INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S1889-S1898 doi:10.1088/0953-8984/17/20/016

Supersymmetry breaking in disordered systems and
relation to functional renormalization and
replica-symmetry breaking

Kay Jorg Wiese

Laboratoire de Physique Théorique de I’Ecole Normale Supérieure, 24 rue Lhomond,
75005 Paris, France

Received 12 November 2004, in final form 1 January 2005
Published 6 May 2005
Online at stacks.iop.org/JPhysCM/17/S1889

Abstract

In this article, we study an elastic manifold in quenched disorder in the limit
of zero temperature. Naively it is equivalent to a free theory with elasticity in
Fourier space proportional to k* instead of k2, i.e. a model without disorder in
two space dimensions less. This phenomenon, called dimensional reduction, is
most elegantly obtained using supersymmetry. However, scaling arguments
suggest, and functional renormalization shows, that dimensional reduction
breaks down beyond the Larkin length. Thus one equivalently expects a
breakdown of supersymmetry. Using methods of functional renormalization,
we show how supersymmetry is broken. We also discuss the relation to replica-
symmetry breaking, and how our formulation can be put into work to lift
apparent ambiguities in standard functional renormalization group calculations.

1. Introduction

The statistical mechanics of even well understood physical systems subjected to quenched
disorder still poses major challenges. For a large class of these systems, e.g. random-
field models or elastic manifolds in quenched disorder, an apparent simplification appears:
supposing that all moments of the disorder are finite, one can show that all correlation functions
in the disordered model, in the limit of zero temperature, are equivalent to those of the pure
system at finite temperature in two space dimensions less, at a temperature proportional
to the second moment of the quenched disorder. This phenomenon is called dimensional
reduction (DR) [1]. The most elegant way to prove it is to use the supersymmetry approach [2],
as we will detail below. However, one also knows that dimensional reduction gives the wrong
result at large scales, more precisely at scales larger than the Larkin length. The latter is
obtained from an Imry—Ma type argument due to Larkin, balancing elastic energy and disorder,
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as we detail below. For a d-dimensional elastic manifold in quenched disorder, the elastic and
disorder energy are

Ealul = / d“x $(Vu(x))?, Epolul = / d%x V (x, u(x)). (1)

For d = 1, these are polymers, for which a lot is known [3]; for d = 2 membranes; and for
d = 3 elastic crystals, e.g. charge—density waves. For simplicity we consider disorder which
at the microscopic scale is Gaussian and short ranged with second moment

Vi, ) Vix',u) =8x — xR — u'). (2)

Long-range correlated disorder R(u) is possible, and leads in general to a different universality
class. This will play no role in the following. The most important observable is the roughness
exponent ¢, which describes the scaling of the two-point function

[u(x) — u(x)]? ~ |x — x'|%. 3)

The Larkin argument compares, as a function of system size L, elastic energy E, ~ L972
and disorder energy Epo ~ L%/ to conclude that in dimensions smaller than four disorder
always wins at large scales, leading to an RG-flow to strong coupling (in a way to be made
more precise below). This suggests that the dimensional reduction result, derived below via
the supersymmetry method,
—R"(0) 4—-d
Wik = —035 = {oR = —75— (4)

will become incorrect below four dimensions.

2. The functional RG treatment

In this section we review some important points of the functional RG treatment, which
will facilitate the derivation of the corresponding formulae in the supersymmetric treatment.
Functional RG was first introduced in [4, 5], and pioneered for the problem at hand in [6-9], to
cite the earliest contributions. Important improvements [ 10—30] have been obtained by several
authors; see [31] for a more detailed introduction and review.

The Larkin argument suggests that four is the upper critical dimension and that an
e-expansion [3] with

e=4—-d (5)

about dimension four is possible. Taking the dimensional reduction result (4) in d = 4
dimensions tells us that the field u is dimensionless. Thus, the width o = —R”(0) of the
disorder is not the only relevant coupling at small €, but any function of u# has the same
scaling dimension in the limit of ¢ = 0, and might thus equivalently contribute. The natural
consequence is that one has to follow the full function R(u) under renormalization, instead of
just its second moment R”(0). Such an RG-treatment is most easily implemented in the replica
approach: The n times replicated partition function becomes after averaging over disorder

1 <& 1 &
exp(—; > Ealuad == 3 EDO[Ma])
a=1 a=1

1 < R
= exp(—; " Ealua + 375 Y f A% R(ua (x) - ub(x»). ©)
a=1

a,b=1
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Perturbation theory is constructed along the following lines (see [11, 26] for more details). The
bare correlation function, graphically depicted as a solid line, is with momentum k flowing
through and replicas a and b

T(Sab
a b — L2 .

@)

The disorder vertex is

gf : = /ZR(ua(z’) - ub(:r:)) . 8)

x

The rules of the game are to find all contributions which correct R, and which survive in the
limit of T — 0. At leading order, i.e. order R?, counting of factors of T shows that only the
terms with one or two correlators contribute. On the other hand, Za, » R(ug — up) has two
independent sums over replicas. Thus at order R? four independent sums over replicas appear,
and in order to reduce them to two one needs at least two correlators (each contributing a 8,p).
Thus, at leading order, only diagrams with two propagators survive. These are the following
(denoting by C(x — y) the Fourier transform of 1/k?):

x

i, = /R”(ua(ﬂf) — up(2)) R (ua(y) — up(y))C(x — y)* ©)

be— o
T
x Yy

Z L . : = — /R”(Ua(:r) — e (2)) R (ua(y) — up(y))C(x —y)* . (10)

In a renormalization program, we are looking for the divergences of these diagrams. These
divergences are localized at x = y, which allows us to approximate R”(u,(y) — up(y))
by R”(u,(x) — up(x)). The integral fxiy Cx —y)? = A m = % (using the most
convenient normalization for [, ) 1s the standard one-loop diagram, which we have chosen to
regulate in the infrared by a mass, i.e. physically by a harmonic well which is seen by the
manifold.

Note that the following diagram also contains two correlators (correct counting in powers
of temperature), but is not a two-replica but a three-replica sum:

aOa‘ (11)

b e Le
Taking into account the combinatorial factors, and a rescaling of R (which remember has
dimension € for a dimensionless field «) as well as of the field # (its dimension being the
roughness exponent ¢ ), we arrive at

_m%R(u) = (€ —40)RW) +LR'(w) + éR"(u)2 —R'WR'©O). (12

Note that the elasticity is not renormalized due to the statistical tilt symmetry u (x) — u(x)+ox.
The crucial observation is that, when starting with smooth microscopic disorder,
integration of the RG-equation leads to a cusp in the second derivative of the renormalized
disorder at the Larkin length, as depicted in figure 1. This can easily be seen from the flow-
equation of the fourth derivative (supposing analyticity), which from (12) is obtained as

a
—m%RW(O) =eR"(0) +3R"(0)*. (13)

(Note that this explains also the appearance of the combination € — 4¢ in (12).) This equation
has a singularity R””(0) = oo after a finite renormalization time, equivalent to the appearance



S1892 K J Wiese

-R”(u) -R’(u)

renormalization

=
u
Figure 1. Change of —R” (1) under renormalization and formation of the cusp.

of the cusp, as depicted in figure 1. After this dimensional reduction (4) is no longer valid.
This can most easily be seen from the flow of R”(0): Deriving (12) twice wrt u, and then
taking the limit of u — 0, leads to

—iR”(O) = (e —22)R"(0) + R"(0")2. (14)
om

In the analytic regime R (0*) = 0, such that the fixed-point condition — % R”(0) = 0implies
(=5= %; after appearance of the cusp, R”'(0%) # 0, thus ¢ has to change.
This analysis can be continued to higher orders. Let us cite some key results at two-loop

order [14, 26], for which the RG-equation reads
0 1

—ma—R(u) = (e —40)R(u) + CuR (u) + ER”(u)2 — R"(u)R"(0)
m

+2(R"(w) — R"(0)R" (u)* — R"(0")*R" (). (15)

Different microscopic disorder leads to different RG fixed points. The latter are solutions of
equation (15), with —m % R(u) = 05 it is important to note that given a microscopic disorder,
the exponent ¢, solution of (15) is unique. For random-bond disorder (short-ranged potential—
potential correlation function) the result is ¢ = 0.208 298 04¢ + 0.006 858¢2. In the case of
random field disorder (short-ranged force—force correlations) ¢ = 5. Both results compare
well with numerical simulations.

One should also note that (15) contains a rather peculiar ‘anomalous term’, namely
R"'(0%)2, which only appears after the occurrence of the cusp. This term is in general hard
to get, since the calculation naturally gives factors of R”(0), which are zero by parity, and
not R”(0") = —R"”(07). Several procedures to overcome these apparent ambiguities have
been developed [26]. Supersymmetry will allow for another prescription, as will be discussed
below.

3. Supersymmetry and its breaking

Another way to average over disorder is to use additional fermionic degrees of freedom. It
is more commonly referred to as the supersymmetric method. Supersymmetry is manifest
using one copy of the system, where it immediately leads to dimensional reduction, as we
show below. However, it cannot account for the non-trivial physics due to the appearance
of the cusp and the corresponding breakdown of dimensional reduction, and supersymmetry.
This is possible when considering n # 1 copies of the system, with n = 2 being completely
legitimate. Here we give a general formulation, in which one can either discard the fermionic
degrees of freedom, thus reconstructing a replica formulationatn = 0, orsetn toe.g. n = 1,
thus exploring supersymmetry.
Define

Hltta, jur VI=Y f 3(Vita (20> +V (¥, g (0)) + ()t (x). (16)
a=1YX
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Then the normalized generating function of correlation functions for a given disorder V' is

j Dlug e~ 7HMaiaV]
Z[]] = /Ha a ] .
fl_[a Dlu,le” 7 a0.V]

In the limit of T — 0O only configurations which minimize the energy survive; these
configurations satisfy s Jo V1 — () of which we want to insert a 8-distribution in the path-

Suq(x)
integral. This has to be accompanied by a factor of det[%], such that the integral

over this configuration is normalized to unity, and supposing only a single configuration the
denominator can be dropped, leading to

o Mg, jo. V1. [8°Hlita, 0, V]
2l ]_/ UD[”“]‘S[ 5110 () }det[auamaua(y)}‘ (1%

Note that we neglect problems due to multiple minima, maxima, or saddle points. These
configurations are incorrectly contained in (18), and are usually blamed for the failure of the
supersymmetry approach. We will comment on this point later. For the moment, we continue
with (18) and see how far we can get. Using an imaginary auxiliary field i#(x) and two
anticommuting Grassmann fields v/ (x) and v/ (x) (per replica), this can be written as

A7)

2[j1 = / [1Plua Pl DIy 1Dl

_ SHluag, ju, V1 - 8*Hlua, ja, V1
— X))+ Y ()Y, . 19
CXP[ /xu (x) S0, (x) Y (x) S1t, ()01, (7) Va(y) (19)
Averaging over disorder yields with the force—force correlator A (u) := —R"(u)

Z[j1= / [ [ Plua)Dlia 1 DI 1DIVa] exp(—=Slita, s Yar Yar ja))
Slita, g Vas Vas Jal =) f i1a () (= V2ua(x) + ja (1) + Y () (= V) g (x)

- Z/[%ﬁa(xm(ua(x) — up (X))l (x)
ab vX

+ 30 () Y (0) A" (g (x) — 143 () Uy (X) Y1 (x)
— i1 (X) A (s (¥) = 4 ()Y () P (1) ] (20)

We first analyse n = 1. Suppose that A(u) is even and analytic to start with, then only the
following terms survive from (20):

Ssusylu, i, ¥, ¥, j1 = /ft(X)(—Vzu(X) +J (0) + ¥ () (= VAP (x) — 3ii(x) A0)ii (x).
X
(2D
(We have used the fact that 1/_/3 = ‘ﬁf = 0 to get rid of the four-fermion-term.) This action

possesses a supersymmetry, which is most manifest when grouping terms together into a
superfield

Ux,®,0) =u(x)+0y(x)+¥(x)O + O0i(x). (22)
The action (21) can then be written with the super-Laplacian A as
9

_ - _ a
Ssusy = /d@d@/x Ux,0,0)(A)U(x, 0, 0), A=V — A(O)EE (23)
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and is invariant under the action of the supergenerators
d 2 - - 9
Q0 =x— — ——0V, Q=x—+—
00  A(0) 90 A0
Since ‘bosons’ u and iz, and ‘fermions’ ¥ and 1, only appear to quadratic order, all expectation
values are trivially Gaussian. In particular, we have
A(0)
(k)%
which is the result cited in (4), recalling that A(u) = —R"”(u). Thus [u(x) —u(y)]* ~
A)|x — y]*~9, which should be compared to the thermal average ([u(x) — u(y)P?) ~
T|x — y|>=“. Since both theories are Gaussian, the only difference is an apparent shift in
the dimension of the system from d to d — 2. This is usually referred to as dimensional
reduction.
For more than n = 1 replicas, the theory is richer, and we will recover the renormalization
of A(u) itself. With this purpose, write

Slita fias Var Yar jal = Y / [ () (= VZita (X) + ja(0)) + P (0) (= V) Y (x)

(24)

Ugl— = (25)

— 3 () A ()] = D [ [$ia (6) Al (x) — ()it (x)

a#b VX
+ 2 ()W () A (10 (X) — 14 (X)) P (x) P (x)
— g () A (e (x) = up (X)) Y (X)W (1) ]. (26)

Corrections to A(u) are easily constructed by remarking that the interaction term quadratic in
u is almost identical to the treatment of the dynamics in the static limit (i.e. after integration

over times)

I I+ L+./f+2/1, (27)
where an arrow indicates the correlation-function, » ——y = (u(x)u(y)) = C(x — y). This
leads to (in the order given above)

SA@W) = [-AWA" () — A'w)* + A" (u)A0)] / Cx —y)? (28)
x—=y
where the last term (being odd in #) vanishes. Note that this reproduces the non-linear terms
in (12).
A non-trivial ingredient is the cancellation of the acausal loop in the dynamics (the ‘sloop’,
or three-replica term in the replica formulation) [26]. This is provided by taking two terms
proportional to i1, A" (u, — I/Lb)l/_/b Y, and contracting all fermions:

S S
O+ &3-o, (29)
S S
since the fermionic loop (oriented wiggly line in the second diagram) contributes a factor
of —1.

One can treat the interacting theory completely in a superspace formulation. The action
is

swia=Y [ [ v 6.0@0u..6.0)

—%Z/f / R(U,(x,0,0) — Uy(x, ®,0)). (30)
a#b /X /0,0 JO, O
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Thus non-locality in replica-space or in time is replaced by non-locality in superspace, or more
precisely in its anticommuting component. Corrections to R(u) all stem from ‘superdiagrams’,
which result in bilobal interactions in superspace, not trilocal, or higher. The latter find their
equivalent in three-local terms in replica-space in the replica formulation, and three-local terms
in time in the dynamic formulation.

Supersymmetry is broken once A(0) changes. However, a new, let us call it ‘effective
supersymmetry’ or ‘scale-dependent supersymmetry’ appears, in which the parameter A(0),
which appears in the Susy-transformation, changes with scale, according to equation (14).

An interesting question is whether anomalous terms, proportional to R”(0%), can be
recovered from the supersymmetric formulation. We show now that this can indeed be done,
in a very elegant way. The trick is to shift the disorder V («) which appears in (19) for the
bosonic part, by a small amount § for the fermionic part, and to take the limit of 6 — 0 at the
end. This modifies (20) to

Sluta, jas fias Yas Val
=> f 10 () (= V21, (X) + ja (X)) + Yo (X) (= V)P (x)

+ > / (310 () A g (x) = w0 (0)itp () + 5V (0) Y (¥) A (1 (¥) = 143 (x))
ab vX

X Y ()Y (%) — g () A (8 + 1 (x) — up(x) P (X) Y (1) ] €20)
= f [0 () (= VZuta (0) + () + Y (0) (= V)Y (¥) + 3 (1) A(0)

—aﬁa(xm’(a)&a(xm )]

+ ; x[%ﬁa(x)A(ua(x) — up(0)iip () + 5 Va0 Y (¥) A (uq (x)

— up ()W ()W () — i1 () A (8 + 11 (X) — 1p (X)) Y (X) P (x) ] (32)

Now the term with a = b is also well defined; the last term of (31), as made explicit in (32),
is of the form

f 3 0 A G Ta () () = D () A (S + 1t (x) — up(0)) P ()P (). (33)
X a a#b

To demonstrate how this can be put into use, let us calculate the contribution to the two-point
function at one-loop order, which is naively ambiguous [14, 19, 26]:

S1toop (ta(q)ua(—9)) = Hﬁ{«m} ..
1

12 1 1
= _(q2+m2)2A(5) /p(p+q/2)2+m2(p—q/2)2+m2.
(34)

Note that the minus-sign comes from the closed fermion loop. In the limit of § — 0, this gives

_ 1 7+ 2 1 !
Slloop(ua(Q)ua(_q» = (q2+m2)2A (Up) /; (p+6]/2)2+m2 (p _q/2)2+m2’

This may also prove useful for an N-component field # = {u,},a = 1...N, a case which
poses additional difficulties, since derivatives have to be taken in a given direction [11, 32].

(35)
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Even higher correlation functions are immediate. For example, we have

1(n+\4
Dipigiiniie = = _A ((1 ) / 2 ! 0N (36)
6 g (@ +m?)

This has first been obtained, using straightforward dynamical perturbation theory in [24].
While the principle is simple, the calculations are actually very cumbersome. The sloop
method [26] is another efficient approach. (See also [30].)

Let us finally mention that the method correctly calculates the anomalous term of the
‘Mercedes-star’ diagram at three-loop order [33],

5R(u) — % [R’”(u)4 o R///<u)2R///(O+)2] ; ; 7 (37)

where the icon stands for the momentum integral only. The correction to A(u) = —R"(u),
and picking the term proportional to A”'(u) = —R® (1) comes from
a b
SA) =+ b = [+ A(O0)2A (u) A" (w)] A (38)
a a a b

Note that two of the vertices are at argument A’(0%). This can otherwise only be calculated
within the sloop method.

4. Relation between supersymmetry breaking, functional RG, and replica-symmetry
breaking

Another popular approach to disordered systems is the replica-variational method, invoking
replica-symmetry breaking (RSB). This method has for the problem at hand been developed
in [34]. It consists in making the replacement

D i (60) Alug(x) = up(x))iip(x) —> D il (x)iin(x)0ap. (39)
a,b a,b

This approximation is valid in the limit of a field # with an infinite number N of components, so
for the following discussion we have to restrain ourselves to that limit. The variational replica
approach then makes an ansatz for o,;,, with different correlations o,;, between different pairs
of replicas. Finally, a variational scheme is used to find an optimal o,;,. The result (in the
case of long-range correlated disorder, where the comparison can be made [27]) is a hierarchic
matrix with an infinite number of different parameters, of the form

(40)

The exact form, and how it can be parametrized by a continuous function [¢](z),0 < z < 1
is not of importance for the following.
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What is important is that RSB appears exactly at the same moment as the cusp appears
in the functional RG [35, 18, 27]. Moreover, there is a precise relation between the two-point
function calculated by the RSB and FRG methods [18, 27]. The latter do not coincide, since the
calculations are implicitly done in zero external field (RSB) and vanishing external field (FRG),
leading to physically different situations (as for a standard ferromagnet).

In section 3 we have shown that this is also the moment when supersymmetry is broken.
While the treatment there was for a one-component field, the conclusion is the same for an
N-component field, and persists in the limit of N — oo. We can thus conclude that the
breaking of supersymmetry and of replica symmetry and the appearance of the cusp are all but
different manifestations of the same underlying physical principle: the appearance of multiple
minima.
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