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Abstract

In these proceedings, we discuss why Functional Renoratalizis an essential tool to treat strongly disorderedesgst
More specifically we treat elastic manifolds in a disordezadironment. These are goverened by a disorder distrilutibich
after a finite renomalization becomes non-analytic, thieg@ming the predictions of the seemingly exact dimensieguc-
tion. We discuss, how a renormalizable field theory can betcocted, even beyond 2-loop order. We then consider atieelas
manifold imbedded inV dimensions, and give the exact solution f/ér— oo. This is compared to predictions of the Gaussian
replica variational ansatz, using replica symmetry bregkFinally, the effective action at ordéy N is reported.

1 Introduction

In these proceedings we consider an elastic manifold in dorarpotential, as prototype for strongly disordered systeBince

for all these systems temperature is irrelevant, we wilydnéat zero temperature. The kind of systems we have in mind
are domain walls in dirty magnets, contact lines, chargesitiemvaves, vortex lattices, to just mention a few. Theseltes
were obtained in collaboration with Pierre Le Doussal [1-HFor lack of space we restrict our discussion to the equilit.
Complementary material, especially for the depinning, lmafound in the earlier review [12].

2 Physical realizations, model and observables

The simplest experimental realization is an Ising magnepdsing boundary conditions with all spins up at the upperah
spins down at the lower boundary (see figure 1), at low tentpess, a domain wall separates a region with spin up fromiameg
with spin down. In a pure system at temperatiire= 0, this domain wall is completely flat. Disorder can deform tleenain
wall, making it eventually rough again. Figure 1 shows, hbevdomain wall is described by a displacement figld). Another
example is the contact line of water (or liquid Helium), viregta rough substrate. A realization with a 2-parameteraégment
field @(Z) is the deformation of a vortex lattice: the position of eaohtex is deformed front to & + @(Z). A 3-dimensional
example are charge density waves.

All these models have in common, that they are described ligptadement field: € R? — @(z) € RY. For simplicity,
we setV = 1, if not explicitly stated otherwise. After some initial asa-graining, the enerdyt = He + Hpo consists out of
two parts: the elastic energy.; and the disorder enerd¥po

Halu] = / e % (Vu(@))?,  Hpolu] = / A% V (z, u(z)) @.1)
We choose the disorder at the microscopic scale Gaussitincerirelations
V(w,2)V(W,a) =6z — ') R(u— ') . (2.2)
The most interesting observable is the roughness-expgnémm the behavior of the correlation function
[u(z) = u(y)]® ~ o —y* . 2.3)

Other observables are higher correlation functions orrise énergy.
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Figure 1: An Ising magnet at low temperatures forms a domaihaescribed by a function(z) (right). An experiment on a thin Cobalt film (left) [13]; with
kind permission of the authors.

3 Dimensional reduction

There is a beautiful and rather mind-boggling theorem irgdadisordered systems to pure systems (i.e. without déesprazhich
applies to a large class of systems, e.g. random field systathslastic manifolds in disorder. It is called dimensiaealuction
and reads as follows [14]:
Theorem:A d-dimensional disordered system at zero temperature isvatrit to all orders in perturbation theory to a pure
system inl — 2 dimensions at finite temperature.

Let me give an example: The thermal expectation value for2#peint function scales afu(x) — u(y)]’) ~ |z[>~%
Making the dimensional shift implied by dimensional redotimplies that the disorder-averaged 2-point functiorzeito

temperature is

—_— _ . 4—d

[u(z) —u(0))® ~ ' =2 ie. (= — (3.1)
We will see later that this is not true; but remains an imparteenchmark due to fact that the “theorem” is correct to aleos

in the disorder strength and its moments (i.e. when exparidi&” (0), R""(0), a.s.0.).

4 ThelLarkin-length

To understand the failure of dimensional reduction, letws to an interesting argument given by Larkin [15]. He cdess a
piece of an elastic manifold of size. If the disorder has correlation length and characteristic potential energythis piece
will typically see a potential energy of strenglibo = €(£)%/2. On the other hand, there is an elastic energy, which sdétes |
E. = ¢ L% 2. These energies are balanced atlthekin-lengthL = L. with L. = (g—ird)l/“*d). More important than this
value is the observation that in all physically interestitignensionsi < 4, and at scaled, > L., the membrane is pinned by

disorder; whereas on small scales elastic energy dominBités means thaf = 4 is the upper critical dimension.

5 Thefunctional renormalization group (FRG)

Let us now discuss a way out of the dilemma, posed by dimeakieduction: We would like to make an= 4 — d expansion.
On the other hand, dimensional reduction tells us that thghoess ig = % (see (3.1)). Even though this is systematically
wrong below four dimensions, it tells us correctly that a thmitical dimensioni = 4, where disorder is marginally relevant,
the fieldu is dimensionless. This means that having identified anywaekeor marginal perturbation (as the disorder), we find
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Figure 2: Change of R” (u) under renormalization and formation of the cusp.
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Figure 3: Generation of the cusp, as explained in the main tex

immediately another such perturbation by adding more pswethe field. We can thus not restrict ourselves to keepitejyso
the first moments of the disorder, but have to keep the whalerdeér-distribution functiorR(u). Thus we need &unctional
renormalization grougreatment (FRG). Functional renormalization is an old igeeng back to the seventies, and can e.g. be
found in [16], by Wegner and Houghton. For disordered systémvas first proposed in 1986 by D. Fisher [17]. Performing a
infinitesimal renormalization, i.e. integrating over a marmtum shell & la Wilson, leads to the fléwR (u), with (e = 4 — d)

eR(u) = (e — 4¢) R(u) + CuR'(u) + 1 R"(v)* — R"(u)R"(0) . (5.1)

The first two terms come from the rescaling®fandu respectively. The last two terms are the result of the 1-kadpulations,
seee.g. [4] .

More important than the form of this equation is its actudligon, sketched in figure 2. After some finite renormaliaafi
the second derivative of the disordgf (u) acquires a cusp at = 0; the length at which this happens is the Larkin-length. How
does this overcome dimensional reduction? To understasdttls interesting to study the flow of the second and fortimment.
Taking derivatives of (5.1) w.r.tz and setting: to 0, we obtain

AR"(0) = (e—2¢0)R"(0)+R"(0)> — (e—2¢)R"(0) (5.2)
agR””(O) — ER”” (0) + 3R//// (0)2 + 4R/// (O)R///// (0) — ER””(O) + 3R””(0)2 . (5.3)

Since R(u) is an even functionR”’(0) and R""”’(0) are 0, which we have already indicated in Egs. (5.2) and (5.Bhe
above equations foR”(0) and R""(0) are in fact closed. Equation (5.2) tells us that the flow/Sf(0) is trivial and that
¢ = ¢/2 = 44, This is exactly the result predicted by dimensional reiduct The appearance of the cusp can be inferred

<.
from equation (5.3). Its solution 8" (0)|, = , with ¢ := R""(0)|¢=0. Thus after a finite renormalization

ccel
R""(0) becomes infinite: The cusp appears. By analyzing the salatighe flow-equation (5.1), one also finds that beyond
the Larkin-lengthR” (0) is no longer given by (5.2) witR"’(0)? = 0, but R”/(0)> — R"(0%)? = limy—o R"’(u)?, which
is non-zero after the cusp. Renormalization of the wholetion thus overcomes dimensional reduction. The appearahc
the cusp also explains why dimensional reduction breaksiddwe simplest way to see this is by redoing the proof fortiglas
manifolds in disorder, which in the absence of disorder isrpke Gaussian theory. Terms contributing to the 2-poincfion
involve R”(0), TR""(0) and higher derivatives dR(u) atu = 0, which all come with higher powers @f. To obtain the limit
of T'— 0, one setd’ = 0, and onlyR" (0) remains. This is the dimensional reduction result. Howeejust saw tha""" (0)
becomes infinite. Thug”” (0)T may also contribute, and the proof fails.

6 Thecusp and shocks

Let us give a simple argument of why a cusp is a physical négeand not an artifact. The argument is quite old and apgmkar
probably first in the treatment of correlation-functionsgtcks in Burgers turbulence. It became popular in [18].p88p, we
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Figure 4: Results fo¢ in the random bond case.

want to integrate out a single degree of freedom, whose gegrasition due to the elastic energy connecting it to itghmaors is
u. This harmonic potential and the disorder term are reptedday the parabola and the lowest curve on figure 3(a) resphgt
their sum is the remaining curve. For a given disorder ratibn, the minimum of the potential as a functionuois reported on
figure 3(b). Note that it has non-analytic points, which miduek transition from one minimum to another. Taking the deive

of the potential leads to the force in figure 3(c). It is chégdzed by almost linear pieces, and shocks (i.e. jumpsicuCding

the force-force correlator, the dominant contributiontsdecay for small distances is due to the presence of shddkesir

contribution is proportional to their probability, itsgifoportional to the distance between the two observabletgof his leads
to F'(u)F(0) = F(0)? — c|ul, with some numerical coefficient

7 Beyond 1 loop?

Functional renormalization has successfully been appbed bunch of problems at 1-loop order. From a field theory, we
however demand more. Namely that it allows for systematicections beyond 1-loop order; be renormalizable; and thus
allows to make universal predictions. However, this hasitaepuzzle since 1986, and it has even been suggested thhetrg t
is not renormalizable due to the appearance of terms of e?d&f19]. Why is the next order so complicated? The reason is that
it involves terms proportional t&"'(0). A look at figure 3 explains the puzzle. Shall we use the symnwétR(u) to conclude
that R’ (0) is 0? Or shall we take the left-hand or right-hand derivativelated by

R"(0T) := lim R"(u) = — lim R"(u) = =R"(07). (7.0)

u—0 u—0

In the following, | will present the solution of this puzzlat 2-loop order and largd’. The latter approach allows for another
independent control-parameter, and sheds further ligth@cusp-formation.

8 Resultsat 2-loop order
For the flow-equation at 2-loop order, the result is [1,£22),

OR(u) = (e—4¢) R(u)+ CuR'(u) + $R"(u)* — R"(u)R"(0)
_"_% (R”(u) _ R// (0)) R/// (u)2 _ %R”'(O+)2R”(u) ) (81)

The first line is the result at 1-loop order, already given35rl). The second line is new. The most interesting term is the
last one, which involves?”’(07)* and which we therefore calinomalous The hard task is to fix the prefact¢+1). We
have found five different prescriptions to calculate it: Bi@op-algorithm, recursive construction, reparametiorainvariance,
renormalizability, and potentiality [1,22]. For lack ofasge, we restrain our discussion to the last two ones. At g-twder the
following diagram appears

-
1 11 1! 11 2 1 11 111 2
R,,,‘ e 3 (R"(u) = R"(0)) R"(u)” = SR (w)R (0") (8.2)

leading to the anomalous term. The integral (not writtereheontains a subdivergence, which is indicated by the bexoR
malizability demands that its leading divergence (whicbfierder1/¢?) be canceled by a 1-loop counter-term. The latter is
unique thus fixing the prefactor of the anomalous term.

Another very physical demand is that the problem remainntiate i.e. that forces still derive from a potential. Thede-
force correlation function being R (u), this means that the flow @®’'(0) has to be strictly 0. From (8) one can check that this
does not remain true if one changes the prefactor of thedastin (8); thus fixing it.

Let us give some results for random-bond disorder (shawged potential-potential correlation function). For thig have
to solve (8.1) numerically, with the resyit= 0.20829804¢ + 0.006858¢2. This compares well with numerical simulations, see
figure 4.
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Figure 5: Results for the roughneést 1- and 2-loop order, as a function of the number of compisn®n

9 Finite N

Up to now, we have studied the functional RG in two cases: RerapmponenfV = 1 and in the limit of a large number of
componentsN — oo. The general case of finit is more difficult to handle, since derivatives of the rendireal disorder
now depend on the direction, in which this derivative areetekDefine amplitude. := || and directioni := /|| of the
field. Then deriving the latter variable leads to terms proppal to1/u, which are diverging in the limit of, — 0. This poses
additional problems in the calculation, beyond the dise- 1. At 1-loop order everything is well-defined [19]. We haverfidu
a consistent RG-equation at 2-loop order (see [12] and Uigelol):

The fixed point equation has to be integrated numericaltyeioby order ire. The result, specialized to directed polymers,
i.e.e = 3 is plotted on figure 5. We see that the 2-loop correctionsatteer big at largeV, so some doubt on the applicability
of the latter down ta = 3 is advised. However both 1- and 2-loop results reproducétiveltwo known points on the curve:
¢ =2/3for N =1and¢ = 0for N = oo. The latter result has been given in section 10 Via the etprice [24] of the
directed polymer problem itN dimensions treated here and the KPZ-equation of non-lisedace growth inV dimensions,
we conclude that = 2.4 is the upper critical dimension of KPZ.

10 LargeN

In the last section, we have discussed renormalization @op éxpansion, i.e. expansiondnin order to independently check
consistency itis good to have a non-perturbative approBcis.is achieved by the largs*-limit, which can be solved analytically
and to which we turn now. We start from the disorder-averagestgy with disorder correlatds (i) = R(|i|) where we use
an N-component fieldi. We then calculate the free energy in presence of a sgued finally the effective actioh (%) via a
Legendre transform. For larg€ the saddle point equation reads [2]

B'(u2) = B' (Xab) » Xab = uzy + 2711 + AL[B' (u2,) — B'(0)] (10.1)

This equation gives the derivative of the effective (renmiined) disorder3 as a function of the (constant) background field
u2, = (uq — up)? in terms of: the derivative of the microscopic (bare) digorB, the temperaturd and the integralg,, :=

1
I Gy
The saddle-point equation can be turned into a closed famaitrenormalization group equation fBrby taking the derivative
w.r.t. m (restricting ourselves t@' = 0):

A B(x) = —g—gé(m) = (e — 4¢)B(z) + 2¢xB'(z) + %E'(w)z — B'(z)B'(0) (10.2)

This is a complicated nonlinear partial differential edqomt It is therefore surprising, that one can find an analgtitution.
(The trick is to write down the flow-equation for the inversmdétion ofB’(:c), which is linear.) Let us only give the results
of this analytic solution: First of all, for long-range cefated disorder of the forn’(z) ~ =7, the exponent can be
calculated analytically as = ﬁ . It agrees with the replica-treatment in [25] and the 1-lagatment in [19]. For short-

range correlated disordef,= 0. Second, it demonstrates that before the Larkin-lengifx;) is analytic and thus dimensional
reduction holds. Beyond the Larkin lengtB,’(0) = oo, a cusp appears and dimensional reduction is incorrecs gHows
again that the cusp is not an artifact of the perturbativeaegion, but an important property even of the exact solutioine
problem (here in the limit of largé&V).



11 Relation to Replica Symmetry Breaking (RSB)

There is another treatment of the limit of largegiven by Mézard and Parisi [25]. They make a Gaussian vanialt ansatz of
the form

H[d] = %Zl / (@) (~V?4m?) Ta(2) = 505 D Gunla(@)in(e) 11.1)

which becomes exact faV — oo. The art is to make an appropriate ansatzdgy. The simplest possibilityg,, = o for
all a # b reproduces the dimensional reduction result, which breaken at the Larkin length. Beyond that scale, a replica

symmetry broken (RSB) ansatz fer;, is hecessary, of the form,, = . Parisi has shown that this infinitely often

replica-symmetry broken matrix can be parameterized byetion [o](z) with z € [0, 1] wherez = 0 describes distant states,
whereas: = 1 describes nearby states. The solution of the ldvgeaddle-point equations leads to the curve depicted in figure

11 Knowing it, the 2-point function is given bz u_x) = Wlmz (1 + _fol %iﬂl[:]](%) .

What is the relation between the two approaches, which betteipd to calculate the same 2-point function? Compariag th
analytical solutions, we find that the 2-point function gil®y FRG is the same as that of RSB, if in the latter express@onty
take into account the contribution from the most distartesta.e. those foe between 0 and,,, (see figure 6). To understand
why this is so, we have to remember that the two calculatiomewlone under quite different assumptions: In contradteo t
RSB-calculation, the FRG-approach calculated the pamtiinction in presence of an external figldwvhich was then used to
give via a Legendre transformation the effective actionerkif the field; is finally turned to 0, the system will remember its
preparation, as is the case for a magnet.

By explicitly breaking the replica-symmetry through an kgbfield, all replicas will settle in distant states, ané tHose
states from the Parisi-functida] (z) +m? (which describespontaneouSB) will not contribute. However, we found that the
full RSB-result can be reconstructed by remarking that @ @f the curve betwees,, andz. is independent of the infrared
cutoff m, and then integrating oven [2] (m. is the mass corresponding 49):

(uku,w = —" _—t— - — . (11.2)

RSB R'lm (O) me dR:L (0) 1 1
mA + 1t mZ  m2

k=0

We also note that a similar effective action has been prapos€gl8]. While it agrees qualitatively, it does not repradithe
correct FRG 2-point function, as it should.

12 Correctionsat order 1/N

In a graphical notation, we find [11]

o T
472 (@ +4)+ @ + AT2) (12.1)

0= = B'(xa) (1 —44ala(p)B"(xab))  , = = B(Xab), (12.2)

from UV-cutoff

IR—cutoff

FRG
2 -
m ”

z

0 z Zz 1

Figure 6: The functioro] (u) + m? as given in [25].



where the explicit expressions are given in [11]. By varyihg IR-regulator, one can derive@function at orderl /N, see
[11]. At T = 0, itis UV-convegent, and should allow to find a fixed point. \Wevéa been able to do this at ordershowing
consistency with the 1-loop result, see section 9. Otheedsions are more complicated.

A (-function can also be defined at finifé However since temperature is an irrelevant variable, iteaahe theory non-
renormalizable, i.e. in otder to define it, one must keep afi@kinfrared cutoff. These problems will be treated iroathcoming
publication.

13 Pergpectives

Other interesting problems have been treated by the abotldw especially dynamic problems (see [12] for a reviemy
many more are now in reach. Some open points have alreadyrfised in these notes, others are the strong disorder phase o
random field problems, or wether FRG can also be applied teglpsses. We have to leave these problems for future sear
and as a challenge for the reader to plunge deeper into thieriggsof functional renormalization.
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