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5 The Feynman path-integral

5.1 Real-time path-integral

Schr̈odinger says that
〈q′, t′|q, t〉 = 〈q′|e−

i
~ Ĥ(t′−t)|q〉 . (5.1)

For small times, one can work with the linearized version, for which one needs:

〈q′|Ĥ|q〉 . (5.2)

We specify

Ĥ =
p̂2

2m
+ V (q̂) (5.3)

[p̂, q̂] =
~
i

. (5.4)

Let us calculate (5.2)

〈q′|Ĥ|q〉 =

∫
dp

2π~
〈q′|p〉 〈p|Ĥ|q〉 =

∫
dp

2π~
e

i
~ p(q′−q) H(p, q) , (5.5)

whereH(p, q) is the classical Hamilton-function

H(p, q) =
p2

2m
+ V (q) , (5.6)

and

〈q|p〉 = eipq/~ ,

∫
dp

2π~
|p〉〈p| = 1 . (5.7)

Writing 〈q′, t′|q, t〉 as the product of transition amplitudes for small time-slices and integrating over the
intermediate steps, we have with the usual notation

〈q′, t′|q, t〉 =

∫
D[q]D[p] e

i
~

R t′
t p(t)q̇(t)−H(p(t),q(t)) . (5.8)

Performing the integral over thep’s, which can always be done as long as the action is not more than
quadratic inp, the result is (up to some normalizationN )

〈q′, t′|q, t〉 =
1

N

∫
D[q] e

i
~

R t′
t L(q(t),q̇(t)) , (5.9)

whereL(q, q̇) is defined by (saddle-points for quadratic actions are exact!)

L(q, q̇) = pq̇ −H(p, q)
q̇=∂H(p,q)/∂p

. (5.10)

We recognize this as the usual Legendre transfrom, relating the Hamilton-functionH(p, q) to the Lagrange-
functionL(q, q̇). Equation (5.9) is the famous Feynman path-integral, introduced in [1].

A direct derivation without introducing the fieldp can also be given. See section about the Laplace-
DeGennes-transform where this is done in details for the Wick-rotated version.

Question: Which formulation is the fundamental one whenH(p, q) is not quadratic inq?
Answer: The formulation withH(p, q). Our considerations withH(p, q) are completely general, wherease
when working withL(q, q̇), one has to make assumptions on the form of the kinetic term.
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5.2 Imaginary time path-integral: The partition function

We now use the normalizations as in section 5.1, to calculate a path-integral representation for the partition
function. This might not seem the most natural normalization to calculate tr(e−βĤ), since the latter does not
contain~; however these are the appropriate normalizations in order to establish the connection between
dynamics and thermodynamics.

We calculate the partition-function, thus

Z = tr(e−βĤ) . (5.11)

Using the Trotta formula to decomposeβĤ asβĤ = 1
~

∫ β~
0

dτ Ĥ, and using (5.5) we get

Z =

∫
D[q]D[p] e

1
~

R β~
0 dτ(ip(τ)q̇(τ)−H(p(τ),q(τ)) . (5.12)

In difference to (5.10), the weight-function is now the Euclidean actionSE[q, q̇], given by the saddle-point

0 =
∂

∂p

(
ipq̇ −H(p, q)

)
(5.13)

as

LE(q, q̇) = −L (q, iq̇) , SE =

∫ β~

0

dτ LE(q(τ), q̇(τ))) . (5.14)

The sign-convention in the definition ofSE is such that

Z =

∫
D[q]e−

1
~ SE . (5.15)

Also note that observables can be calculated, by inserting them into the path-integral. The path-integral
naturally orders observables by their time (earlier to the right).

5.3 The action for more general Hamiltonians and commutation-relations

We now want to construct the path-integral for more general Hamilton-operators and more general commu-
tation-relations. Suppose that we have a quantum field theory given by (Kxy is supposed to be real):

H(φ̂x, Π̂x) ,
[
Π̂x, φ̂y

]
=

~
i
Kxy ,

[
φ̂x, φ̂y

]
= 0 ,

[
Π̂x, Π̂y

]
= 0 (5.16)

This is sufficient to construct the path-integral, as one can see from the following: First, we construct the
φ-representation of the operatorΠ̂x:

Π̂x =
~
i

∫
y

Kxy
δ

δφy

, (5.17)

which is checked by remarking that it reproduces the commutation-relation (5.16). To construct the path-

integral, we need the basis-change fromφ to Π, which from
(
Πx − ~

i

∫
y
Kxy

δ
δφy

)
〈φ|Π〉 = 0 is inferred to

be
〈φ|Π〉 = det [Kxy]

− 1
2 e

i
~

R
x

R
y ΠxK−1

xy φy . (5.18)

The normalization (often dropped) is checked from∫
D [Π] 〈φ|Π〉 〈Π|φ′〉 = det [Kxy]

−1

∫
D [Π] e

i
~

R
x

R
y(φx−φ′x)K−1

xy Πy =

∫
D [Π′] e

i
~

R
x

R
y(φx−φ′x)Π′

x , (5.19)

4



C−

t
C+

Figure 1: The Keldysh contour

which is theδ-distribution forφ.
This gives the generalized path-integral

〈φx,t|φ0,0〉 =

∫
D [φ]D [Π] e

i
~S (5.20)

S =

∫ t

0

dt

∫
x

ΠxK
−1
xy φ̇y −H(φ, Π) (5.21)

Since from the action, we can calculateall observables, this also leads to the following
Theorem:A Quantum theory is given by its classical Hamilton-function, e.g. as a function of coordinates
(or fields) and conjugate momenta, and their commutation relations.

6 The Keldysh-formalism

Here, I construct some formulas as what is known as the “Keldysh-formalism”.
Denote for any contourC

SC :=

∫
C
dt L(q(t), q̇(t)) . (6.1)

We also use

S+ := SC+ , S− := SC− (6.2)

U+ = ei/~S+ , U− = ei/~S− . (6.3)

Let us call the time-variable on the lower patht+ (since it goes into positive direction) and that on the upper
patht−. Also q+ = q(t+) a.s.o. Thus

S+ =

∫
dtm

q̇2
+

2
− V (q+) (6.4)

S− =

∫
dtm

q̇2
−

2
− V (q−) . (6.5)

Now introduce coordinates in the center-of-mass system.

q± := q ± q̆ (6.6)

q =
1

2
(q+ + q−) (6.7)

q̆ =
1

2
(q+ − q−) . (6.8)

Then

SC := S+ − S− =

∫
dt (L+ − L−) , (6.9)
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since pathC− has the opposite direction as pathC+.

SC =

∫ tf

ti

dtm

(
q̇2
+

2
−

q̇2
−

2

)
− V (q+) + V (q−)

=

∫ tf

ti

dt 2m ˙̆qq̇ − V (q + q̆) + V (q − q̆)

= −
∫ tf

ti

dt 2m q̆
d2

dt2
q + V (q + q̆)− V (q − q̆) , (6.10)

where in the last partial integration boundary terms are neglected.
One should be able to calculate correlation-functions by inserting fields into the contour-integral, say

all in C+. This would give (q1 := q(t1))

〈O1O2〉 =

∫
D[q]D[q̆]O1(q1 + q̆1)O2(q2 + q̆2) e

i
~ S

=

∫
D[q]D[q̆]O1(q1 + q̆1)O2(q2 + q̆2)

× exp

[
− i

~

∫ tf

ti

dt 2m q̆
d2

dt2
q + V (q + q̆)− V (q − q̆)

]
. (6.11)

Response-functions should be constructed by looking at an observableO2 reacting to a change in the
potential (a force)δL(q, q̇) = δ(t − t1)O1(q) at timet1. (Note that making a change inL is equivalent to
making a change in−H. Since the force is−∇V , this will for O1 = q be the response to a uniform force,
with the correct sign.) Also note that this perturbation appears in both parts of the Keldysh-integral. Its
linear response is

i

~

∫
D[q]D[q̆] [O1(q1 + q̆1)−O1(q1 − q̆1)]O2(q2 + q̆2)

× exp

[
− i

~

∫ tf

ti

dt 2m q̆
d2

dt2
q + V (q + q̆)− V (q − q̆)

]
. (6.12)

ChoosingO1 = O2 = q, this gives

Rqq =
2i

~
〈q̆1(q2 + q̆2)〉 . (6.13)

6.1 A change in variables and the classical limit (MSR-action)

Staring at the path-integral∫
D[q]D[q̆]O1(q1 + q̆1)O2(q2 + q̆2)

× exp

[
− i

~

∫ tf

ti

dt 2m q̆
d2

dt2
q + V (q + q̆)− V (q − q̆)

]
, (6.14)

we define a new field̃q

q̃ :=
2i

~
q̆ ≡ i

~
(q+ − q−) (6.15)
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In this new field, (6.14) becomes (the integration overq̃ running from−i∞ to i∞)∫
D[q]D[q̃]O1(q1 +

~
2i

q̃1)O2(q2 +
~
2i

q̃2)

× exp

[
−

∫ tf

ti

dtm q̃
d2

dt2
q +

i

~
V (q +

~
2i

q̃)− i

~
V (q − ~

2i
q̃)

]
, (6.16)

Using the convention ofe−S , we have

−S ≡ i

~
S (6.17)

relating the new Keldysh-action to the real action.

S =

∫ tf

ti

dtm q̃
d2

dt2
q +

i

~
V (q +

~
2i

q̃)− i

~
V (q − ~

2i
q̃) (6.18)

The classical limit is obtained upon taking~ → 0. The action is then expanded as

S =

∫ tf

ti

dt q̃

(
m

d2

dt2
q + V ′(q)− q̃2~2

24
V ′′′(q) + . . .

)
, (6.19)

which is just the MSR-action + higher order terms in~.

6.2 Boundary-conditions and the Feynman-Vernon-influence function

We want to study something like (note thatE ′
n need not be equivalent to〈n|H|n〉, but can be taken from an

initial HamiltonianH′.)
1

Z
∑

n

〈n|U−OU+|n〉e−βE′
n . (6.20)

This can be written as theFeynman-Vernon-influence-function[2]∫
q1

∫
q2

〈q1|e−βH′|q2〉
Z

〈q2|U−OU+|q1〉 , (6.21)

where
Z := tr

(
e−βH′

)
. (6.22)

Let us now calculate some observables. For the moment, we prepare the system with a different Hamilto-
nianH′ than the time-evoluting oneH. This condition will be dropped later.

〈q+(t)q+(t′)〉 =
1

Z
tr

(
e−βH′

T+q(t)q(t′)
)

(6.23)

On the l.h.s. stand expectation values in the path integral, whereas on the r.h.s. expectation values in the
operator formalism.

q(t) := eiHt q e−iHt (6.24)

andT+ the time ordering operator, putting larger times to the left.T− is the anti-time ordering opertor,
thus analogously

〈q−(t)q−(t′)〉 =
1

Z
tr

(
e−βH′

T−q(t)q(t′)
)

. (6.25)
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Further, sinceq+ is always earlier on the contour,

〈q+(t)q−(t′)〉 =
1

Z
tr

(
e−βH′

q(t)q(t′)
)

. (6.26)

Therefore, using our earlier definitions in (6.6) ff. we obtain with the time-ordering operator on the Keldysh-
contourC

〈q(t)q(t′)〉 =
1

4Z
tr

(
e−βH′

TC {(q+(t) + q−(t))(q+(t′) + q−(t′))}
)

. (6.27)

Observing that e.g. fort < t′, q+(t) is always first in the trace, andq−(t′) always last, we get with (6.24)

〈q(t)q(t′)〉 =
1

2Z
tr

(
e−βH′ {q(t)q(t′) + q(t′)q(t)}

)
=

1

2Z
tr

(
e−βH′ {q(t), q(t′)}

)
. (6.28)

Next is

〈q(t)q̆(t′)〉 =
1

4Z
tr

(
e−βH′

TC [(q+(t) + q−(t))(q+(t′)− q−(t′))]
)

=
1

4Z
tr

(
e−βH′

TC [q+(t)q+(t′)− q+(t)q−(t′) + q−(t)q+(t′)− q−(t)q−(t′)]
)

= Θ(t− t′)
1

2Z
tr

(
e−βH′

[q(t), q(t′)]
)

. (6.29)

Last:

〈q̆(t)q̆(t′)〉 =
1

4Z
tr

(
e−βH′

TC [(q+(t)− q−(t))(q+(t′)− q−(t′))]
)

=
1

4Z
tr

(
e−βH′

TC [q+(t)q+(t′) + q−(t)q−(t′)− q+(t)q−(t′)− q−(t)q+(t′)]
)

= 0 . (6.30)

These formulas are similar to MSR. The Green-function (response-function) is causal, i.e.retarded. Note
that from (6.29), and due to (6.30) the response-function is

R(t− t′) :=
δ 〈q(t)〉
δL(t′)

=
2i

~
〈q̆(t′)q(t)〉 (6.31)

Using the above and the definition (6.15) ofq̃, we arrive at the important formula

R(t, t′) = 〈q(t)q̃(t′)〉 = Θ(t− t′)
i

~Z
tr

(
e−βH′

[q(t), q(t′)]
)

. (6.32)

The correlation function is for comparison

C(t, t′) = 〈q(t)q(t′)〉 =
1

2Z
tr

(
e−βH′ {q(t), q(t′)}

)
. (6.33)
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6.3 FDT

Let us now derive the FDT. To do so, we needH′ = H. (At least they have to commute. Otherwisee−βH′

is not diagonal in the same basis aseitH/~. Here we suppose, they are equal.) We use

tr
(
e−βHq(t)q(t′)

)
=

∑
n,m

〈n| e
i
~Htqe−

i
~Ht |m〉 〈m| e

i
~Ht′qe−

i
~Ht′ |n〉 e−βEn (6.34)

to insert a complete set of energy-eigenstates into both (6.28) and (6.29):

〈q(t)q(t′)〉 =
1

2Z
∑
n,m

|〈n|q|m〉|2 e−βEn

(
ei(t−t′)(En−Em)/~ + e−i(t−t′)(En−Em)/~

)
(6.35)

〈q(t)q̆(t′)〉 = Θ(t− t′)
1

2Z
∑
n,m

|〈n|q|m〉|2 e−βEn

(
ei(t−t′)(En−Em)/~ − e−i(t−t′)(En−Em)/~

)
. (6.36)

Both functions are (fort > t′) real and imaginary part of1
2Z

∑
n,m |〈n|q|m〉|

2 e−βEnei(t−t′)(En−Em)/~. We
now go to frequency-space.

〈q(ω)q(−ω)〉 =

∫ ∞

−∞
dt e−iωt 〈q(t)q(0)〉

=

∫ ∞

−∞
dt e−iωt 1

2Z
∑
n,m

|〈n|q|m〉|2 e−βEn
(
eit(En−Em)/~ + e−it(En−Em)/~)

=

∫ ∞

−∞
dt e−iωt 1

2Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn + e−βEm

)
eit(En−Em)/~

=
1

2Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn + e−βEm

)
2πδ(ω + (Em − En)/~)

= (1 + e−βω~)
1

2Z
∑
n,m

|〈n|q|m〉|2 e−βEn2πδ(ω + (Em − En)/~) . (6.37)

The response function is (adding−iδ to ω to ensure convergence; also note the integral starts att = 0 due
to theΘ-function in (6.36).)

〈q(ω)q̆(ω)〉

=

∫ ∞

0

dt e−iωt−δt 〈q(t)q̆(0)〉

=

∫ ∞

0

dt e−iωt−δt 1

2Z
∑
n,m

|〈n|q|m〉|2 e−βEn
(
eit(En−Em)/~ − e−it(En−Em)/~)

=

∫ ∞

0

dt e−iωt−δt 1

2Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn − e−βEm

)
eit(En−Em)/~

=
1

2Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn − e−βEm

) 1

δ + iω + i(Em − En)/~

=
1

2Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn − e−βEm

) [
P −i

ω + (Em − En)/~
+ πδ(ω + (Em − En)/~)

]
.

(6.38)
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The real part of that is

(1− e−β~ω)
1

2Z
∑
n,m

|〈n|q|m〉|2 e−βEnπδ(ω + (Em − En)/~) . (6.39)

The FDT is

〈q(ω)q(−ω)〉 = 2 coth

(
β~ω

2

)
= 〈q(ω)iq̆(−ω)〉 (6.40)

In terms of the physical correlationC(ω) and response-functionR(ω), this is

C(ω) = ~ coth

(
β~ω

2

)
=R(ω) . (6.41)

In the limit of ~ → 0, this reduces to

C(ω)
~→0
−−−→ 2

ωβ
=R(ω) . (6.42)

As a function of the time-difference, we state without proof the result

R(t) =
β

2
Θ(t)

d

dt
C(t) . (6.43)

6.4 The Matsubara-relation

Let us recall that (6.29) gives (ifH = H′)

〈q(t)q̆(0)〉 = Θ(t)
1

2Z
tr

(
e−βH [q(t), q(0)]

)
, (6.44)

and from the second to last line of (6.38) its Fourier-transform is

〈q(ω)q̆(ω)〉 =
1

2Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn − e−βEm

) 1

δ + iω + i(En − Em)/~
. (6.45)

We now define the imaginary time correlation-function (also called Matsubara-function) for0 ≤ τ ≤ β~
(which can be continued analytically toτ ∈ R giving aβ~-periodic function.)

U(τ) :=
1

Z
tr

(
e−(β−τ/~)Hq e−(τ/~)H q

)
. (6.46)

Its Fourier-transform is defined for

ωn :=
2πn

β~
, n ∈ Z (6.47)

as

U(ωn) :=

∫ β~

0

dτ e−iωnτU(τ) . (6.48)

The inverse is

U(τ) =
1

β~
∑

n

eiωnτU(ωn) . (6.49)
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Similar to what we have done to derive (6.45), see (6.38), we now insert two complete sets of eigenfunctions
of H

U(ωn) =
1

Z

∫ β~

0

dτ e−iωnτ tr
(
e−(β−τ/~)Hq e−τH/~ q

)
=

1

Z

∫ β~

0

dτ e−iωnτ
∑
n,m

|〈n|q|m〉|2e−βEm−τ(En−Em)/~

=
1

Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn − e−βEm

) 1

−iωn + (En − Em)/~

=
i

Z
∑
n,m

|〈n|q|m〉|2
(
e−βEn − e−βEm

) 1

ωn + i(En − Em)/~
. (6.50)

Note that by going from line 2 to 3, we have needed thatωn is quantised by (6.47); the factors ofe−βEn and
e−βEm are the boundary values of the integration. Comparing (6.45) and (6.50), we arrive at

〈q(ω)q̆(ω)〉 =
1

2i
U(ωn=iω + δ) . (6.51)

The physical response-function isR(ω) = 〈q(ω)q̃(ω)〉 such that

R(ω) =
1

~
U(ωn=iω + δ) . (6.52)

The correlation-function can then be obtained from the FDT (6.41) as

C(ω) = coth

(
β~ω

2

)
=U(ωn=iω + δ) . (6.53)

One can also relate the response-function in the time-variable. Using (6.32) and the definition ofU(τ)
in (6.46), we can write

R(t) = Θ(t)
i

~
[U(τ → it + δ)− U(τ → it− δ)] , (6.54)

whereδ serves to give the time-ordering. Equivalently, the correlation-function is from (6.33) obtained as

C(t) =
1

2
[U(τ → it + δ) + U(τ → it− δ)] , (6.55)

6.5 Free theory

Study the quadratic action (note that the weight ise−S)

S =

∫
x,t

ũ
(
m∂2

t −∆
)
u +

i

~
V

(
u + ~

2i
ũ
)
− i

~
V

(
u(x, t)− ~

2i
ũ
)

(6.56)

whereV (u) = κu2. This gives

S =

∫
x,t

ũ
(
m∂2

t −∆ + κ
)
u (6.57)
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Two paths can be taken to calculate the response-function. First in analogy to MSR, we have directly

R(ω, k) =
1

k2 + κ−mω2
, (6.58)

where a priori it is not clear, which is the way to shift the poles from the axis. However, this could be
obtained by demanding (6.58) to be causal (retarded). The other method is to use the Matsubara technique.
The problem is, that one first has to construct the path-integral. Following the line of arguments that led
from (6.4) to (6.18) and (6.19), we have for the Lagrange-function

L =

∫
x

m

2

(
d

dt
u

)2

− 1

2
(∇u)2 − κ

2
u2 (6.59)

Continuing to Euclidean time, we have as Euclidean action the immediate generalization of (5.14):

SE =

∫ β~

0

dτ

∫
x

m

2

(
d

dτ
u

)2

+
1

2
(∇u)2 +

κ

2
u2 (6.60)

We know how to calculate the correlation-function of this model, which is the Matsubara-function (ωn ∈
2π
β~N):

U(k, ωn) = 〈u(k, ωn)u(−k,−ωn)〉 =
~

k2 + mω2
n/~2 + κ

, (6.61)

where the~ comes frome−SE/~. Using relation (6.52), this gives for the response-function

R(k, ω) =
1

~
U(k, ~(iω + δ)) =

1

k2 −m(ω − iδ)2 + κ
(6.62)

We can check, that this is causal:

∫
dω

2π
eiωtR(k, ω) = Θ(t)

sin
(

t
√

k2+κ√
m

)
√

m
√

k2 + κ
(6.63)
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