . . . uap) (49)

The Γ-cumulants are naturally computed in the field theory as
the sum of all 1-particle irreducible (1PI) graphs, as in [36].
Each S(p) can be computed in an expansion in powers of R
(at T = 0 it is the usual loop expansion). They have the prop-
erty that to lowest order S(3) ∼ R3 and S(p) ∼ Rp. Hence
near d = 4 where R ∼ ε, S(p) ∼ εp. Note that the Ŝ(p)

have a different counting, e.g. S(3) ∼ ε2. An important prop-
erty, arising from the Legendre transform, is that W (w) can
be written as a sum of tree diagrams with vertices made of Γ.

The improved tree approximation consists in setting the
higher cumulants of the effective action Γ to zero, S(p) = 0
for p > 2, and then perform the Legendre transform to obtain
the effective action W (w) and Ŝ(p), i.e. to use

Γtree(u) =
m2

2T

∑
a

u2
a −

1
2!T 2

∑
ab

R(uab) . (50)

It is “improved” as one keeps the exact two-replica part R,
which itself has a loop expansion. For instance, from the
above discussion one has Γ = Γtree +O(ε3).

To perform the Legendre transform one must invert the re-
lation m2wa/T = Γ′tree(ua), i.e. find the function ua(w),
solution of

ua(w) = wa +
1

Tm2

∑
b

R′(ua(w)− ub(w)) . (51)

This solution can be expanded in the number of free replica
sums,

ua(w) = wa+
∑
a1

u(1)
a,a1

(w)+
∑
a1,a2

u(2)
a,a1,a2

(w)+ . . . , (52)

which is also an expansion in powers of R. Inserting in (51)
generates recursion relations:

u(1)
a,a1

=
1

Tm2
R′(waa1) (53)

u(2)
a,a1,a2

=
1

Tm2
syma1,a2

R′′(waa1)(u(1)
a,a2
− u(1)

a1,a2
) (54)

u(3)
a,a1,a2,a3

=
1

Tm2
syma1,a2,a3[1

2
R′′′(waa1)(u(1)

a,a2
− u(1)

a1,a2
)(u(1)

a,a3
− u(1)

a1,a3
)

+R′′(waa1)(u(2)
a,a2,a3

− u(2)
a1,a2,a3

)
]

(55)

This is easy to automatize using Mathematica, the combi-
natorics being similar to expanding R′(

∑
p bpx

p), with the
additional difficulty of attributing new labels to repeated in-
dices. Once the terms in the expansion (52) are known, since
m2ua/T = W ′(wa), one obtains the derivatives of the energy
cumulants:

u(1)
a,a1

(w) = ∂waR(waa1) (56)

u(n)
a,a1,...an(w) =

1
(n− 1)!

∂wa Ŝ
(n+1)(wa, wa1 , . . . wan) . (57)

Upon further derivation, we obtain the cumulants of the force,
Ĉ(n)(w1, . . . wn) = (−1)n∂w1 . . . ∂wn Ŝ

(n)(w1, . . . wn) as

Ĉ(n+1)(wa, wa1 , . . . , wan)

= (−1)n(n− 1)!∂wa1 . . . ∂wanu
(n)
a,a1,...an(w) (58)

We display the obtained explicit forms for the third and fourth
cumulants:

Ŝ(3)(w1, w2, w3) =
3
m2

sym123R
′(w12)R′(w13) (59)

Ŝ(4)(w1, w2, w3, w4) =
12
m4

sym1234R
′′
12(R′13 −R′23)R′14

(60)

for the energy, already given in [62]. We use the shorthand
notation R12 = R(w12). They have a simple graphical repre-
sentation in terms of tree diagrams with R vertices. For the
corresponding force cumulants this gives (with everywhere
∆(u) = −R′′(u)):

−Ĉ(3)(w1, w2, w3) =
6
m2

sym123∆′(w12)∆(w13) (61)

Ĉ(4)(w1, w2, w3, w4) =
12
m4

sym1234

[
2∆12∆′13∆′14

+∆12∆′23∆′14 + 2∆12∆′13∆′34

+∆13∆14∆′′12 −∆13∆24∆′′12

]
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with ∆12 = ∆(w12) and so on. Note that this expression for
the third force cumulant was tested against numerics near de-
pinning in Ref. [66] (within the improved tree approximation,
the relation (61) is the same for statics and depinning with,
however, different functions ∆(w) in each case).

The present method allows to compute significantly higher
cumulants, using mathematica. We do not display the full
form of Ĉ(n)(w1, . . . , wn), which are very tedious, but we
give the resulting Kolmogorov cumulants:

K̂(2)(w) = 2(∆(0)−∆(w)) (62)

m2K̂(3)(w) = −12∆′(w)(∆(0)−∆(w)) (63)

m4K̂(4)(w) = 120(∆(0)−∆(w))∆′(w)2 − 48(∆(0)−∆(w))2∆′′(w) (64)

m6K̂(5)(w) = −80(∆(0)−∆(w))(21∆′(w)3 − 24(∆(0)−∆(w))∆′(w)∆′′(w) + 2(∆(0)−∆(w))2∆′′′(w)) (65)

m8K̂(6)(w) = −480(∆(0)−∆(w))(−63∆′(w)4 + 138(∆(0)−∆(w))∆′(w)2∆′′(w)
−22(∆(0)−∆(w))2∆′(w)∆′′′(w) + (∆(0)−∆(w))2(−18∆′′(w)2 + (∆(0)−∆(w))∆′′′′(w)) (66)

We expect, from the assumption of a shock density (see the
discussion above), that the Ĉ(n) are continuous functions of
their arguments. This we checked explicitly. Hence there are
no ambiguities at coinciding points, i.e. to perform the limits
one can choose any order for the arguments, with the result
being independent of the chosen order.

One first checks that the values at zero vanish:

(u(w)− w)n
c

= u(0)n
c
∝ Ĉ(n)(0, 0, . . . , 0) = 0 (67)

Hence the distribution of the center-of-mass position in the
quadratic well is Gaussian to lowest order in ε, i.e to the im-
proved tree approximation. To this order the calculation is the
same in statics and dynamics. As we see below corrections to
the Gaussian arise to one loop order (see [51, 83] for some re-
sults on the deviations of the distribution of the interface width
to the Gaussian at depinning). At quasi-static depinning (67)
also gives the cumulants of the distribution of the critical force
[64]. Hence it is also Gaussian to this order. This is consistent
with Ref. [53] were deviations from Gaussian were found and
computed to one loop. In fact (67) validates these calculations
within the present well-controlled setting of a quadratic well.

We now expand the above result for K̂(n)(w) to small ar-
gument and find:

K̂(n)(w) = an(−∆′(0+))n−1w(signw)nm4−2n (68)

with

a2 = 2 , a3 = 12 , a4 = 120 , a5 = 1680 ,
a6 = 30240 , ... (69)

Note that an+1/an = 4n− 2. Defining bn := an/n!, the first
coefficients are

b2 = 1 , b3 = 2 , b4 = 5 , b5 = 14 , b6 = 42 . (70)

B. Method without replicas

An equivalent method to this order is as follows. One no-
tices that each cumulant Ĉ(n) is computed to lowest non-

vanishing order inR (or ∆). Hence it is formally equivalent to
start from a replicated action S containing R only (i.e. a bare
disorder with the substitution R0 → R) and compute the mo-
ments of u(w)−w each to lowest order in perturbation theory.
Hence the calculation of the previous paragraph is equivalent
to the following one in dimension d = 0: Denote u(w) the
minimum of the toy model:

1
m2

Htoy =
1
2

(u− w)2 +
λ

m2
V (u) , (71)

where V (u) is a Gaussian random potential of correlator
R(u). The minimum satisfies:

u(w) = w +
λ

m2
F (u(w)) , (72)

with F (u) = −V ′(u) and λ has been introduced to count the
powers in V . Compute each moment defined as:

(−1)nm−2nL−(n−1)dĈ(n)(w1, . . . , wn)

:= (u(w1)− w1) . . . (u(wn)− wn)
c

=
(
λ

m2

)n
F (u(w1)) . . . F (u(wn))

c
(73)

perturbatively in λ (in fact in λ/m2) to lowest non-trivial or-
der, which is O(λ2n−2). The factor L−(n−1)d can be omitted
since d = 0. One uses iteratively (72) and the Wick theorem
with F (w)F (w′) = ∆(w − w′) with all other cumulants of
F (w) set to zero (i.e. a Gaussian F ). Using Mathematica we
have reproduced most of the results of the previous Section.

Note that this is different from the standard perturbative
expansion of the toy model which yields dimensional re-
duction, i.e. a trivial perturbation expansion involving only
∆(0) = −R′′(0). The difference is that one computes here
cumulants Ĉ(n) at different points and only at the end the limit
of coinciding arguments is taken, using a non-analytic ∆(u)
with a cusp. Nevertheless ambiguous terms at intermediate
stages may be generated. To the lowest order studied here,
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those represent possible contributions to C̄(n) which depend
on a smaller number of points and they cancel in the calcula-
tion of the connected correlations Ĉ(n).

C. Graphical representation

It is useful for the following to give a graphical representa-
tion of the results of the two previous sections. Define:

C(n)(w1, . . . , wn) = (−1)nm−2nĈ(n)(w1, . . . , wn)

= L(n−1)d (u(w1)− w1) . . . (u(wn)− wn)
c

(74)

For instance we write the 2-point correlation as

C(2)(w1, w2) = =
1
m4

∆(w1 − w2) . (75)

The graphical notation here and in all diagrams of this type
are as follows: there are external legs with points on the top
labeled by integers 1 to n, corresponding to positions w1 to
wn and external fields u(wi) − wi, here n = 2. The ∆
(or equivalently R) vertices are double vertices (non-local in
w) with two points joined by a dotted line, and can be inter-
preted equivalently as in the statics or in the dynamics (we
have checked equivalence to the order we are working). In the
statics, they are R vertices, giving −R′′ after contraction with
the u-fields. In the dynamic formulation, they are ∆ vertices
and the two lines exiting a vertex are directed to the top, and
end up being equal to a static propagator: in the real dynam-
ics they are response function, which usually are denoted with
an arrow: we do not show the arrow here but they are always
implicitly towards the top of the picture. Here they are always
evaluated at zero frequency. Thus the lines are static propa-
gators, evaluated here all at q = 0, hence giving a factor of
1/m2. For a generalization to non-zero external momenta see
Appendix F.

With these diagrammatic rules there is a single diagram to
represent the third cumulant:

C(3) = =
6
m8

Sym ∆12∆′13 , (76)

where the combinatoric factor comes from the 6 inequivalent
ways to assign three labels to external legs. The result agrees
with (61). Similarly there are five diagrams for the fourth cu-
mulant:

C(4) =

+ +

+ +

(77)

which reproduce each term in (61), all with a factor 4! = 24
and a factor 1/2 from the three diagrams symmetric in ex-
change of a pair among the four labels.

To compute the n-th cumulant of (u(w) − w − u(0)),
we must evaluate C(n) for wi → w minus wi → 0,
for each i. Writing this operation as Kf(w1, . . . , wn) :=∏n
i=1 [(wi → w)− (wi → 0)] f(w1, . . . , wn), this gives

K̂(2)(w) = K = 2 [∆(0)−∆(w)] ≈ −2∆′(0+)|w|
(78)

where from now on we extract the m dependence from the
lines of the graphs, which are hence set to one. Note that
there are four choices to assign 0 or w to each leg, hence four
terms. For the third cumulant one finds:

m2K̂(3)(w) = K

= −12 [∆(0)−∆(w)] ∆′(w)
≈ 12∆′(0+)2w (79)

which produces 6× 4 = 24 terms.
Similarly one finds:

m4K̂(4)(w) = K[C(4)]

= 120 [∆(0)−∆(w)] ∆′(w)2 − 48 [∆(0)−∆(w)]2 ∆′′(w)

≈ 120∆′(0+) |w| (80)

in terms of the five diagrams in (77). These results agree
with those of the two previous sections. Here too the con-
tractions are unambigous, as long as all wi are different. It
would appear naively that it is equivalent to apply K to an un-
symmetrized expression or to its symmetrized form. This is
not true in fact because of ambiguities at coinciding points.
One must be very careful to apply K to the symmetrized ex-
pression and then take the limit, i.e.

(−1)nK̂(n)(w) = KĈ(n) (81)
= lim
δi,δ′i→0

n∏
i=1

[(wi → w + δi)− (wi → δ′i)] Ĉ
(n)(w1, . . . , wn)

where the δi, δ′i are taken to zero in such a manner that all
arguments remain distinct and the order is fixed, the Ĉ(n) be-
ing fully symmetric functions of their arguments. We have
checked here and in the 1-loop extension given below that the
result does not depend on the order as required by the conti-
nuity of the force correlations.

D. Recursion relation and resummation

It is clear from the above results (78)-(80) and (66) that
the leading term in the expansion of K̂(n)(w) in small w is
obtained from those terms which contain a single factor of
∆(w) − ∆(0), since the latter is of order w. There are also
terms such as [∆(w) −∆(0)]p with p ≥ 2 in the expressions
for K̂(n)(w), but they are of higher order (since e.g. ∆′′(w)→
∆′′(0+) has a finite limits at w = 0+). Therefore, the final
result (68) for the coefficient of the cusp depends only on the
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part of Ĉ(n) of the form [∆(w)−∆(0)]∆′(w)n−2, and is the
diagram with one and only one terminating (lower) ∆ vertex.
This is not the case e.g. for the third and fifth diagrams in (77)
which have p = 2.

Let us call C(n) := (−1)nĈ(n) the part which contains only
one factor of ∆(wi) for some i (we do not write explicitly the
−∆(0), but remind that every ∆(w) comes with a −∆(0)). If
we restrict to this part we can write a recursion relation using
the tree structure. Indeed, to construct C(n) we can either:

(i) take C(n−1) and a single (as yet unlabeled) leg u(w)−w,
and attach a ∆ vertex at the bottom (hence without deriva-
tives) to each of these two elements. It results in a diagram
with again only one lower ∆, e.g.

−→ (82)

The combinatorial factor is n (here n = 4) for labeling the
newly added leg.

(ii) starting from the fourth cumulant, take two already con-
structed cumulants (trees) of size l ≥ 2 and (n − l) ≥ 2, and
glue them together using again a ∆ vertex at the bottom, e.g.:

−→ (83)

Now the combinatorial factor is
(
n
l

)
, for choosing the group

of indices for the first and second element, with the restric-
tion that l < n − l. If n = l/2, an additional factor of
1/2 appears. It is more systematic to sum over all pairs, i.e.
l = 2, . . . , n − 2, and divide this sum by 2. This can be
summarized in the following schematic recursion relation for
C(n)(w1, . . . , wn), which by construction is a function of the
set of ∆ij = ∆(wi − wj) and ∆′ij = ∆′(wi − wj):

C(n) =
∑
i<j

∂C(n−1)

δ∆ij
∆′ij(∆i,n+1 −∆j,n+1)n

+
n−2∑
l=2

∑
i<j

∂C(l)

δ∆ij

∑
k<m

∂C(n−l)

δ∆km
∆′ij∆

′
km

× (∆i,k + ∆j,m −∆i,m −∆j,k)
1
2

(n
l

)
(84)

We have temporarily set the mass m = 1 to not burden no-
tations. We remark that the first term has formally the same
form as the others, except that one of the derivative-terms does
not exist. Since n =

(
n
1

)
=
(

n
n−1

)
= 1

2

[(
n
1

)
+
(

n
n−1

)]
,

and when adding the two new terms l = 1 and l = n− 1, the
combinatorics is identical. We can indeed take advantage of
this feature. To do so, we go to the Kolmogorov-cumulants
and set as in (68) and for w > 0, m2n−4K̂(n)(w) ≈
an[−∆′(0+)]n−2[∆(0) − ∆(w)], i.e. m2n−4K̂(l)′(0+) =
al[−∆′(0+)]l−1. We note that gluing K̂(l) and K̂(n−l) yields
K̂(l)′(0+)K̂(n−l)′(0+)[∆(0)−∆(w)] times the combinatoric
factor

(
n
l

)
. Indeed one glued part should be at wi = w and

the other one at w = 0. Hence we can convert (84) into a

recursion relation for the an. Inserting the ansatz (68), the
above recursion relation becomes:

an =
n−1∑
l=1

(n
l

)
alan−l , a1 = 1 . (85)

We note that it correctly reproduces the series (69). The series
bn := an/n! then satisfies the recursion relation

bn =
n−1∑
l=1

blbn−l . (86)

Hence the generating function

Z̃0(λ) :=
∞∑
n=1

bnλ
n (87)

satisfies the equation:

Z̃(λ) = λ+ Z̃(λ)2 . (88)

It has solution:

Z̃(λ) = Z̃0(λ) :=
1
2

(1−
√

1− 4λ) (89)

Let us now recall that from (40) and (68) one has at small w:

1
n!

[u(w)− w − u(0)]n
c

(90)

= L(1−n)d bn

[
−∆′(0+)

m4

]n−1

w(sign(w))n−1 +O(w2)

Following the discussion of Section IV B we find that:
(i) the generating function defined in (44), (45) for w > 0

from G(λ) = Ẑ(λ)w +O(w2), satisfies the scaling form

Ẑ(λ) =
1
Sm

Z̃(λSm)− λ , (91)

where from now on we define (recall ∆′(0+) < 0):

Sm =
|∆′(0+)|
m4

. (92)

Since (36) is exact, Eqs. (91) and (93) are valid to all orders,
as they amount to the choice Z̃(λ) = λ+λ2 +O(λ3), i.e they
fix the coefficient λ2 in Z̃ to one. Scaling means that in the
limit m → 0 the function Z̃ becomes m independent, whose
validity is discussed below. In summary, using the exact rela-
tion (36) the definition of Sm chosen in this paper is:

Sm :=
〈S2〉
2〈S〉

(93)

(ii) in the (improved) tree level approximation the function
Z̃(λ) satisfies the self-consistent equation (88), with solution
Z̃0(λ) given in (89), but with ∆′(0) renormalized. Hence we
find the generating function of the avalanche size distribution:

Ẑ(λ) :=
1
〈S〉

[
〈eλS〉 − 1− λ〈S〉

]
=

1
Sm

[
1
2

(
1−

√
1− 4λSm

)
− λSm

]
(94)
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with Sm given by (93). Note that the presence of the factor
1/〈S〉 indicates that one can only obtain information about
the distribution P (S) up to an unknown multiplicative factor
〈S〉, consistent with the discussion in Section (III C). We now
analyze this result.

E. Moments of avalanche sizes and universal ratios

The easiest quantities to extract from (90) are the moments
of the size distribution P (S). From (94) one finds for n ≥ 2:

〈Sn〉
〈S〉

= anS
n−1
m . (95)

The coefficients an and bn can be calculated explicitly for n >
1:

an =
(
∂

∂λ

)n [1
2

(
1−
√

1− 4λ
)
− λ
] ∣∣∣∣
λ=0

= 2
(2n− 3)!
(n− 2)!

bn =
an
n!

= 2
(2n− 3)!
(n− 2)!n!

(96)

Although there are some cases where the scale Sm given by
(93) can be calculated, see below, usually it contains a non-
universal amplitude. Hence it is interesting to form universal
ratios independent of any scale, such as:

rn :=

〈
Sn−1

〉 〈
Sn+1

〉
〈Sn〉2

. (97)

One finds their value at tree level:

rn = 1 +
2

2n− 3
, (98)

r2 = 3 , r3 =
5
3
, r4 =

7
5
, r5 =

9
7
. . . (99)

F. Distribution P (S)

Let us now perform the inverse Laplace tranform ofZ(λ) to
obtain P (S). One must be careful since one expects a form for
P (S) which is not normalizable in the absence of a small-S
cutoff, hence we work with SP (S)/〈S〉 which is normalized.
From (94) one can write (setting momentarily Sm → 1)

〈S〉−1

∫ ∞
0

dS P (S)(eλS − 1) =
1
2

(1−
√

1− 4λ) , (100)

where the S integral converges at small S. This is equivalent
to

〈S〉−1

∫ ∞
0

dS SP (S)eλS =
1√

1− 4λ
, (101)

FIG. 1: Example of a diagram at MF level, as generated by Eq. (142)
at α = 0. It contains a correction to disorder i.e. ∆′(0+) at 1 loop
(shaded in gray).

as one can check by integrating over λ on both sides. Using∫ i∞
−i∞

dλ
2πie

(s−s0)λ = δ(s− s0) one has by inverse Laplace

〈S〉−1SP (S) =
∫ i∞

−i∞

dλ
2πi

e−λS√
1− 4λ

(102)

=
1
π

∫ ∞
1/4

dλ
1√

4λ− 1
e−λS =

e−S/4

2
√
π
S−1/2 .

upon deforming the contour around the branch cut. Restoring
all factors yields the final result:

P (S) =
〈S〉
2
√
π
S−1/2
m S−3/2e−S/(4Sm) (103)

As discussed in Section (III C ) this is expected to be valid for
S � Smin in the limit of small m, large Sm. Note that in
general the exponent τ can be extracted from the behaviour of
Z(λ) for λ→ −∞, which is dominated by small avalanches,
and reads, in the scaling regime:

Z(λ) = λ+ Ẑ(λ) ∼ −Sτ−2
m |λ|τ−1 (104)

On the other hand, from its definition (45) and (91) we see that
λ + Z(λ) must converge to −1/〈S〉 ∼ −S1−τ

min S
τ−2
m at λ →

−∞; thus the crossover occurs for λ ∼ 1/Smin. This estimate
is consistent with the relation (32). For larger values of −λ,
Z(λ) becomes non-universal with respect to UV details and is
out of reach of the present method.

We can now compute the moments for arbitrary real n >
1/2 by direct integration from (103). One finds:

〈Sn〉
〈S〉

=
22n−2Γ

(
n− 1

2

)
√
π

Sn−1
m (105)

which agrees with the analytic continuations of the moments
obtained above.

G. Discussion of the result: mean-field theory

The results (93) and (103) for P (S) imply the value of the
avalanche distribution exponent

τ = 3/2 . (106)

It agrees with the results obtained in: (i) a mean-field toy
model for dynamic avalanches at depinning [8], (ii) a mean-
field argument given in the context of a non-equilibrium
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random-field Ising model [21], (iii) mean-field calculations
developped for sandpile models [14, 15]. This form hence
seems rather robust as a mean-field result.

Here however, it is derived from first principles using FRG
from the elastic model (1). It was obtained by resumming
all “improved tree” diagrams, i.e. trees made of fully dressed
verticesR. In the standard bare perturbation theory it includes
diagrams as represented in Figure 1. Hence it can also predict
the scale Sm given by (93).

For the elastic model, the result (93), (103) for P (S) is
valid for dimensions d ≥ 4. Convergence to this result as
m → 0 requires a 1-loop analysis, as discussed below. The
only point to discuss is thus the scale Sm, i.e. the m depen-
dence of ∆′(0+). For that we use some of the discussion about
elastic manifolds for d > 4 and the associated (Wilson) FRG
flow, given in Appendix H of [42], and some specific results
for the present model, summarized in Appendix B. The rough-
ness exponent is ζ = 0, and the manifold has a finite width.
If bare disorder is smooth, it should be sufficiently strong for
metastability and (typical) shocks to exist (a cusp in ∆(u) then
develops). Alternatively one can consider weak rough disor-
der (i.e. with a cusp), or smooth but with a very short correla-
tion length. In these cases one has large avalanches with

Sm =
|∆∗′(0+)|

m4
, (107)

where for d > 4, |∆∗′(0+)| is a non-universal number, see
Appendix B. One can compare this scale with the fluctuations
of the center of mass, such that Ldu(0)2 = ∆∗(0)/m4, also
non-universal. In d = 4 one recovers universality and finds:

Sm ≈ 8π2|∆̂∗′(0+)|m−4

[
ln
(
m

m0

)]1−ζ1
(108)

at small m, while, for comparison, Ldu(0)2 =
∆̂∗(0+)m−4[ln( mm0

)]1−2ζ1 , where ζ1 and all fixed-point
values are given in appendix B.

In the end it may not be surprising that mean-field theory
is obtainable as a summation of trees. However, this had not
been done previously within the FRG. It is quite remarkable
that the result for the mean-field generating function Z̃0(λ) in
(89) is identical to the generating function of the number of
rooted binary planar trees with n+ 1 leaves [92], also known
as the Catalan numbers Cn ≡ bn+1. The latter also appear for
the number of rainbow-diagrams in RNA folding, the number
of Dyck words of length 2n, the number n + 1 factors can
be completely parenthesized, the number of monotonic paths
along the edges of a grid with n × n square cells, and many
more. It would be interesting to obtain a more microscopic
understanding of the relation between the diagrammatic trees
and the structure of the (static or dynamic) avalanche pro-
cesses in d ≥ 4.

This task may be easier to carry out for the dynamics. Intu-
itively an avalanche starts with a seed and each event may or
may not trigger new events. If the latter do not influence much
each other, as expected in mean field, the process indeed looks
like a tree. These features are captured by the simple model
studied in Ref. [8]. There, an avalanche starting at time t = 0

and lasting until t = T , of total size S =
∑∞
t=0 St is a succes-

sion of jumps of size St each being the sum of nt independent
events, i.e. St =

∑nt
i=1 si. The number of events nt has a

Poisson distribution of average 〈nt〉 = ρSt−1, i.e. depends
only on the jump at time t − 1 (with n0 = 1, and St = 0 for
t ≥ T ). If the sizes of the independent avalanches are simply
si = 1 this model is the famous Galton process [84], which
describes the evolution of a population of size St with pois-
sonian distribution of numbers of offsprings. In this model
criticality arises as ρ is increased up to the threshold for an
infinite avalanche. Below the threshold the distribution of the
avalanche size S is exactly the one obtained here by summing
the trees. The S−3/2 power law distribution may then be un-
derstood as the distribution of return time to the origin of a
random walk. Interestingly, there is also a d = 0 model which
captures this mean field physics, and its connection to return
time of a random walk. It is the celebrated ABBM model [85]
for domain wall motion, represented as a particle in a Brow-
nian random force landscape. We recently computed [86] the
avalanche statistics and the renormalized FRG force correla-
tors for this model, and the similarities with the mean field
results obtained here are striking. These analogies involve
mostly the zero momentum, q = 0 structure, but in Appendix
F we present a spatial generalization of our tree summation,
which may help to understand the relation between trees and
avalanches in mean-field.

VI. LOOP CORRECTIONS

A. General method

Until now the force correlations Ĉ(n), and from them the
K(n) and the avalanche size moments 〈Sn〉/〈S〉, were com-
puted to improved tree level, i.e. setting S(n) = 0 for n ≥ 3 in
the effective action (49). After Legendre transform this gives
each Ĉ(n) to the lowest order in an expansion in powers of ∆
(or R), and later, using the fixed-point values for ∆, to lowest
order in ε.

It is useful to describe a systematic procedure to compute
these quantities to higher order in the expansion in powers of
R in the statics (or ∆ in the dynamics). For each specific
calculation, an intuitive diagrammatic representation is given
below.

(i) one first computes all the functions S(n), n > 3, in the
effective action in an expansion in powers of R [93]. They
are given by the sum of all 1-particle irreducible (n-replica)
diagrams with R as vertices, i.e. the sum of all loops. For
instance, to leading order to which we restrict below one finds
S(n) ∼ Rn with a unique 1-loop integral In:

In =
∫
k

1
(k2 +m2)n

= md−2nĨn (109)

Ĩn =
∫
k

1
(k2 + 1)n

(110)

for d < 2n, and only the replica combinatorics is non-trivial,
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e.g. for n = 3, 4:

S
(3)
123 = 3I3sym[(R′′12)2R′′13 −

1
3
R′′12R

′′
23R
′′
31] (111)

S
(4)
1234 = 3I4sym[2(R′′12)2R′′13(2R′′14 + R′′24)

−4R′′12R
′′
13R
′′
23R
′′
14 + R′′12R

′′
23R
′′
34R
′′
14] (112)

where here R′′(w) := R′′(w) − R′′(0), R′′ab = R′′(wa −
wb) and S(3)

123 = S(3)(w1, w2, w3) and so on. The formula
for general n was given in [35] and takes the form for the n-
replica term:

S(n)
a1,...,an =

(n− 1)!
2

In

[
tr(Wn)−

∑
a

R′′aa1
...R′′aan

]
Wab = δab

∑
a1

R′′aa1
−R′′ab (113)

i.e. it is a trace over replica indices, with the n+1 replica term
subtracted. This formula yields (111) and (112), the explicit
form for n = 5 was given in [42].

(ii) one then performs the Legendre transform (49)
from S(n) to Ŝ(n). From them one can then obtain
Ĉ(n)(w1, . . . , wn) = (−1)n∂w1 . . . ∂wn Ŝ

(n)(w1, . . . , wn).
Legendre transformation simply means that each Ŝ(n) is a sum
of all (n-replica) tree diagrams which can be drawn using R
or any of the S(n), n > 3, at the vertices of the tree. Since
when forming a tree the number of replica can only increase,
there are simple exact formulae for the lowest moments:

Ŝ(3)(w123) =S(3)
0 (w123) + S(3)(w123) (114)

Ŝ(4)(w1234) =S(4)
0 (w1234) + S(4)(w1234)

+
12
m2

symR′(w14)∂w1S
(3)(w123) , (115)

as can be checked by explicit Legendre transform [62, 63].
Here the S(n)

0 ∼ Rn−1 are the result of the improved tree
approximation, i.e. the trees made of only R at the vertices,
as described above, giving (59) for the two lowest moments.
Note that Ŝ(3) contains a single I3 loop integral while Ŝ(4)

contains both I3 and I4, and so on. Since everywhere we
consider uniform w, the trees are at zero external momenta
(hence the factor 1/m2), and loop momenta only flow inside
each S(n) vertex. In principle using (115) and inserting each
S(n) to the required order in R allows to compute the Ĉ(n) to
any desired order in ∆ and in ε.

Here we only want Ŝ(n) to order Rn, hence we do not need
all trees made of S(n) and R, but only those trees containing
one S(p) and one or more R, i.e. it with schematically the
form:

Ŝ(n) = Ŝ
(n)
0 + S(n) +

n−3∑
p=1

symS(n−p)Rp . (116)

We first perform an explicit calculation of third and fourth mo-
ments to one loop, before attempting the resummation. Note
that to 1-loop order, an equivalent procedure is to perform per-
turbation theory in the bare disorder ∆0, in which case an ad-
ditional term I2 will appear in each Ĉ(n), with trees based on

a single ∆0 loop. Inserting the 1-loop expression of ∆0 as a
function of ∆ this term disappears and one recovers the same
result as with the above method.

We need below the momentum integrals In. One has Ĩn ∼∫
k

∫∞
0

ds exp(−s− sk2)sn−1/(n− 1)!, hence:

Ĩn

εĨ2
=

Γ(n− d/2)
2Γ(n)Γ(3− d/2)

d→4−→ Γ(n− 2)
2Γ(n)

=
1

2(n− 1)(n− 2)
(117)

where εĨ2 is discussed in Appendix B. Note that all these
momentum integrals are IR-finite for d < 6. This will re-
main true to any number of loop as all diagrams entering in
Ĉ(n) are superficially IR convergent by power counting for
d ≤ 4. If one uses perturbation theory in the bare disorder,
they will however contain diverging subdiagrams, starting at
2-loop order. These divergences should be removed by the
counterterms for the disorder, i.e. the replacement of ∆0 as a
function of ∆. Therefore, corrections to τ should come from
finite diagrams, and appear when summing all diagrams. On
the other hand, for small n, the moments are interesting since
they can be compared to the numerics.

B. Third cumulant

From the above expressions (111) and (115), we obtain

− Ĉ(3)
1−loop(w1, w2, w3) =

6I3sym[∆′(w12)2∆′(w13) + (∆(w12)−∆(0))
× (∆′(w13)∆′′(w12) + ∆′(w12)∆′′(w13)

+ ∆′(w23)∆′′(w13))] (118)

It is useful to indicate the graphical representation of each
term, using the conventions described in Section V C (sup-
pressing for clarity below all propagator and momentum loop
factors). There are three non vanishing 1-loop contributions:

+

= −6 Sym ∆′′12∆′23 (∆12 −∆13) I3 (119)

+ = 6 (∆12−∆22)∆′12∆′′23I3

(120)

= −6[∆′12]2∆′23I3 (121)

They reproduce the above result (118) after symmetrization.
One additional diagram

Sym ∼ Sym ∆′12∆′23∆′31 = 0 (122)
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vanishes after symmetrization in the statics.
Note that the total result for Ĉ(3) should be continuous and

unambiguous. Note that Ĉ(3)(0, 0, 0) = 0 while this is not
the case for the dynamics (it gives the third cumulant of the
critical force).

From there we compute the Kolmogorov cumulant
K(3)(w). One finds for each piece:

K

[
+

]
= 12I3 [∆(0)−∆(w)] ∆′(w) [∆′′(w) + ∆′′(0)]

≈ −24I3∆′(0+)2∆′′(0)w (123)

K

[
+

]
= 12I3(∆(w)−∆(0))∆′(w) (∆′′(0)−∆′′(w))

= O
(
w2
)

(124)

and

K

= 12I3∆′(w)
(
∆′(0+)2 −∆′(w)2

)
= −24I3∆′(0+)2∆′′(0)w +O

(
w2
)

(125)

Together, they give

K
(3)
1−loop = K

[
+

+ + +

]
= 12I3∆′(w)

[
∆′(0+)2 −∆′(w)2 − 2(∆(w)−∆(0))∆′′(w)

]
= −48I3∆′(0+)2∆′′(0)w +O

(
w2
)

(126)

The final result for the small-w behaviour of K(3)(w) is:

K(3)(w) = K
(3)
tree +K

(3)
1−loop (127)

=
12
m2

∆′(0+)2
[
1− 4m2I3∆′′(0+)

]
w + . . . (128)

Hence, using (42) we obtain the third moment of avalanche
sizes:

〈S3〉
〈S〉

=
12
m8

∆′(0+)2
[
1− 4m2I3∆′′(0+)

]
+O(∆4)

= 12S2
m(1− 4∆̃′′(0+)

Ĩ3

εĨ2
) (129)

We now use that

Ĩ3

εĨ2
=

1
4
, ∆̃′′(0+) =

ε− ζ
3

+O(ε2) , (130)

where the second equality is valid at the fixed point (see
Appendix B). Using the exact relation 〈S2〉/〈S〉 =
−2∆′(0+)/m4 = 2Sm, we thus obtain the universal ratio to
one loop

r
(2)
1−loop =

〈S〉
〈
S3
〉

〈S2〉2
= 3

[
1− ∆̃′′(0)

]
= 3

[
1− 1

3
(ε− ζ)

]
.

(131)

C. Fourth and higher cumulants

Similar calculations, either directly from (113), or by cal-
culating the sum of all diagrams at 1-loop order, we find the
corrections for the fourth Kolmogorov cumulant

K
(4)
1−loop(w) =

12
[
− 6∆′(w)2

(
∆′(0+)2 + 4(∆(0)−∆(w))∆′′(w)

)
−∆′(0+)4 + 2(∆(0)−∆(w))2∆′′(w)2 + 7∆′(w)4

]
I4

+ 48
[ (

16(∆(w)−∆(0))∆′′(w)− 3∆′(0+)2
)

∆′(w)2

+ 4(∆(0)−∆(w))2∆(3)(w)∆′(w) + 3∆′(w)4

+ 2(∆(0)−∆(w))∆′′(w)

×
(
∆′(0+)2 + 2(∆(0)−∆(w))∆′′(w)

) ]
I3

In the limit of small w,

K
(4)
1−loop(w) =

(
480I4 + 960

I3
m2

)
∆′(0+)3∆′′(0+)|w|

+O(w2) . (132)

Adding the tree-level part, and using (42) we obtain the fourth
moment of avalanche sizes:

〈S4〉
〈S〉

=
120
m12

∣∣∆′(0+)
∣∣3 [1− 4

(
m4I4 + 2m2I3

)
∆′′(0+)

]
= 120S3

m

[
1− 4

Ĩ4 + 2Ĩ3
εI2

∆̃′′(0+)

]
(133)

It yields for the universal ratio:

r
(3)
1−loop =

〈
S4
〉 〈
S2
〉

〈S3〉2

=
5
3

[
1− 4

Ĩ4

εĨ2
∆′′(0)

]

=
5
3

[
1− ∆̃′′(0)

(
1− d

6

)]
=

5
3

[
1− (ε− ζ)(6− d)

18

]
(134)

With Mathematica we have computed Ĉ(n) and K(n) up to
n = 6. The expressions are tedious. Let us just note that one
finds the limits at zero argument:

Ĉ(2p)(0, ..., 0) = −(2p− 1)!I2p∆′(0+)2p , (135)
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for even n ≥ 4 and zero for odd cumulants. This allows to
compute the probability distribution of the center of mass fluc-
tuations. The calculation and results are given in Appendix G.
It bears some similarities with the one for the distribution of
the critical force at depinning in [53].

Let us give here only the part of the Kolmogorov cumulants
proportional to In. They read:

K̂(5)(v) = −240I5∆′(v)(−∆′(0)4 + 3∆′(v)4 (136)

+ 4∆(v)2∆′′(v)2 − 2∆′(v)2(∆′(0+)2 − 8∆(v)∆′′(v)))

K̂(6)(v) = 240I6(−∆′(0)4 + 31∆′(v)6 + 4∆(v)3∆′′(v)3

− 15∆′(v)4(∆′(0+)2 − 16∆(v)∆′′(v)))

− 15∆′(v)2(∆′(0+)4 − 8∆(v)2∆′′(v)2)) (137)

Expanding at small w > 0 one finds, for the part proportional
to In:

sK̂(n)(w) = −AnIn(−∆′(0+))n−1∆′′(0)w +O(w2)
(138)

with coefficients:

A2 = 6 , A3 = 48 , A4 = 480
A5 = 5760 , A6 = 80640 , . . . . (139)

Note that An+1/An = 2n+ 4. This suggests that

An = 2n−2(n+ 1)! (140)

which is supported by a heuristic argument in appendix C.

VII. RESUMMATION OF ALL DIAGRAMS WITH A
SINGLE LOOP: SELF-CONSISTENT EQUATION

A. Self-consistent equation

We can now perform a resummation of all cumulants to 1-
loop order. In view of the results of the previous sections we
can absorb all factors of m and ∆̃′(0+) by using the rescaled
generating function Z̃(λ) defined in (91) and (93). One has

Z̃(λ) =
∞∑
n=1

cn
n!
λn , (141)

where the cn are extracted from the Kolmogorov cumulants
at small w, and at tree level cn = an. In the previous sec-
tion we have obtained the contribution to cn proportional to
Ĩn, involving the coefficients An. Remarkably, the remain-
ing corrections (i.e. the terms in cn proportional to Ĩp with
3 ≤ p < n) can be generated automatically by taking ad-
vantage of the tree structure. This is illustrated graphically as
follows:

... ... ......
...λ

... ...

Here, the shaded blob represents Z̃(λ). It must contain all sets
of trees made with R vertices joined together at their basis

either by a R vertex or by a S(n) vertex with n > 3, i.e. a
loop, in the spirit of (116). Expressed as an equation it reads

Z̃(λ) = λ+ Z̃(λ)2 + α
∑
n≥3

(n+ 1)2n−2inZ̃(λ)n , (142)

where we have defined in := Ĩn/(εĨ2), and substituted the
factor (n+ 1)2n−2 = An/n!. Here and below we denote

α := −εĨ2m−ε∆′′(0+) = −∆̃′′(0+) , (143)

which is of order ε. It was not strictly necessary to make equa-
tion (142) self-consistent, one could with the same accuracy
of O(ε) replace all terms Z̃n with n ≥ 3 by Z̃n0 . By mak-
ing it self-consistent we include more loops. It is however
more convenient in view of the form at tree level. It also has a
nice interpretation in terms of the generating function of trees
with higher-n branching: these occur at a small rate, which is
O(α), and n-dependent.

B. Summation of the series and final equation

From the above self-consistent equation one can compute
iteratively Z̃(λ) with the result:

Z̃(λ) = λ+ λ2 +
[
8αi3 + 2

]
λ3 +

1
24

[
960αi3 + 480αi4

+ 120
]
λ4 +

1
120

[
23040α2i23 + 20160αi3

+ 14400αi4 + 5760αi5 + 1680
]
λ5

+
1

720

[
1290240i23α

2 + 806400i3i4α2 + 483840i3α

+ 403200i4α+ 241920i5α+ 80640i6α+ 30240
]
λ6

+O
(
λ7
)

(144)

One recognizes that the results from the third and fourth cu-
mulants of the previous sections are correctly reproduced.
Note that the terms with higher powers of in contain more
than one (non-overlapping) loops and higher powers of α =
O(ε). The terms of order α are all correctly generated.

We now want to compute the infinite sum in Eq. (142). For
this we use the following representation of the in, as in the
derivation of (117):

in = N 1
(n− 1)!

∫ ∞
0

ds e−ss−1−d/2sn , (145)

with N = 1/(2Γ(3− d
2 )). One finds:∑

n≥3

(n+ 1)2n−2inz
n (146)

= N
∫ ∞

0

ds e−ss−d/2−1
∑
n>2

1
4

(n+ 1)
(n− 1)!

(2zs)n

Let us define:

ψ(z) :=
∑
n≥3

1
4

(n+ 1)
(n− 1)!

(2z)n = z
(
e2zz − 3z + e2z − 1

)
(147)
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One can write:∑
n≥3

(n+ 1)2n−2inz
n

= N
∫ ∞

0

ds e−ss−d/2−1ψ(sz)

=
z
(

(2− (d+ 2)z)(1− 2z)
d−4
2 + 3dz − 6z − 2

)
(d− 2)(d− 4)

d→4−→ 1
2
z(2z + (1− 3z) log(1− 2z))

= 2z3 +
5z4

3
+ 2z5 +

14z6

5
+

64z7

15
+

48z8

7
+O

(
z9
)

(148)

The last line is also obtained by using in = 1
2(n−1)(n−2) from

Eq. (117). One can thus rewrite the self-consistent equation
(142) as

Z̃(λ) =: Z̃ = λ+ Z̃2

+ α
Z̃
[
(2− (d+ 2)Z̃)(1− 2Z̃)

d−4
2 + 3dZ̃ − 6Z̃ − 2

]
(d− 2)(d− 4)

.

(149)

Close to d = 4 it becomes

Z̃ = λ+ Z̃2 + α
1
2
Z̃[2Z̃ + (1− 3Z̃) log(1− 2Z̃)] . (150)

This equation has to be inverted in order to get both the expo-
nent τ and the tail of the distribution P (S) for large S. Note
that from (142) it can also be written as:

Z̃(λ) =: Z̃ = λ+ Z̃2

+
α

εĨ2

∫
k

[
Z̃2

(k2 + 1− 2Z̃)2
+

Z̃

(k2 + 1− 2Z̃)

− Z̃

k2 + 1
− 3

Z̃2

(k2 + 1)2

]
(151)

As shown in Appendix C, this formula has a simple graphical
interpretation. The last two terms can be thought of as coun-
terterms which fix the coefficients of Z̃ and Z̃2 according to
the choice we implemented here. (They would be absent if we
wrote down an expansion in the bare disorder.)

VIII. 1-LOOP RESULTS FOR THE AVALANCHE-SIZE
DISTRIBUTION

A. Avalanche exponent τ

The formula (150) contains all we need in order to retrieve
the avalanche size distribution. We recall that

S−1
m Z̃(λSm) = 〈S〉−1(〈eλS〉 − 1) (152)

from (91), where Sm is given by (93). Note however that
(150) contains only information about sizes of order Sm, from

S � Sm to S � Sm, but in all cases much larger than the mi-
croscopic cutoff, i.e. S � Smin, which has not been included
(and was not needed) in the above analysis.

Let us start with the exponent τ . It can be extracted as
follows. There is a critical value pc < 1 such that all mo-
ments

∫
dS P (S)Sp diverge for p ≤ pc. Of course these do

not strictly diverge, as they should be in the end cutoff by
Smin, but as just discussed we can forget that here to extract
the τ exponent. This exponent is defined from the behavior
P (S) ∼ S−τ for Smin � S � Sm. Hence we can identify:

τ = 1 + pc (153)

We start from the identity

〈Sp〉 =
1

Γ(−p)

∫ ∞
0

dλλ−1−p 〈e−λS − 1
〉

=
〈S〉
Sm

1
Γ(−p)

∫ ∞
0

dλλ−1−p Z̃(−Smλ) , (154)

where in the second line we have used (152). Since Z̃ ∼ λ at
small λ the integral converges at the lower bound. However,
it may diverge at the upper bound. Hence pc is obtained from
the power-law tail of Z̃(λ), for λ → −∞. The boundary is
for Z̃(−λ) ∼ −λpc , where we have indicated the sign of Z̃.
(Z̃ is negative, due to the dominance of the term −1 in the
definition of Z̃ for large negative λ). This is consistent with
the asymptotic behavior (104) and the discussion there.

From (150) we obtain, for large negative Z̃ ≡ Z̃(λ)

−λ ≈ Z̃2

[
1 + α− 3

2
α log(−2Z̃)

]
≈ (−Z̃)2− 3

2α +O(α2)

(155)
This gives −Z̃ ≈ (−λ)1/(2− 3

2α) = (−λ)pc , from which we
identify

τ = 1 +
1

2− 3
2α
≈ 3

2
+

3
8
α (156)

=
3
2
− 3

8
∆̃′′(0) (157)

Using relation (B12) of Appendix B, valid for all classes of
disorder, we obtain our main result for the avalanche expo-
nent,

τ =
3
2
− ε− ζ

8
+O(ε2) . (158)

Let us now discuss the significance of this result. First we note
that this formula agrees to first order in ε with the conjecture

τ = τζ := 2− 2
d+ ζ

. (159)

As mentioned in the introduction, this conjecture was put for-
ward in the study of interface depinning in Ref. [27] in the
absence of a mass term, i.e. in the ensemble of fixed applied
force f . It is based on the assumption that, as the force f
is increased towards the threshold fc, the mean number of
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avalanches per interval of force increment is not singular.
Translated into the present setting it means that

dNw
m2dw

=
ρ0

m2
(160)

remains finite as m → 0. (We use the notations of Section
III C where Nw is the number of shocks and ρ0 the shock
number density). Note however that in the present setting,
although the increase of the force is m2dw, it does not bring
the system closer to criticality, which is achieved by decreas-
ing the mass. This is why we had at the start two independent
exponents ρ and τ . The STS symmetry provides a first re-
lation (23) while the conjecture of the finiteness of (160) is
equivalent, using (29), to the conjecture ρ = 2 (at least for
τ > 1). Using (29) again, this implies the value τ = τζ .
Finally note that a similar conjecture was put forward in the
context of sandpiles [18, 19], and if one admits the connection
to the depinning of a periodic interface [24, 75] it is equivalent
to the conjecture τ = τζ=0 for the RP class.

As discussed in Ref. [67], we expect the result for τ for
statics (shocks) and for depinning (avalanches) to coincide to
one loop. Hence our result indicates that both indeed coincide
with the conjecture τ = τζ to one loop. What happens be-
yond one loop accuracy remains to be elucidated. We know
that statics and depinning differ at two loop, e.g. for the ζ ex-
ponent. There are various possibilities for either the statics or
the depinning to agree, or disagree with the conjecture at two
loops and for d = 2, 3: Since ζdep > ζstat, one possibility is
already excluded, that both conjectures are true and that the
exponent τ is the same in both problems. Some claims that
static and dynamic avalanches belong to the same universal-
ity classes were indeed put forward in [22] for the RF Ising
model. Finally note that our result can also be written as

ρ = 2 +O(ε2) , (161)

and a remaining challenge is to compute the higher orders.
Until now we have failed to find, within the field theory, a
symmetry or a mechanism which would imply ρ = 2 to all
orders.

Note that exact results for d = 0 depinning [86], i.e. of a
particle, yield τ = 0 for the so-called Gumbel class which has
ζ = 2, hence agreement with the conjecture up to logarithmic
corrections present in that case. However, the result for the
other classes (Weibul and Frechet) have also τ = 0 but ζ 6= 2,
hence violating the conjecture in its present form. For the
statics, exact result for the d = 0 limit of the RF class, the so-
called toy or Sinai Brownian energy landscape, has τ = 1/2
and ζ = 4/3 which again satisfy the conjecture [62].

To summarize, for the cases of interest, our result is, with
ε = 4− d and up to O(ε2) corrections:

τ =
3
2
−


1
12
ε RF

0.0989627 ε RB
1
8
ε CDW

(162)

where we have used the 1-loop values for ζ in the statics, re-
called in Appendix B. To O(ε) these are the same as for de-
pinning, except that in that case the RB class does not exist,
since 2-loop corrections make it flow to RF.

It is useful to quote the expected result if the conjecture
holds. In d = 3:

τ =


7
5

RF

1.37783± 0.00005 RB
4
3

CDW

(163)

In d = 2:

τ =


5
4

RF

1.17987± 0.00037 RB

1 CDW

(164)

In d = 1:

τ =


1 RF

4
5 RB

0 CDW

(165)

For the RB class we have used the 2-loop result ζ =
0.208298042ε + 0.0068582ε2 + O(ε3) and constructed three
different Pade approximants, using the constraint that ζd=1 =
2/3. This gives ζRB

d=3 = 0.21454 ± 0.00028 and ζRB
d=2 =

0.43864 ± 0.0011. The error bars denote the 1σ spread of
the three Pade approximants. For RF we use ζ = (4 − d)/3
and for RP ζ = 0, hence there is no uncertainty. These are the
values for the statics. For depinning, if the conjecture holds,
the values for the RP (CDW) class are the same as given here.
For non-periodic interfaces ζ = 1

3ε(1 + 0.14331ε) + O(ε3)
and one gets τd=3 = 1.409 ± 0.001, τd=2 = 1.31 ± 0.01
and τd=1 = 1.2 ± 0.1 (in the latter inserting the numerically
measured value for ζ = 1.25 yields instead τd=1 = 1.11).

B. Distribution of avalanche sizes

We now compute the avalanche-size distribution. To do so,
we have to invert (150). To first order in α this can be done
order by order, by first inserting in the term proportional to α
the MF solution, i.e. the solution of (150) at α = 0. Solving
for Z̃ then yields
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FIG. 2: P (s), both for mean-field (black), and ε = 1, 2, 3 (blue, red, green).

Z̃(λ) =
1
2

(
1−
√

1− 4λ
)

+

((
3λ+

√
1− 4λ− 1

)
log(1− 4λ)− 2

(
2λ+

√
1− 4λ− 1

))
α

4
√

1− 4λ
+O

(
α2
)
. (166)

Expanding in λ gives

Z̃(λ) =
(
λ+ λ2 + 2λ3 + 5λ4 + 14λ5 + 42λ6 +O

(
λ7
))

+
(

2λ3 +
35λ4

3
+ 54λ5 +

3472λ6

15
+O

(
λ7
))

α+O
(
α2
)
, (167)

consistent with our previous result (144) if one uses the values of the in given above. The challenge is to find a distribution P (S)
which generates all terms in (166). By trial and error, one arrives at the following integral representation:

Z̃(λ) =
1

2
√
π

∫ ∞
0

dS
(
eλS − 1

)
e−S/4S−3/2

×
[
1 +

1
16

(
log(S)S + γS + 4S − 8

√
π
√
S − 6 log(S)− 6γ + 4

)
α+O

(
α2
)]

(168)

To leading order in α, using the definition (152), this yields
our final result for the avalanche-size distribution at one loop:

P (S) =
〈S〉
2
√
π
Sτ−2
m AS−τ exp

(
C

√
S

Sm
− B

4

[
S

Sm

]δ)
(169)

for S � Smin, with coefficients:

A = 1 +
1
8

(2− 3γE)α , B = 1− α
(

1 +
γE

4

)
C = −1

2
√
πα , α = −1

3
(1− ζ1)ε . (170)

γE = 0.577216, and the exponents read:

τ =
3
2

+
3
8
α =

3
2
− 1

8
(1− ζ1)ε+O(ε2) (171)

δ = 1− α

4
= 1 +

1
12

(1− ζ1)ε . (172)

Note that the decay of large avalanches becomes stretched ex-
ponential, faster than exponential, with an exponent δ > 1.

For the RF class ζ1 = 1/3, hence δ = 1 + ε/18 + O(ε2).
This goes in the right direction to match the exact result δ = 3
for the RF class in d = 0, but the magnitude seems under-
estimated by the 1-loop formula, which suggests large higher-
loop corrections for this exponent. Note the pronounced bump
in the plot of SτP (S) on figure 2. This bump is indeed seen
in numerical simulations [26].

C. Normalization and scales in the distribution of sizes

One can check that the final formula (169) is properly nor-
malized, i.e.

∫∞
0

dSSP (S) = 〈S〉, to leading and first order
in ε. Note that since τ > 1, this formula does not give in-
formation about typical avalanches, which are of the order of
the cutoff Smin, but about larger ones which control the mo-
ments 〈Sp〉 with p > pc = τ − 1. It is then universal, i.e. it
does not depend on the details of the small-scale cutoff Smin.
However the average avalanche size 〈S〉, which appears as a
factor in the distribution (169), is non-universal and cannot be
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computed from this theory. In Section V F we showed that it
behaves as 〈S〉 ∼ Sτ−1

min S
2−τ
m but this is all one knows about

it. In comparing with numerics or experiments, one replaces
〈S〉 by its actual measured value. Then there is only one free
parameter left, the global scale Sm. Note that this scale is
given by Sm = 〈S2〉/2〈S〉, hence it can also easily be mea-
sured. We recall that its value is predicted by field theory via
the exact relation

Sm =
|∆′(0+)|
m4

=
Kd/2

md+ζ

|∆̃′(0+)|
εĨ2

. (173)

εĨ2 = 2(4π)−d/2Γ(3− d
2 ) is a d-dependent number. A ques-

tion is how predictive this formula, and how universal this
scale is. The answer depends on the universality class, RP,
RF or RB.

For the RP class, ζ = 0 and the fixed point for |∆̃′(0+)|/a,
where a is the period, is a universal number. To two loops,
this number is equal in the statics and at depinning and reads
ε/6+ε2/9+O(ε3). In generalK andmwill experience small
corrections for any e.g. a lattice model which does not exactly
satisfy the STS symmetry. They can however be measured
from large scale measurements on the system. Once they are
extracted, then Sm can be predicted. Alternatively, one can
construct ratios which, for the RP class, are universal, for in-
stance,

rRP =
aSm

u2Ld
=
a|∆′(0+)|

∆(0)
=
a|∆̃′(0+)|

∆̃(0)
= 6 , (174)

where u is the center of mass and u2 the variance of its fluc-
tuations. Its definition is u2Ld =

∑
x u(0)u(x). Note that in

the statics there is no higher order correction, since the fixed
point for R(u) = a+ b[u(1− u)]2 with some constants a and
b which drop out from (174). Replacing by the depinning val-
ues gives r = 6 + 2ε+O(ε2). This universal ratio can thus be
used to distinguish statics from depinning.

For the RF class, ζ = ε/3 in the statics, as recalled in Ap-
pendix B. The fixed point values contain a scale ξ (in the
direction of u), which can be fixed if one knows the amplitude
of the random field σ =

∫∞
0

du∆(u). σ can be retrieved from
large distances in experiments, and is a parameter of simula-
tions. There are various amplitude combinations which can
be studied, depending on whether one is willing to measure
m and K, see Appendix B and Ref. [87]. The nicest universal
ratio is:

rRF =
σSm

(m2u2Ld)2
=
σ|∆′(0+)|

∆(0)2

= γ1 + ε

(
2
9
γ1 + γ2

)
+O(ε2) (175)

with γ1 = 0.775304245188 and γ2 = −0.13945524, where
one can check from Appendix B that all dependence on m,
K and the scale ξ cancel (thanks in part to the strict equality
ζ = ε/3).

Finally, for the RB class (and for the RF class for depin-
ning) there is the least universality: |∆̃′(0+)| is non-universal,

hence measuring K and m will not be enough. One has, for
instance, also to measure u2Ld to obtain the combination:

S2
m

u2Ld
=

∆′(0+)2

m4∆(0)
=
m−dKd/2

εĨ2

[∆̃′(0+)]2

∆̃(0)
(176)

with the universal ratio

∆̃′(0+)2

∆̃(0)
= 0.583405ε+ 0.294205ε2 +O(ε3) . (177)

Of course, in all these cases there are other possibilities for
interesting universal ratios. If one measures for instance the
function ∆(u) as in Ref. [26], one can in some cases get rid
of measuring K and m. Eventually, a direct numerical test
of the relation between Sm and the cusp would also be wel-
come. Analytical solution of toy models in d = 0 [86] has
also successfully tested this relation.

D. Moments and universal ratios

Having obtained P (S) we can compute its moments. This
is useful for comparison with numerics. Direct integration of
equation (171) gives

〈Sn〉
〈S〉Sn−1

m

=
4n−1Γ

(
n− 1

2

)
√
π

+
ε(1− ζ1)

3
4n−2

√
π

{
4
√
πΓ(n)

− Γ
(
n− 1

2

) [(
ψ(n− 1

2 ) + log(4) + γ
)

(n− 2) + 4n
]}

+O
(
ε2
)

(178)

a formula valid for any fixed real n > 1/2. From this we can
extract the universal dimensionless ratios:

rn : =
〈Sn+1〉〈Sn−1〉
〈Sn〉2

=
2n− 1
2n− 3

(179)

− ε
3

(1− ζ1)
nΓ(n− 3

2 ) +
√
πΓ(n− 1)

(2n− 3)2Γ(n− 3
2 )

+O(ε2) ,

for any real n > 3/2, with ζ1 = 1/3 for RF, ζ1 = 0 for RP
and ζ1 = 0.208298042 for RB. The lowest-order integer ones
are:

r2 = 3− ε(1− ζ1) (180)

r3 =
5
3
− 5

27
ε(1− ζ1) . (181)

Another useful form when comparing to numerics for n
near τ , is to isolate the simple pole divergence which occurs
in any dimension:

rn =
Ad
n− τ

+Bn,d (182)

Ad = 1− 1 + π

12
ε(1− ζ1) +O(ε2) (183)

Bn,d = 1 + ε(1− ζ1)
πΓ[n− 1/2]−

√
πΓ(n− 1)

6(2n− 3)Γ(n− 1
2 )

+O(ε2) ,
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Note that for comparison with numerics it is useful to es-
timate the corrections due to the small scale cutoff, assuming
it just cuts the previous result at Smin. The correction to the
above result for the dimensionless quantity 〈Sn〉

〈S〉Sn−1
m

are thus

of order (Smin/Sm)n−τ+1/(n−τ+1) and an approximation
to rn is thus:

rn = Ad
1− (Smin/Sm)n−τ

n− τ
+Bn,d (184)

For the RF class one finds either from a direct expan-
sion, or using the (0, 1)-Pade: r2 = {2.333, 2.45455},
r3 = {1.5432, 1.55172} (d = 3), r2 = {1.667, 2.07692},
r3 = {1.41975, 1.45161} (d = 2); r2 = {1, 1.8} and
r3 = {1.2963, 1.36364} (d = 1) and r2 = {0.3333, 1.58824}
and r3 = {1.17284, 1.28571} (d = 0).

This can be compared with the exact result [62] for RF dis-
order in d = 0:

r2 = 1.2978 (185)
r3 = 1.17776 (186)

Using the exact result as a constraint yields three Padé aprox-
imants and the results:

r2 = 2.404± 0.009 d = 3 (187)
r2 = 1.935± 0.021 d = 2 (188)
r2 = 1.571± 0.022 d = 1 (189)

and

r3 = 1.5427± 0.0012 d = 3 (190)
r3 = 1.419± 0.003 d = 2 (191)
r3 = 1.297± 0.003 d = 1 (192)

where averages are over the three Padé approximants and error
bars are the corresponding one sigma deviations.

IX. SPATIAL STRUCTURE OF AVALANCHE
DISTRIBUTIONS AND SELF-CONSISTENT EQUATION AT

NON-ZERO MOMENTUM

In this section we introduce generating functions which en-
code for the spatial correlations in the avalanches. An explicit
calculation is performed at the level of the improved tree ap-
proximation (mean field). It exhibits an interesting connection
to instanton calculations in a cubic field theory.

A. Generating function

To obtain information about the structure of avalanches in
internal space one may define for avalanche i

Sφi =
∫
x

φ(x)Sxi (193)

where φ(x) is a given function. One recovers the standard
definition of size for φ(x) = 1, i.e. Si = S1

i . One would like
to compute averages such as [94]

Zφ(λ) =
1∫

x
φ(x)

∑
i

(eλ
R
x
φ(x)Sxi − 1)δ(w − wi)

=
1∫

x
φ(x)

∫ ∞
0

dSφ(eλS
φ

− 1)ρφ(Sφ) , (194)

where ρφ(s) = ρ0Pφ(s) is the density of avalanches with
Sφ = s, and Pφ(s) the normalized distribution of Sφ. Note
that STS implies

∫
x
φ(x)(ux(w)− w) = 0 for any φ(x) and

w. Hence, taking a derivative w.r.t w one obtains∫ ∞
0

dSφSφρφ(Sφ) =
∫
x

φ(x) . (195)

Note that ρ0, the total density of avalanches is independent of
φ, hence one also has the exact relation〈

Sφ
〉

= 〈S〉L−d
∫
x

φ(x) . (196)

Extending the arguments leading to (A4) and (A5) we write

∂weλ(
R
x
φ(x)(ux(w)−w−ux(0)))

∣∣∣
w=0+

=
∫

dSφρφ(Sφ)(eλS
φ

− 1− λSφ) . (197)

Hence one needs to compute the generating function

Gφ(λ) =
1∫

x
φ(x)

eλ(
R
x
φ(x)(ux(w)−w−ux(0))) (198)

Gφ(λ) = Ẑφ(λ)w +O(w2) (199)

Ẑφ(λ) =
1
〈Sφ〉

(〈eλS
φ

〉 − 1− λ〈Sφ〉) (200)

for w > 0, with again Zφ(λ) = λ + Ẑφ(λ). Note that here
we consider only a uniform wx = w.

B. The self-consistent equation

Let us now study this quantity in the improved tree approx-
imation (also called mean-field above). We can show that it is
given by

Zφ(λ) =
1∫

x
φ(x)

∫
x

Zφx (λ) , (201)

where Zφx (λ) is solution to the self-consistent equation

Zφx (λ) = λφ(x) + |∆′(0+)|
∫
zy

gx−ygx−zZ
φ
y (λ)Zφz (λ) .

(202)
gx =

∫
k
gkeikx is the free (elastic) propagator. One can check

that for φ(x) = 1, Zx(λ) = Z(λ) and one recovers the tree-
level recursion given in the text for Z(λ), and, upon replacing
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∆′(0+)→ 1 and gk → g̃k = gk|m=1, the one for the rescaled
function Z̃(λ). A derivation, resumming all diagrams, is given
in appendix F 1.

We now go to rescaled quantities, using (91), i.e. Z(λ) =
Z̃(λSm)/Sm. Then we can write for an arbitrary function
φ(k) in Fourier space:

Z̃k(λ) = λφ(k)+
∫
q

m2

q2 +m2

m2

(k − q)2 +m2
Z̃q(λ)Z̃k−q(λ)

(203)
In real space, this is

Z̃z(λ) = λφ(x) +m4

∫
xy

gz−xgz−yZ̃x(λ)Z̃y(λ) . (204)

We note that this self-consistent equation is simplified by
defining Yk(λ) := m2gkZ̃k(λ), or in real space

Y (zm, λ) := m2

∫
x

gz−xZ̃x(λ) (205)

ϕ(mz) := φ(z) . (206)

This results in (suppressing from now on the explicit depen-
dence on λ when convenient)(

−∇2 + 1
)
Y (x) = λϕ(x) + Y (x)2 . (207)

C. Solution for ϕ localized on a codimension one hyper plane

The function Z(λ) will be qualitatively different, depend-
ing on whether ϕ is extended on the scale of the inverse mass
(absorbed in x), or is a δ-distribution. We now study one spe-
cial case, namely ϕ(x) = δ(x1). The function Y (x) will then
be constant along the directions x2, . . . , xd, and for simplicity
of notation we will denote x1 → x, and suppress xi, i > 1.
Thus we effectively consider a 1-dimensional problem.

Eq. (207) can then be integrated analytically. Consider first
the homogenous equation (λ = 0)

Y ′′(x) = Y (x)− Y (x)2 . (208)

Multiplying with Y ′ and integrating once gives

[Y ′(x)]2 = const− 2
3
Y (x)3 + Y (x)2 . (209)

If (208) is viewed as the equation of motion of a particle,
then setting const → 0 will be the solution which has zero
kinetic energy at the saddle-point Y = 0 of the potential
V (Y ) = 1

3Y
3 − 1

2Y
2. It is the unique solution which de-

cays (exponentially fast) to Y = 0 for x → ±∞. The other
solutions are either oscillating or unbounded. Integrating once
more for const = 0 gives−2 arctanh

(√
3−2y√

3

)
= x, or equiv-

alently

Y (x) = Y0(x) :=
3

cosh(x) + 1
, (210)

where the center of the solution has been chosen to be at x =
0.

A symmetric solution Y (x) = Y (−x) of (207) with
ϕ(x) = δ(x) can now be constructed as follows:

Y (x, λ) =
3

cosh(x+ x0(λ)) + 1
for x > 0 . (211)

Inserting into (207) and integrating from −δ to δ gives

−2∂δY (δ, λ) = λ+O(δ) . (212)

Thus, in the limit of δ → 0,

sinh(x0(λ))
(1 + cosh(x0(λ)))2

=
λ

6
. (213)

Let us consider the unique real branch, s.t. x0(λ)→∞ when
λ→ 0, which gives Zφ(λ)→ 0 in the same limit. Increasing
λ from 0, the solution breaks down, when λ reaches λc with

λc =
2√
3
. (214)

such that cosh(x0(λc)) = 2. Now we need Zφ(λ) defined in
(201), or the rescaled version Z̃φ(λ) = 1R

x
φ(x)

∫
x
Z̃φy (λ):

Z̃φ(λ) =
1∫

x
φ(x)

∫
x

Z̃φx (λ)

=
1∫

x
ϕ(x)

∫
x

(−∇2 + 1)Y (x, λ) , (215)

where from the first to the second line we switched to dimen-
sionless variables. Inserting (207) and using that ϕ(x) = δ(x)
yields

Z̃φ(λ) =
∫
x

λϕ(x) + Y 2(x, λ)

= λ+
∫ ∞

0

dx
18

[1 + cosh(x+ x0(λ))]2

= λ+ 12
1 + 3ex0(λ)

[1 + ex0(λ)]3

=
12

1 + ex0(λ)
, (216)

where in the last line (213) was used. Therefore x0(λ) can be
expressed in terms of Z̃φ(λ), and inserted into (213), with the
result

λ =
Z̃φ(Z̃φ − 6)(Z̃φ − 12)

72
. (217)

Note that this result was derived for λ ∈ [0, λc], Z̃φ ∈ [0, 6−
2
√

3], which corresponds to the red (solid) branch in figure
3, and then (implicitly) continued analytically to all λ and all
Z̃φ. We note that the green part of the curve (long dashes)
can also be obtained analytically, using the second point for
which (213) is satisfied, and the two solutions for negative λ.
One easily checks that the symmetry Y (x) = Y (−x) implies
point-reflection symmetry around the point (λ, Z̃φ) = (0, 6).
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FIG. 3: Zφ(λ) for φ(x) = δ(x), as explained in the main text.

This already strongly suggests that λ is a third order poly-
nomial in Z̃φ, symmetric around the point Z̃φ = 6 (in our
chosen units).

For large negative λ, |Z̃φ(λ)| ∼ 3
√
|λ|, thus from our dis-

cussion following (153), pc = 1
3 , and the avalanche exponent

τ is

τφ =
4
3
. (218)

Note that this value is consistent with a generalized conjecture
that we can put forward, τφ = 2 − 2

dφ+ζ where dφ = d − 1
for a codimension one subspace, inserting d = 4 and ζ = 0
since the above result was derived at mean-field level. Again,
much work remains to validate or invalidate this generalized
conjecture (e.g. a two loop calculation).

Interestingly, the probability distribution is non-trivial and
different from the standard mean field one (i.e for φ = 1). It
takes the form, for Sφ � Sφmin:

Pφ(Sφ) =
1
Sm

pφ
( Sφ
Sm

)
(219)

Here the avalanche sizes are defined as Sφi =
1
m

∫
x2,..xd

Six1=0,x2,..xd
∼ m−d−ζ and Sm is the same

quantity as defined in (93). The distribution pφ(s) can be
calculated as follows:

〈s〉−1
pφ(s) =

∫ i∞

−i∞

dλ
2πi

e−λsZ̃φ(λ)

=
∫ i∞

−i∞

dZ
2πi

dλ(Z)
dZ

e−λ(Z)sZ

=
18
π

∫ ∞
0

dx (3x2 + 1)

×
[
x sin(3sx(x2 + 1))− cos(3sx(x2 + 1))

]
=

2K 1
3

(
2s√

3

)
πs

. (220)

Here s = Sφ/Sm and 〈s〉 =
〈
Sφ
〉
/Sm, and K 1

3
is a Bessel

function. The steps of the derivation are: a change of variables
from λ to Z = Z̃φ(λ); a change of variables Z = 6i(x −
i) and combining the integrand for x and −x. For large s
the asymptotic behavior is similar to the standard mean-field
result P (s) ∼ s−3/2e−λcs:

pφ(s) = 〈s〉 e−
2s√
3

(
4
√

3
(

1
s

)3/2
√
π

−
5
(

1
s

)5/2
48
(

4
√

3
√
π
) + . . .

)
.

(221)
This was expected, since in both cases the solution for Z(λ)
ends at a λc with a square-root singularity. For small s the
asymptotic behavior is in accordance with (218):

〈s〉−1
pφ(s) =

6
√

3Γ
(

1
3

)
πs4/3

+
Γ
(
− 1

3

)
6
√

3πs2/3
+

6
√

3Γ
(

1
3

)
s2/3

2π
+ . . .

(222)
Finally, from (220) one obtains the moments:〈

(Sφ)n
〉

〈Sφ〉
=

3n/2Γ
(
n
2 −

1
6

)
Γ
(
n
2 + 1

6

)
2π

Sn−1
m (223)

for n > 1/3, from which the universal ratios rn can be com-
puted. In particular that

〈
(Sφ)2

〉
/
〈
Sφ
〉

= 1
2Sm instead of

2Sm for φ = 1.
Note that for φ localized on a hyperplane, (196) implies〈

Sφ
〉

=
1
Lm
〈S〉 . (224)

This is understood from the observation, that only a fraction
1/(Lm) of all avalanches leads to an advance of the interface
(avalanche) in the hyperplane. Thus, if one were to define
an avalanche distribution by considering only the hyperplane,
one would naturally choose a different normalization.

D. Diagrammatic expansion

Here we have solved the codimension one case, i.e. dφ =
d−1. More generally one may consider the case dφ = d−d′,
i.e. a function ϕ(x) localized on a d′ ≤ d dimensional hyper-
plane. This amounts to study Eq. (207) in dimension d′. This
can be done graphically, as (207) can be used to define, in any
dimension d′, a diagrammatic expansion:

Z(λ) = λ+ λ2 + 2λ3

+ λ4

 + 4


+O(λ5) , (225)

where independent d′-dimensional momenta flow in each
loop, the solid lines are propagators g̃k = 1/(k2 + 1) and
each loop contains a momentum integration. Note that this
expansion is valid, i.e. IR- and UV-convergent, in all dimen-
sions d′ < 4 (hence any d > 0 for the original problem). In
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d′ = 0 it reproduces (89). In d′ = 1 the integrals are eas-
ily computed by switching from Fourier to real space where
g̃x = 1

2e
−|x|, and one obtains

Z(λ) = λ+
1
4
λ2 +

1
9
λ3 +

[
11
864

+ 4
83

6912

]
λ4 + . . . . (226)

This is in agreement with the analytical result (217)

Z(λ) = λ+
λ2

4
+
λ3

9
+

35λ4

576
+
λ5

27
+

1001λ6

41472
+

4λ7

243

+
46189λ8

3981312
+

55λ9

6561
+

5311735λ10

859963392
+O

(
λ11
)

(227)

It is amazing that the quite non-trivial series (225) is indeed
resummed by the instanton solution, (211) in the case d′ = 1.
Study of higher d′ and extension to the loop expansion is left
for the future.

X. NON-LOCAL ELASTICITY AND AVALANCHE
DISTRIBUTIONS FOR A CONTACT LINE

The calculations performed in this paper can be extended to
a broader class of elasticity functions g−1

q in (2). One possible
generalization is

g−1
q = |q|γ + µγ , (228)

where γ = 2 corresponds to the choice studied above of local
elasticity, while the case γ = 1 is relevant for long-range elas-
ticity as in contact lines of fluids. In fact a more realistic form
in that case is

g−1
q =

√
q2 + µ2 . (229)

The mass is provided by capillarity, i.e. the interplay of
surface tension and gravity. We keep the notation m2 =
gq=0 = µγ for the curvature of the quadratic well, while dis-
tinguishing it from µ which is an inverse characteristic inter-
nal length in the interface (the inverse capillary length). One
parametrization which contains these three cases is

g−1
q = µγg(q/µ) (230)

for some function g(y) ∼ yγ at large y, and g(0) = 1. Of
course other scales may be present in a realistic problem, and
the form (230) assumes that µ−1 is the single largest internal
length scale which cuts off the avalanches.

The upper critical dimension dc in all cases is given by the
UV divergence of

I2 =
∫
q

g2
q = Cd,γµ

−ε 1
ε
, (231)

where ε = dc − d, dc = 2γ. The constant Cd,γ = εĨ2 with
Ĩ2 =

∫
q
g2
q |µ=1 remains finite at dc.

With these choices all calculations of this paper are easily
extended. Appendix B can still be used, up to trivial changes,

e.g. replacing m by µ in all final formula there, including in
the definition (B3) of the rescaled disorder (we can set K =
1). One has again

α = −∆̃′′(0+) = − ε
3

(1− ζ1) +O(ε2) (232)

to one loop, with the same values for ζ1, independent of γ
(and g(y)), and of course now ε = dc − d everywhere. For
more details, including the calculation of the exponent ζ (and
z for the depinning) to two loops for the non-local elasticity
see Ref. [36, 49]. Here we compute the avalanche distribution
to one loop.

To do that one starts again from Eq. (151). It generalizes as
follows:

Z̃(λ) =: Z̃ = λ+ Z̃2 + αJγ (233)

Jγ =
1
εĨ2

∫
k

Z̃2

(g̃−1
k − 2Z̃)2

+
Z̃

g̃−1
k − 2Z̃

− Z̃g̃k − 3Z̃2g̃2
k

(234)

where g̃k = gk|µ=1. Note that the definition of the rescaled Z̃
is still given by (152) with now

Sm = m−4∆′(0+) = µ−2γ∆′(0+) = (εĨ2)−1∆̃′(0+)µ−d+ζ .
(235)

The calculations are performed in Appendix E. For the choice
of elasticity (228) we find again, for any γ, the distribution
P (S) given by (68), with amplitudes

A = 1 +
1

4γ
(2− 3γE)α , B = 1− α(1 +

γE

2γ
)

C = − 1
γ

√
πα , (236)

and exponents

τ =
3
2

+
3

4γ
α =

3
2

+
1

4γ
(1− ζ1)ε+O(ε2) (237)

δ = 1− α

2γ
= 1 +

1
6γ

(1− ζ1)ε+O(ε2) . (238)

Of course everywhere ε = 2γ − d. Note that the 1-loop result
for the avalanche exponent τ is now compatible to O(ε) with
the generalized conjecture

τ = 2− γ

d+ ζ
. (239)

This conjecture can again be reexpressed as

ρ = 2 , (240)

given that the scaling form (22) generalizes into

ρ(S) = LdmρS−τ ρ̃(Sµd+ζ) , (241)

and that the STS relation (21) still holds, hence now the expo-
nent relation (always true) reads: ρ = 2(2− τ)(d+ ζ)/γ.

In the case γ = 1 and for the form (229) more suitable to
describe the contact line, one finds again the same exponent τ
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(237), however the shape of the distribution is different. We
find, see Appendix E,

P (S) = A′
〈S〉
2
√
π
S−2
m

[(
S

Sm

)−τ
+D′

]

× exp

(
C ′
√

S

Sm
− B′

4

[
S

Sm

]δ′)
(242)

for S � Smin, with amplitudes

A′ = 1 +
1
4

(8− 3γE)α , B′ = 1− 3
2
α(γE − 2)

C ′ = −3
2
√
πα , D′ =

1
8
√
πα . (243)

The exponent δ is now given by

δ′ = 1− 3α
2

= 1 +
1
2

(1− ζ1)ε+O(ε2) . (244)

Note that the presence of the constant D′ suggests that the
pre-exponential power law at large S is not S−τ any more.

XI. CONCLUSION

In conclusion we have succeeded in computing from the
FRG the distribution of shock or jump sizes which occur in the
minimal energy configuration of an interface pinned in a ran-
dom potential and tied to a spring of varying position. These
are the static analog of the avalanches which occur in the dy-
namics if the interface is instead pulled from a metastable con-
figuration to the next one. Hence it opens the way to the same
calculation in the dynamics, performed in [67], which yields
very similar results. Shocks in the statics are often called static
avalanches as there are many analogies, as well as some dif-
ferences.

We believe that this is an important achievement. First be-
cause the FRG has been around for a while but it was not
understood previously how to extract the avalanche statistics
in a controlled way. In the sandpile literature this is still an
open question despite many exact results for other quanti-
ties. It turns out to be conceptually simple (a posteriori) to
extract these distributions from the FRG. In fact the beauti-
fully simple relation (36) between the cusp of the FRG func-
tion ∆(u) and the avalanche-size’s second moment, unveiled
in this work, gives a very transparent physical picture of the
cusp. Similar relations hold for all moments, and the chal-
lenge is to sum them. This part is a priori technically difficult
but some surprising simplifications occur in the calculation,
which in the end lead to a simple self-consistent equation,
with an interpretation in graph theory. This suggests a, yet to
be discovered, simpler and presumably more powerful struc-
ture behind the present state of the art of the theory.

The 1-loop result for the probability distribution is equally
striking. First the avalanche exponent τ is found equal to or-
der O(ε) to a conjectured form, put forward for the depinning
transition. Note that our result is a first-principle derivation

of this exponent. Hence the conjecture is confirmed to one
loop. It is then of high interest to look for possible deviations
to two loop, both in the statics and dynamics. Alternatively,
if the conjecture is true in general, it would be interesting to
derive this from first principles in the field theory. Besides the
exponent, we obtained the general formula for the distribution
P (S). This includes the precise way in which it is cut off for
large avalanches, at a cutoff scale Sm. These large and rare
events are the important ones in terms of moments of distribu-
tions, and, in real life, if one is interested in e.g. earthquakes.
We predict the scale Sm and the distribution, which is insen-
sitive to details of the model at short scales (up to a single and
measurable global factor). Of course the distribution depends
on the details of the model at large scales, here we use mainly
a quadratic well to cut the size off, but this dependence can
explicitly be computed within the theory. We illustrate this
point by computing it for contact-line depinning which has a
more complicated elastic energy.

Some progress was made to study the spatial structure of
avalanches. Additional definitions of local avalanche sizes
was given which integrate information about jumps within a
subspace of the interface. It was shown that to obtain their
probability distribution at mean field level one must solve an
instanton problem in a cubic field theory. An explicit solution
was found for a subspace of co-dimension one, leading to a
novel exponent τ = 4/3 at mean-field level, i.e. in d = 4, and
a novel size distribution involving a Bessel function. It is dif-
ferent from the usual mean field size distributions, recovered
here, with τ = 3/2, and an exponential function.

There are many open interesting questions which can now
be addressed, both within the statics and the dynamics. First,
one would like to know more about the spatial structure of the
avalanches, and their correlations. A first step is to extend the
instanton calculation to regions of arbitrary shapes and co-
dimension, and to study it within the loop expansion. The
problem can also be extended to a manifold with N compo-
nents. Consequences for hysteresis loops of magnets deserve
a new study. Applications to earthquakes are also of interest,
especially if avalanche correlations can be handled (pre- and
after-shocks). Plastic avalanches can now be studied, e.g. in
the framework of Ref. [88].
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Appendix A: Shock-size distributions

1. Generating function

We start again from the shock decomposition Eq. (16). The
field eλL

d[u(w)−w] has jump discontinuities at each shock po-
sition, where its value is multiplied by a factor eλSi . Hence
one can write

(∂w + λLd) eλL
d[u(w)−w]

=
∑
i

( eλSi − 1) eλL
d[u(w−i )−w]δ(w − wi) (A1)

=
∑
i

(1− e−λSi) eλL
d[u(w+

i )−w]δ(w − wi) (A2)

where Ldu(w−i ) =
∑
j<i Sj and Ldu(w+

i ) =
∑
j≤i Sj .

The labels of the shocks are ordered according to their spa-
tial position wi. Let us multiply these equations by the field
eλL

d[u(w)−w] taken at a different point, i.e. consider

(∂w1 + λLd) eλL
d[u(w1)−w1−(u(w2)−w2)]

=
∑
i

(eλSi − 1) eλL
d[u(w−i )−w1]δ(w1 − wi)

× e−λL
d[u(w2)−w2] , (A3)

where w1 and w2 are generic points and different from the
wi (even though the notation might suggest otherwise). If we
consider the limit w2 = w−1 in (A3) and average over disorder
the term containing u(w−i ) cancels and one obtains:

lim
w2→w−1

(∂w1 + λLd) eλLd[u(w1)−w1−(u(w2)−w2)]

=
∑
i

(eλSi − 1)δ(w1 − wi)

=
∫

dSρ(S)(eλS − 1) . (A4)

A similar equation can be derived starting from (A2) and con-
sidering the limit w2 = w+

1 . Using translational invariance
one finally obtains

∂weλLd[u(w)−w−u(0))]
∣∣∣
w=0+

=
∫

dSρ(S)(eλS − 1− λS)

(A5)

∂weλLd[u(w)−w−u(0))]
∣∣∣
w=0−

=
∫

dSρ(S)(1− e−λS − λS) ,

(A6)

where we have used (20). One thus recovers Eq. (44) in the
text. Another method to derive the part proportional to |w| is
to multiply (A1) at two different points (and setting λ → −λ
for the second) and extract the single shock contribution:

(∂w2 + λLd)(∂w1 + λLd) eλLd[u(w1)−w1−(u(w2)−w2)]

= δ(w1 − w2)
∑
i

(eλSi − 1)(e−λSi − 1)δ(w1 − wi)

+ smooth . (A7)

This yields, using translational invariance:

(−∂2
w + λ2L2d) eλLd(u(w)−w−u(0)))

= 2δ(w)
∫

dSρ(S)[1− cosh(λS)] + smooth . (A8)

Integrating twice one recovers Eq. (44), but only the coeffi-
cient of |w| is determined. To determine the coefficient of w
one needs another equation, e.g. as above, or has to use the
symmetry under w → −w.

Note that this can be generalized as follows: Consider a set
of λk with

∑n
k=1 λk = 0, then one has:

n∏
k=1

(∂wk + λLd) eLd
Pn
k=1 λk(u(wk)−wk)

= δ(w1 − w2) . . . δ(w1 − wn)

×
∫

dSρ(S)
n∏
k=1

(eλkS − 1) + less singular (A9)

2. Multi-shock size distribution

The multi-shock size distributions are encoded in the higher
pinning force cumulants (13). For instance the third cumulant
can be written as:

− ∂w1∂w2∂w3Ĉ(w1, w2, w3) (A10)

= m6L2d(u′(w1)− 1)(u′(w2)− 1)(u′(w3)− 1)
c

= m6L−d
∫

dSS3ρ(S)δ(w1 − w2)δ(w1 − w3)

+m6L−d
[ ∫

dS1dS3S
2
1S3ρc(S1, S3, w1, w3)δ(w1 − w2)

+ 2 perm
]

+m6L−d
∫

dS1dS2dS3S1S2S3ρc(S1, S2, S3, w1, w2, w3)

ρc(S1, . . . , Sn, w1, . . . , wn) =
∑

ia all distinct

δ(S1 − Si1) · · · δ(Sn − Sin)δ(w1 − wi1) · · · δ(wn − win)
c

(A11)

which is easily generalized to any cumulant. Note that the
connected parts and the−1 substractions conspire, using (20),
to give the correct connected shock distributions (such that
scaling with volume is straighforward). Such formula show
explicitly the structure of the sigularities expected in the force
n-cumulants as p points are brought together, as a conse-
quence of the assumption of a finite density of shocks (dilute
shocks). In principle it allows to check this assumption by
computing all moments within the ε expansion.

The generating function generalizingZ, and allowing to ex-
tract ρc(S1, S2, w1, w2), which is a function of w1 − w2, is
constructed in analogy with (44) and (45):
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G(λ1, λ2, w1, w2, δ1, δ2) = Z(λ1, λ2, w1 − w2)δ1δ2 + . . . (A12)

G(λ1, λ2, w1, w2, δ1, δ2) = L−d
(
eλ1Ld[u(w1+δ1)−u(w1)−δ1] − 1

) (
eλ2Ld[u(w2+δ2)−u(w2)−δ2] − 1

)c
(A13)

for δ1, δ2 > 0

Appendix B: Review of basic FRG results

We review basic equations for functional RG, mostly at 1-
loop order, making explicit the dependence on the elastic co-
efficient K, which usually is set to one. Details (mostly at
K = 1) can be found in [36, 49]. The FRG equation for the
function ∆(u) to one loop is:

−m∂m∆(u) = −1
2

(−m∂mI2)[(∆(u)−∆(0))2]′′ , (B1)

where In =
∫
k
(Kk2 +m2)−n, with an implicit UV cutoff Λ.

One has −m∂mI2 = 4m2I3. One should distinguish d < 6
and d > 6. The latter is dominated by the UV cutoff and is
briefly discussed at the end. For d < 6, in the limit m �
Λ one has I3 = Ĩ3m

d−6K−d/2 with Ĩn =
∫
k
(k2 + 1)−n

(defined with infinite UV cutoff whenever convergent). Thus
Ĩ3 = (εĨ2)/4 with Ĩ2 = (4π)−d/2Γ(2− d

2 ). Hence for d < 6:

−m∂mI2 = 4m2I3 = md−4(εĨ2)K−d/2 (B2)

where the combination εĨ2 = 2(4π)−d/2Γ(3− d
2 ) is well de-

fined for all d < 6 (the pole at d = 4 is suppressed). One
defines the rescaled (dimensionless) function ∆̃(u) through

∆(u) =
Kd/2

εĨ2
mε−2ζ∆̃(umζ) (B3)

with εĨ2 = 1/(8π2) in d = 4. It satisfies the dimensionless
FRG equation:

−m∂m∆̃(u) = (ε− 2ζ)∆̃(u) + ζu∆̃′(u)

−1
2

[
(∆̃(u)− ∆̃(0))2

]′′
(B4)

This equation is valid for all d < 6 and yields a fixed point
∆̃∗(u) = O(ε) for d < 4 with ζ = ζ1ε and a few universality
classes. The two loop equation, not reproduced here was also
analyzed. We recall the main results:

(a) random-bond class:

ζ = 0.208298042ε+ 0.006858ε2 +O(ε3) (B5)

[−∆̃∗′(0+)]2

∆̃∗(0)
= 0.583405ε+ 0.294205ε2 +O(ε3) . (B6)

Since (B4) is invariant under ∆̃(u) → ξ−2∆̃(ξu), ∆̃(u) con-
tains one non-universal scale, and only the above ratio is uni-
versal.

(b) random-field class, with R(u) = −σ|u| at large u:

ζ =
ε

3
(B7)

∆̃∗(0) =
ε

3
ξ2 , −∆̃∗′(0+) =

ε

3
ξ

[
1 +

2ε
9

+O(ε2)
]

where ξ is the non-universal scale introduced above. Integrat-
ing ∆(u) from 0 to∞ yields [49], Eq. (4.39):

K−d/2(εĨ2)σ =
ε

3
ξ3
[
γ1 + εγ2 +O(ε2)

]
(B8)

with γ1 =
∫ 1

0
dy
√

2(y − 1− ln y) = 0.775304245188,
γ2 = −0.13945524 (see [49], Eq. (4.41)).

(c) periodic class with period u = a:

ζ = 0 (B9)

∆̃∗(0) = a2

[
ε

36
+
ε2

54
+O(ε3)

]
(B10)

−∆̃∗′(0+) = a

[
ε

6
+
ε2

9
+O(ε3)

]
(B11)

For all classes:

∆̃∗′′(0+) = ε(1− ζ1)/3 +O(ε2) (B12)

In dimension d = 4 one defines:

∆̃(u) = ∆̂(u ln(m0/m)−ζ1)(ln(m0/m))−1+2ζ1 (B13)

and setting ζ = 0 and ε = 0 in (B4) one finds:

`∂`∆̂(u) = (1− 2ζ1)∆̂(u) + ζ1u∆̂′(u)

−1
2

[
(∆̂(u)− ∆̂(0))2

]′′
(B14)

where ` = ln(m0/m). Hence ∆̂(u) converges to the same
fixed point ∆̂∗(u) = ∆̃∗(u)/ε as for ε > 0. This yields for
the original function ∆(u) in d = 4:

∆(u) = 8π2K2∆̂∗(u ln(m0/m)−ζ1)(ln(m0/m))−1+2ζ1

(B15)
up to subdominant terms of the order of 1/ ln(m0/m). Here
1/m0 is a non-universal scale, presumably (at least) of the
order of the Larkin scale. In dimension 4 < d < 6, we set
again ζ = 0. The equation for ∆̃′′(0) reads:

−m∂m∆̃′′(0) = −(d− 4)∆̃′′(0)− 3∆̃′′(0)2 (B16)

for an analytic disorder (∆′′(0) < 0). Hence if the bare dis-
order is smooth one needs |∆̃′′0(0)| > (d − 4)/3 to generate
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a cusp and metastability. Hence for sufficiently strong bare
smooth disorder, or with (even weak) rough bare disorder, a
cusp is generated. Eventually as m → 0 the flows converges
back to the attractive fixed point ∆̃(u) = 0 as:

−m∂m∆̃(u) = −(d− 4)∆̃(u) (B17)

∆̃(u) =
(
m

m0

)d−4

∆̃∗(u) (B18)

∆(u) =
Kd/2

εĨ2m
d−4
0

∆̃∗(u) (B19)

where now ∆̃∗(u) is non-universal and depends on details of
the FRG flow at intermediate stages. It has a cusp, unless one
starts from smooth weak disorder. Note that for d ≥ 4, if
we make the natural assumption (as for d < 4) that no other
strong-disorder fixed point exist, the asymptotic behaviour is
exactly given by the 1-loop FRG equation (in d = 4) and by
perturbation theory in the renormalized disorder, for d > 4,
i.e:

∆(u) = ∆0(u)− 1
2
I2
[
(∆0(u)−∆0(0))2

]′′
+O(∆3

0) (B20)

with I2 ≈ (εĨ2)(Λd−4 − md−4)/(d − 4) (setting from now
on K = 1 for simplicity). This equation is valid if we choose
a model with weak and rough bare disorder, i.e. whose cor-
relator exhibits a cusp. Of course, if we choose smooth bare
disorder this perturbation formula fails, and one must run the
RG to determine if the system is in the weak-smooth disorder
phase where dimensional reduction holds (possibly up to rare
events) or in the non-analytic phase. Finally, for d > 6 the
situation is qualitatively similar up to additional dependence
in the UV cutoff.

Appendix C: Graphical interpretation of KΓ[w] at 1-loop order

In this appendix, we give an intuitive derivation of the self-
consistent equation (151) at 1-loop order. Two classes of dia-
grams contribute, C1 and C2. We use the diagrammatics ex-
plained in Section V C which can be used both for statics
and dynamics. Here we chose to show explicity the arrows
of causality. At this order, no difference is expected between
static and dynamic shocks. We do not distinguish here be-
tween Z and its rescaled version Z̃ and use loose notations.

Class C1:

These are the diagrams in the calculation of Z which, be-
fore expansion in w, are proportional to ∆(w)−∆(0). There-
fore in order to get the term of order w, ∆(w) −∆(0) has to
be expanded, and all other disorder vertices will be taken in
the limit of w → 0. For the n-th cumulant, we obtain (with

∆(w)−∆(0) sitting at the bottom, and ∆′′ at the top):

K

= n!
1
2

∑
l1≥0,l2≥0

δn−2=l1+l2 [−2∆′(w)]l1 × [−2∆′(w)]l2

× [∆′′(w) + ∆′′(0)] [∆(w)−∆(0)]

= n! (n− 1) 2n−3[−∆′(w)]n−2 [∆′′(w) + ∆′′(0)]
× [∆(w)−∆(0)]

= −n! (n− 1) 2n−2|∆′(0+)|n−1∆′′(0)w . (C1)

l1 and l2 denote the number of ∆′ in the left and right leg
respectively. Rescaling by Sm amounts to set |∆′(0+)| → 1.
Hence we find that the coefficientAn defined in the text reads,
for this class:

AC1n = n!× 2n−2(n− 1) . (C2)

Since in the self-consistent equation each outgoing line in the
above is branched to a Z, this implies that the contribution
of this class of diagrams to the r.h.s. of the self-consistent
equation can be summed into:

∞∑
n=2

AC1n
n!

InZ
n = Z2

∫
k

1
(k2 +m2 − 2Z)2

. (C3)

In the end one sets m2 → 1 for rescaled quantities. Starting
the sum instead at n = 3, as we did in the main text, yields
the additional subtraction −Z2

∫
k

1
(k2+m2)2 . This procedure

identifies the latter term as counter-term of the disorder renor-
malization, thus is the correct expansion in terms of the renor-
malized disorder, whereas (C3) is the correct result in terms
of the bare disorder.

We can now give a graphical interpretation to the dressed
propagator 1/(k2 + m2 − 2Z) which appears here. In the
above formulae, the left and right legs are effectively dressed
propagators, which we represent as a double line:

:= (C4)

The notation on the r.h.s. of the equation is as follows: The
left vertex of each disorder is at 0, the right one at w (the
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choice being dictated so as to have a non-vanishing vertex un-
der application of the K operator). Arrows pointing to the
right or left are going out – they will be branched to an exter-
nal point sitting at 0 (left) or w (right). From each disorder
vertex ∆′(w), there are 2 outgoing lines, resulting in a com-
binatorial factor of 2 for continuing either with the left (0) or
right (w) vertex. Also note that the object exists, indepen-
dently of whether the in- and out-going lines are at 0 or w.
Now class C1 can be written as:

C1 =

0 w

0 w
+

0

w0

0

= ∆′′(0)[∆(w)−∆(0)]
∫
k

Z2

(k2 +m2 − 2Z)2
+O(w2) .

(C5)

(Actually, the graphical notation is a little sloppy, since the
upper vertex can either be ∆′′(w) or ∆′′(0), but there is an
additional combinatorial factor of 1

2 in eq. (C1), first line).
The result is in agreement with (C3).

Class C2:

This class of diagrams looks like a correction to the critical
force

C2 = 0 w +
0

= [∆′(w)−∆′(0+)]
∫
k

Z

(k2 +m2 − 2Z)
− Z

k2 +m2
.

(C6)

Indeed it should be viewed as a circle of ∆′, of which exactly
one is expanded in w, leading to a circle with one marked
vertex. This is the vertex drawn above. Note that the double
line needs at least one ∆′(w) otherwise it cannot start at 0
and go to w as indicated. This leads to the last term in (C6)
being subtracted. If one wants the expression in terms of the
renormalized disorder, one again has to subtract the contri-
bution proportional to

∫
k

1
(k2+m2)2 , giving an additional term

−[∆′(w)−∆′(0+)]
∫
k

2Z
(k2+m2)2 .

(C5) and (C6) (with the proper subtraction) together give
(149).

Appendix D: Moments from Z̃(λ)

A direct series expansion of the formula (166) in powers
of λ, e.g. using mathematica, yields the following formula for

the moments (S expressed in units of Sm)

〈Sn〉
〈S〉

=
(−4)n−1

√
π

Γ
(

3
2 − n

)
+α
[
−

3(−1)n4n−2
√
πψ
(

3
2 − n

)
(n− 1)

Γ
(

3
2 − n

)
+

(−1)n22n−3
√
π(n− 1)

Γ
(

3
2 − n

)
− 3(−1)n4n−2

√
π(−2 + γ + log(4))(n− 1)

Γ
(

3
2 − n

)
− 4n−1Γ(n)−

(−1)n22n−3
√
πψ
(

1
2 − n

)
Γ
(

1
2 − n

)
+

(−1)n22n−1
√
π

Γ
(

1
2 − n

)
− (−1)n22n−3

√
π(−2 + γ + log(4))

Γ
(

1
2 − n

) ]
(D1)

which yields the universal ratios:

rn = 1 +
2

2n− 3
+
α

(
n+

(−1)nΓ( 5
2−n)Γ(n−1)
√
π

)
(2n− 3)2

(D2)

We note that these formula make sense only for n integer,
and in fact one can check that for integer n = 1, 2, .. they give
the same result as the formula in the text obtained from P (S).
Because of the factor (−1)n they are not suited for analytical
continuation to any real n. However using reflection identities
of Γ(x) and ψ(x) = Γ′(x)/Γ(x) functions one can eliminate
the factors (−1)n and get back the formula of the text which
are real for all real n.

Appendix E: Calculations for non-local elasticity

Let us first recover the result for local elasticity γ = 2,
dc = 4 with g̃−1

k = k2 + 1. One can rewrite the momentum
integral defined in the text as:

J2 = N2

∫ ∞
0

dssd/2−1

[
Z̃2

(s+1−2Z̃)2
+

Z̃

s+1−2Z̃

− Z̃

s+1
− 3

Z̃2

(s+ 1)2

]
. (E1)

The constant N2 is defined as

N2 =
1
ε

1∫∞
0
dssd/2−1 1

(s+1)2

.

Explicit calculation yields back (149) and for d→ 4:

J2 =
1
2
Z̃(2Z̃ + (1− 3Z̃) log(1− 2Z̃)) +O(ε) , (E2)

i.e. one recovers (150) by a different method, which is also a
check of (234).
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Let us now study the case of general γ using the model
(228).

J a1 =
1
εĨ2

∫
k

[
Z̃2

(|k|γ + 1− 2Z̃)2
+

Z̃

|k|γ + 1− 2Z̃

− Z̃

|k|γ + 1
− 3

Z̃2

(|k|γ + 1)2

]
. (E3)

Introducing Na
1 = 1

2γ−d
( ∫∞

0
ds sd/γ−1 1

(s+1)2

)−1
, this is

computed as:

J a1 = Na
1

∫ ∞
0

dssd/γ−1

[
Z̃2

(s+1−2Z̃)2
+

Z̃

s+1−2Z̃

− Z̃

s+1
− 3

Z̃2

(s+ 1)2

]
=

1
γ
Z̃(2Z̃ + (1− 3Z̃) log(1− 2Z̃)) +O(2γ − d)

(E4)

i.e. a function identical to (E2) at the critical dimension up
to the global multiplication by 2/γ. Hence the distribution
of avalanche sizes to one loop with this choice of non-local
elasticity will be exactly given by (68) with the replacement
of α→ 2α/γ in (170) and (171) as detailed in the text.

Let us now study the case γ = 1 and the form (229) suitable
to describe the contact line. We need to compute:

J b1 = N b
1

[ ∫ ∞
0

kd−1dk
Z̃2

(
√
k2 + 1− 2Z̃)2

(E5)

+
Z̃√

k2 + 1− 2Z̃
− Z̃√

k2 + 1
− 3

Z̃2

k2 + 1

]
where N b

1 =
(
ε
∫∞

0
kd−1dk
k2+1

)−1
, ε = 2 − d. We will use the

following integral representation:

1√
1 + k2 − 2Z̃

=
∫ ∞
α=0

∫ ∞
t=0

e−(1+k2)αt2+2Z̃t− 1
4α

2
√
πα3/2

(E6)

This yields:

N b
1

∫
k

[
1√

1 + k2 − 2Z̃
− 1√

1 + k2

]
=

2Z̃
(

1− 4Z̃2
) d

2−1

2− d

−
Γ( 1

2 −
d
2 )Γ(d2 − 1) [2F1(1, 1−d

2 ; 1
2 ; 4Z̃2)− 1] sin

(
dπ
2

)
2π3/2

.

(E7)

Taking a derivative w.r.t. Z̃ yields

∫
k

1
(
√

1 + k2 − 2Z̃)2
=

(
1− 4Z̃2

) d−4
2
(

4(d− 1)Z̃2 − 1
)

d− 2

−
4Z̃ Γ( 3

2 −
d
2 )Γ(d2 − 1) 2F1(2, 3

2 −
d
2 ; 3

2 ; 4Z̃2) sin
(
dπ
2

)
π3/2

.

(E8)

Together this gives

J b1 =
Z̃2
(

4(d+ 1)Z̃2 − 3
)(

1− 4Z̃2
) d−4

2

d− 2
− 3Z̃2

d− 2

+
Z̃ Γ

(
1
2 −

d
2

) [
2F1(2, 1

2 −
d
2 ; 1

2 ; 4Z̃2)− 1
]

2
√
πΓ
(
2− d

2

) (E9)

=
2Z̃3

1− 2Z̃
− 3Z̃2 log(1− 2Z̃) +O(2− d) (E10)

This result (E10) has to be compared to (E4) for γ = 1. One
sees that the leading behavior for Z̃ → −∞, from which is
extracted the exponent τ , is identical hence the avalanche size
exponent τ is still given by (237). The form of the avalanche
distribution however will be different. To see this, first invert

Z̃ = λ+ Z̃2 + α

[
2Z̃3

1− 2Z̃
− 3Z̃2 log(1− 2Z̃)

]
(E11)

This gives

Z̃bγ=1(λ) =
1
2

(
1−
√

1−4λ
)

− α
(
√

1−4λ− 1)2
[

3
2

√
1−4λ log(1−4λ) +

√
1−4λ− 1

]
4(1− 4λ)

(E12)

One can now verify that to first order in α one can write (set-
ting Sm → 1, restored in the text):

Z̃bγ=1(λ) =
∫ ∞

0

dS
[
eλS − 1

]
P bγ=2(S) (E13)

with

P bγ=2(S) =
1

2
√
π

[
1 +

α

4
(8− 3γE)

] [
S−

3
2−

3α
4 +

√
πα

8

]
× exp

[
−1

4

(
1− 3

2
(γE − 2)α

)
S1− 3α

2 − 3
2
√
πα
√
S

]
(E14)

which is the form given in the text. Note that to first order in
α it can equally well be written as

P bγ=2(S) =
1

2
√
π

[
1 +

α

4
(8− 3γE)

]
S−

3
2−

3α
4

× exp
[
− 1

4

(
1− 3

2
(γE − 2)α

)
S1− 3α

2

− 3
2
√
πα
√
S +

√
πα

8
S

3
2

]
. (E15)

This would suggest an abrupt jump in the effective stretched
exponential decay exponent δ to the value 3/2. However since
the above results are valid for fixed S at first order in α one
cannot conclude on this point at this stage.
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Appendix F: More on spatial structure of avalanche
distributions

1. Derivation of the recursion relation

We want to show in Fourier space, using φ(x) = cos(qx):

Zk(λ) = λ
1
2

[δk+q + δk−q]

+|∆′(0+)|
∫
p

gpgk−pZp(λ)Zk−p(λ) , (F1)

where δq = (2π)dδd(q).
The calculation of Gφ(λ) is a generalization of the one of

Section V to non-zero momentum graphs. One still takes w
uniform and now computes the spatially dependent correla-
tions (for qi all non-vanishing):

g−2
q uq(w1)uq′(w2)

c
= −R′′q [w1 − w2]δq+q′ (F2)

uq1(w1) · · ·uqn(wn)
c

= (−1)nV̂ ′q1 [w1] · · · V̂ ′qn [wn]
c

= (−1)nĈ(n)
q1,..qn(w1, . . . , wn)δq1+···qn , (F3)

where δq = (2π)dδd(q). We use Fourier space versions of the
definitions in (4). In particular we have defined

R′′q [w] :=
∫
x

eiqxR′′0x[w] , R′′xy[w] :=
δ2R[w]
δwxδwy

|wx=w

(F4)
using translational invariance for a uniform w and the defini-

tion of the R[w] functional [62] V̂ [w1]V̂ [w2]
c

= R[w1−w2].
The q = 0 limit is recovered using uq=0(w) = Ldu(w). From
these Ĉ one computes the associated momentum-dependent
Kolmogorov moments, applying the operator K. The choice
φ(x) = cos(qx) amounts to choose qi = ±q on the external
legs of the tree diagrams of Section V, as for the calculation
of |Sq|2n, hence we need qi = ±q.

We extend the previous tree-level analysis and associate
am,m′ to the box with m times +q and m′ times −q enter-
ing from the top, and a moment (m −m′)q exiting from the
bottom of the tree diagram. Pasting together the trees as ex-
plained in Section V we obtain the recursion relation:

am,m′ =
∑

p+l=m; p′+l′=m′

ap,p′al,l′
m!
p!l!

m′!
p′!l′!

g(p−p′)qg(l−l′)q

(F5)
Introducing bm,m′ := am,m′/m!m′! one obtains

bm,m′eiz(m−m
′)q =

∫
xy

gxgy (F6)

×
∑

p+l=m;p′+l′=m′

bp,p′bl,l′ei(x+z)(p−p′)qei(y+z)(l−l′)q .

By definition:

Zz(λ) :=
∑
m,m′

bm,m′ |∆′(0+)|m+m′+1eiz(m−m
′)qλm+m′ .

(F7)

In the sum (F5) the terms 1, 0 and 0, 1 are left out, so one finds
in real space:

Zz(λ) = λ cos(qz) + |∆′(0+)|
∫
xy

gz−xgz−yZx(λ)Zy(λ)

(F8)
The Fourier transform of this relation gives (F1) and it is a
particular case of (202). The general case is obtained by at-
taching φ(x) to each external leg. At the end of the calculation
one wants Zk=0(λ) since no momentum flows from the lower
vertex, hence formula (201). Note that we have neglected ev-
erywhere the non-local component (i.e. the momentum depen-
dence) of the ∆′(0) vertex which we have taken at zero mo-
mentum. Near d = 4 this should be sufficient, as discussed
again below.

2. Generalized cusp-moment relation and check on the second
order

Let us start from the general relation:

(ux(w1)− w1)(uy(w2)− w2)
c

= −
∫
zz′

gxzgyz′R
′′
xy[w1 − w2]

(F9)

Consider now the expansion to second order λ2 of (198). It
yields:

Gφ(λ)|λ2 =
1∫

x
φ(x)

∫
xyzz′

φ(x)φ(y)gxzgyz′(R′′zz′ [w]−R′′zz′ [0])

(F10)
Taking a derivative w.r.t. w we obtain:

Ẑφ(λ)|λ2 =
1∫

x
φ(x)

∫
xyzz′t

φ(x)φ(y)gxzgyz′R′′′zz′t[w = 0+]

(F11)
Comparing with its definition, and using the relation

〈
Sφ
〉

=
〈S〉L−d

∫
dxφ(x) yields the result for the second moment of

the avalanche amplitude at different points in internal space:

〈SxSy〉
〈S〉

= 2L−d
∫
zz′t

gxzgyz′R
′′′
zz′t[w = 0+] (F12)

an exact relation which is the non-local generalization of (36).
To leading order in ε the third derivative vertex is local i.e.

R′′′zz′t[w] = δzz′tR
′′′(w), hence we find simply:

〈SxSy〉
〈S〉

= 2L−d
∫
z

gxzgyzR
′′′(0+) (F13)

or in q-space:

〈SqSq′〉
〈S〉

= 2|∆′(0+)|L−dg2
qδq+q′ (F14)

This is what is predicted by the self-consistent equation

〈(Sφ)2〉/〈S〉 = 2|∆′(0+)|L−d
∫
x

(
∫
y

gxyφ(y))2 (F15)

a simple generalization of (36), valid to lowest order in ε (or
in the locality expansion).
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Appendix G: Distribution of the center-of-mass fluctuations

One defines the generating function for the probability dis-
tribution of the center-of-mass fluctuations as

f(λ) = L−d ln exp(λLdu(0)) = L−d ln exp(λ
∫
x

ux(0)) .

(G1)
The result (135) implies that, to one-loop accuracy,

f(λ) =
λ2

2
∆(0)
m4

−
∫
k

∞∑
p=2

1
2p

∆′(0+)2pλ2p

m4p(k2 +m2)2p

=
λ2

2
∆(0)
m4

(G2)

+
1
2

∫
k

[
ln
(

1− ∆′(0+)2λ2

m4(k2+m2)2

)
+

∆′(0+)2λ2

m4(k2+m2)2

]
Note that the term p = 1 is contained in the renormalized
∆(0). Since we work to one-loop order, we can now compute
the integral in the second term in d = 4. The calculation
yields

f(λ) =
λ2

2
∆(0)
m4

+ S4m
dg(λm−4|∆′(0+)|)

g(b) =
1
8
(
(1 + b)2 ln(1 + b) + (1− b)2 ln(1− b)− 3b2

)
= − b

4

48
− b6

240
− b8

672
− b10

1440
+O(b12) (G3)

with S4 = εĨ2 = 1/(8π2) in d = 4. We note that the scale
Sm = m−4|∆′(0+)| = O(εm−d−ζ) naturally appears. In-
deed we can rewrite the result for the generating function near
d = 4, using the rescaled correlator from appendix B as

eλ
R
x
ux(0)/Sm = exp

(
(mL)d(εĨ2)

[λ2

2
∆̃(0)

∆̃′(0+)2
+ g(λ)

])
= exp

(
(mL)d

8π2

[λ2

2

( 1
ε(1− 2ζ1)

+ g2

)
+ g(λ)

])
. (G4)

λ is now a dimensionless number. The total factor in the expo-
nential is obtained correctly to both orders O(1/ε) and O(1).
In the last equation we have used the FRG fixed-point equa-
tion for ∆̃(0). The term g2 is zero if one uses the FRG equa-
tion to one loop. However to get the λ2 term to O(1) requires
injecting the ratio ∆̃(0)

∆̃′(0+)2
to two loop. These ratio are given

in the Appendix and it is easy from there to find the number
g2 for each universality class.

The result (G4) seems to indicate [95] that the tail of P (u)
decays as exp(−|u|δ), with δ = 2 − ε(1 − 2ζ1)/2 < 2, con-
trary to the d = 0 result δ = 3. It remains to be understood
whether δ first decreases and then increases again for d → 0,
or whether the functional form is different, and the assump-
tion that the ln can be re-exponentiated is unfounded. A larger
tail (δ < 2) seems to be counter-intuitive, since all connected
moments in (G3) above the second are negative.

The main result (G4) can be interpreted as a nice example
of the central-limit theorem. There are effectively mLd inde-
pendent regions [96]. In each region the generating function
is given by the same formula (G4) setting the mLd factor to
unity. The final distribution of u(0) is obtained as a convo-
lution of these mLd identical ones. In each region one can
write u(0) =

√
εu1 + εu2 = Sm( 1√

ε
ũ1 + ũ2) where u1, u2

(resp. ũ1, ũ2) are independent random variables of order one,
u1 (resp. ũ1) has a gaussian distribution, and u2 (resp. ũ2) has
a non trivial distribution encoded in the function g(λ). Hence
near d = 4 the center-of-mass fluctuations are gaussian with
a small correction encoded in g(λ).
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