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Chapter 22

Connections to Statistical Physics
Fabrizio Altarelli, Rémi Monasson, Guilhem Semerjian and Francesco Zamponi

22.1. Introduction

The connection between statistical physics of disordered systems and optimiza-
tion problems in computer science dates back from twenty years at least [MPV87].
In combinatorial optimization one is given a cost function (the length of a tour
in the traveling salesman problem (TSP), the number of violated constraints in
constraint satisfaction problems, . . . ) of (Boolean) variables and attempts to
minimize costs. Finding the true minimum may be complicated, and requires
more and more computational effort as the number of variables increases [PS98].
Statistical physics is at first sight very different. The scope is to deduce the macro-
scopic, that is, global properties of a physical system, for instance, whether gas, a
liquid or a solid, from the knowledge of the energetic interactions of its elementary
components (molecules, atoms or ions). However, at very low temperature, these
elementary components are essentially forced to occupy the spatial conformation
minimizing the global energy of the system. Hence low-temperature-statistical-
physics can be seen as the search for minimizing a cost function whose expression
reflects the laws of Nature or, more specifically, the degree of accuracy retained in
its description. This problem is generally not difficult to solve for non-disordered
systems where the lowest energy conformation are crystals in which components
are regularly spaced from each other. Yet the presence of disorder, e.g. impuri-
ties, makes the problem very difficult and finding the conformation with minimal
energy is a true optimization problem.

At the beginning of the eighties, following the work of G. Parisi and oth-
ers on systems called spin glasses [MPV87], important progress was made in the
statistical physics of disordered systems. The properties of systems given some
distribution of the disorder (for instance the location of impurities) such as the
average minimal energy and its fluctuations became amenable to quantitative
studies. The application to optimization problems was natural and led to beau-
tiful studies on (among others) the average properties of the minimal tour length
in the TSP and the minimal cost in Bipartite Matching, for some specific instance
distributions [MPV87]. Unfortunately statistical physicists and computer scien-
tists did not establish close ties on a large scale at that time, probably due to
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differences of methodological nature [FA86]. While physicists were making statis-
tical statements, true for a given distribution of inputs, computer scientists were
rather interested in solving one (or several) arbitrary instances of a problem. The
focus was thus on efficient ways to do so, that is, requiring a computational effort
growing not too quickly with the number of data defining the instance. Knowing
precisely the typical properties for a given, academic distribution of instances did
not help much to solve practical cases.

At the beginning of the nineties practitionners in artificial intelligence re-
alized that classes of random constraint satisfaction problems used as artificial
benchmarks for search algorithms exhibited abrupt changes of behaviour when
some control parameters were finely tuned [MSL92]. The most celebrated exam-
ple was random k-Satisfiability, where one looks for a solution to a set of random
logical constraints over a set of Boolean variables. It appeared that, for a large
number of variables, there was a critical value of the number of constraints per
variable below which there almost surely existed solutions, and above which solu-
tions were absent. An important feature was that the efficiency of known search
algorithms drastically decreased in the vicinity of this critical ratio. In addition
to its intrinsic mathematical interest the random k-SAT problem was therefore
worth to be studied for ‘practical’ reasons.

This critical phenomenon, strongly reminiscent of phase transitions in the
physics of condensed matter, led to a revival of research at the interface between
statistical physics and computer science. The purpose of the present review is
to introduce the non physicist reader to the concepts required to understand
the literature in that field and to present some major results. We shall discuss
the refined picture of the satisfiable phase in particular as viewed in statistical
mechanics and the impact on the algorithmic approach (Survey Propagation,
an extension of Belief Propagation used in communication theory and statistical
inference) as inspired by this view.

While the presentation will mostly focus on the k-Satisfiability problem (with
random constraints) we will occasionally also discuss the computational problem
of solving linear systems of Boolean equations, called k-XORSAT. A good rea-
son to do so is that this problem exhibits tremendous ’syntactic’similarities with
random k-Satisfiability, while being technically simpler to study. In addition k-
Satisfiability and k-XORSAT have very different and interesting computational
properties as will be discussed in this chapter. Last but not least k-XORSAT is
closely related to error-correcting codes in communication theory.

The chapter is divided into four main parts. In Section 22.2 we present the
basic statistical physics concepts related to phase transitions, and their nature.
Those are illustrated on a simple example of a decision problem, the so-called
perceptron problem. In Section 22.3 we review the scenario of the various phase
transitions observable in random k-SAT. Section 22.4 and 22.5 present the tech-
niques used to study various type of algorithms in optimization: Local search,
backtracking procedures, and message passing algorithms. We close with some
conclusive remarks in Sec. 22.6.
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22.2. Phase Transitions: Basic Concepts and Illustration

22.2.1. A simple decision problem with a phase transition: the
continuous perceptron

For pedagogical reasons we first discuss a simple example exhibiting several im-
portant features we shall define more formally in the next subsection. Consider
M points T 1, . . . , TM of the N -dimensional space RN , their coordinates being
denoted T a = (T a

1 , . . . , T
a
N ). The continuous perceptron problem consists in de-

ciding the existence of a vector σ ∈ RN which has a positive scalar product with
all vectors linking the origin of RN to the T ’s,

σ · T a ≡
N∑
i=1

σi T
a
i > 0 , ∀ a = 1, . . . ,M , (22.1)

or in other words determining whether the M points belong to the same half-space.
The term continuous in the name of the problem emphasizes the domain RN of
the variable σ. This makes the problem polynomial from worst-case complexity
point of view [HKP91].

Suppose now that the points are chosen independently, identically, uniformly
on the unit hypersphere, and call

P (N,M) = Probability that a set of M randomly chosen points
belong to the same half-space.

This quantity can be computed exactly [Cov65] (see also Chapter 5.7 of [HKP91])
and is plotted in Fig. 22.1 as a function of the ratio α = M/N for increasing sizes
N = 5, 20, 100. Obviously P is a decreasing function of the number M of points
for a given size N : increasing the number of constraints can only make more
difficult the simultaneous satisfaction of all of them. More surprisingly, the figure
suggests that, in the large size limit N → ∞, the probability P reaches a limiting
value 0 or 1 depending on whether the ratio α lies, respectively, above or below
some ‘critical’ value αs = 2. This is confirmed by the analytical expression of P
obtained in [Cov65],

P (N,M) =
1

2M−1

min(N−1,M−1)∑
i=0

(
M − 1

i

)
, (22.2)

from which one can easily show that, indeed,

lim
N→∞

P (N,M = Nα) =

{
1 if α < αs

0 if α > αs

, with αs = 2 . (22.3)

Actually the analytical expression of P allows to describe more accurately
the drop in the probability as α increases. To this aim we make a zoom on the
transition region M ≈ Nαs and find from (22.2) that

lim
N→∞

P (N,M = Nαs(1 + λN−1/2) ) =

∫ ∞

λ
√
2

dx√
2π

e−x2/2 . (22.4)

As it should the limits λ → ±∞ give back the coarse description of Eq. (22.3)
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Figure 22.1. Probability P (N,M) that M random points on the N -dimensional unit hyper-
sphere are located in the same half-space. Symbols correspond to Cover’s exact result [Cov65],
see Eq. (22.2), lines serve as guides to the eye.

22.2.2. Generic definitions

We now put this simple example in a broader perspective and introduce some
generic concepts that it illustrates, along with the definitions of the problems
studied in the following.

• Constraint Satisfaction Problem (CSP)
A CSP is a decision problem where an assignment (or configuration)

of N variables σ = (σ1, . . . , σN ) ∈ XN is required to simultaneously satisfy
M constraints. In the continuous perceptron the domain of σ is RN and
the constraints impose the positivity of the scalar products (22.1). The
instance of the CSP, also called formula in the following, is said satisfiable
if there exists a solution (an assignment of σ fulfilling all the constraints).
The k-SAT problem is a boolean CSP (X = {True,False}) where each con-
straint (clause) is the disjunction (logical OR) of k literals (a variable or
its negation). Similarly in k-XORSAT the literals are combined by an eX-
clusive OR operation, or equivalently an addition modulo 2 of 0/1 boolean
variables is required to take a given value. The worst-case complexities of
these two problems are very different (k-XORSAT is in the P complexity
class for any k while k-SAT is NP-complete for any k ≥ 3), yet for the is-
sues of this review we shall see that they present a lot of similarities. In the
following we use the statistical mechanics convention and represent boolean
variables by Ising spins, X = {−1,+1}. A k-SAT clause will be defined by
k indices i1, . . . , ik ∈ [1, N ] and k values Ji1 , . . . , Jik = ±1, such that the
clause is unsatisfied by the assignment σ if and only if σij = Jij ∀j ∈ [1, k].
A k-XORSAT clause is satisfied if the product of the spins is equal to a
fixed value, σi1 . . . σik = J .

• random Constraint Satisfaction Problem (rCSP)
The set of instances of most CSP can be turned in a probability space

by defining a distribution over the sets of instances, as was done in the per-
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ceptron case by drawing the vertices T a uniformly on the hypersphere. The
random k-SAT formulas considered in the following are obtained by choos-
ing for each clause a independently a k-uplet of distinct indices ia1 , . . . , i

a
k

uniformly over the
(
N
k

)
possible ones, and negating or not the corresponding

literals (Ja
i = ±1) with equal probability one-half. The indices of random

XORSAT formulas are chosen similarly, with the constant Ja = ±1 uni-
formly.

• thermodynamic limit and phase transitions
These two terms are the physics jargon for, respectively, the large size

limit (N → ∞) and for threshold phenomena as stated for instance in
(22.3). In the thermodynamic limit the typical behavior of physical systems
is controlled by a small number of parameters, for instance the temperature
and pressure of a gas. At a phase transition these systems are drastically
altered by a tiny change of a control parameter, think for instance at what
happens to water when its temperature crosses 100 oC . This critical value
of the temperature separates two qualitatively distinct phases, liquid and
gaseous. For random CSPs the role of control parameter is usually played
by the ratio of constraints per variable, α = M/N , kept constant in the
thermodynamic limit. Eq. (22.3) describes a satisfiability transition for the
continuous perceptron, the critical value αs = 2 separating a satisfiable
phase at low α where instances typically have solutions to a phase where
they typically do not. Typically is used here as a synonym for with high
probability, i.e. with a probability which goes to one in the thermodynamic
limit.

• Finite Size Scaling (FSS)
The refined description of the neighborhood of the critical value of α

provided by (22.4) is known as a finite size scaling relation. More generally
the finite size scaling hypothesis for a threshold phenomenon takes the form

lim
N→∞

P (N,M = Nαs(1 + λN−1/ν) ) = F(λ) , (22.5)

where ν is called the FSS exponent (2 for the continuous perceptron) and
the scaling function F(λ) has limits 1 and 0 at respectively −∞ and +∞.
This means that, for a large but finite size N , the transition window for
the values of M/N where the probability drops from 1− ϵ down to ϵ is, for
arbitrary small ϵ, of width N−1/ν . Results of this flavour are familiar in
the study of random graphs [JLR00]; for instance the appearance of a gi-
ant component containing a finite fraction of the vertices of an Erdős-Rényi
random graph happens on a window of width N−1/3 on the average connec-
tivity. FSS relations are important, not only from the theoretical point of
view, but also for practical applications. Indeed numerical experiments are
always performed on finite-size instances while theoretical predictions on
phase transitions are usually true in the N → ∞ limit. Finite-size scaling
relations help to bridge the gap between the two. We shall review some
FSS results in Sec. 22.3.5.

Let us emphasize that random k-SAT, and other random CSP, are expected to
share some features of the continuous perceptron model, for instance the existence
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of a satisfiability threshold, but of course not its extreme analytical simplicity. In
fact, despite an intensive research activity, the mere existence of a satisfiability
threshold for random SAT formulas remains a (widely accepted) conjecture. A
significant achievement towards the resolution of the conjecture was the proof by
Friedgut of the existence of a non-uniform sharp threshold [Fri99]. There exists
also upper [Dub01] and lower [Fra01] bounds on the possible location of this
putative threshold, which become almost tight for large values of k [AP04]. We
refer the reader to Part 1, Chapter 10 of this volume for more details on these
issues. This difficulty to obtain tight results with the currently available rigorous
techniques is a motivation for the use of heuristic statistical mechanics methods,
that provide intuitions on why the standard mathematical ones run into trouble
and how to amend them. In the recent years important results first conjectured by
physicists were indeed rigorously proven. Before describing in some generality the
statistical mechanics approach, it is instructive to study a simple variation of the
perceptron model for which the basic probabilistic techniques become inefficient.

22.2.3. The perceptron problem continued: binary variables

The binary perceptron problem consists in looking for solutions of (22.1) on the
hypercube i.e. the domain of the variable σ is XN = {−1,+1}N instead of RN .
This decision problem is NP-complete. Unfortunately Cover’s calculation [Cov65]
cannot be extended to this case, though it is natural to expect a similar satis-
fiability threshold phenomenon at an a priori distinct value αs. Let us first try
to study this point with basic probabilistic tools, namely the first and second
moment method [AS00]. The former is an application of the Markov inequality,

Prob[Z > 0] ≤ E[Z] , (22.6)

valid for positive integer valued random variables Z. We shall use it taking for Z
the number of solutions of (22.1),

Z =
∑

σ∈XN

M∏
a=1

θ(σ · T a) , (22.7)

where θ(x) = 1 if x > 0, 0 if x ≤ 0. The expectation of the number of solutions
is easily computed,

E[Z] = 2N × 2−M = eN G1 with G1 = (1− α) ln 2 , (22.8)

and vanishes when N → ∞ if α > 1. Hence, from Markov’s inequality (22.6),
with high probability constraints (22.1) have no solution on the hypercube when
the ratio α exceeds unity: if the threshold αs exists, it must satisfy the bound
αs ≤ 1. One can look for a lower bound to αs using the second moment method,
relying on the inequality [AS00]

E[Z]2

E[Z2]
≤ Prob[Z > 0] . (22.9)
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The expectation of the squared number of solutions reads

E[Z2] =
∑
σ,σ′

(E[θ(σ · T ) θ(σ′ · T )])M (22.10)

since the vertices T a are chosen independently of each other. The expectation
on the right hand side of the above expression is simply the probability that the
vector pointing to a randomly chosen vertex, T , has positive scalar product with
both vectors σ, σ′. Elementary geometrical considerations reveal that

E[θ(σ · T ) θ(σ′ · T )] = 1

2π
(π − φ(σ, σ′)) (22.11)

where φ is the relative angle between the two vectors. This angle can be alterna-
tively parametrized by the overlap between σ and σ′, i.e. the normalized scalar
product,

q =
1

N

N∑
i=1

σi σ
′
i = 1− 2

1

N

N∑
i=1

I(σi ̸= σ′
i) . (22.12)

The last expression, in which I(E) denotes the indicator function of the event E,
reveals the correspondence between the concept of overlap and the more tradi-
tional Hamming distance. The sum over vectors in (22.10) can then be replaced
by a sum over overlap values with appropriate combinatorial coefficients counting
the number of pairs of vectors at a given overlap. The outcome is

E[Z2] = 2N
∑

q=−1,−1+ 2
N ,−1+ 4

N ,...,1

(
N

N
(
1+q
2

)) (
1

2
− 1

2π
Arcos q

)M

. (22.13)

The main point in the above equation is that the sum (22.10) with exponentially
many terms is organized as a sum over polynomially many equivalence classes (of
exponential size each). It is this reorganization of the sum that makes it possible
to essentially replace summation with maximization when N gets large. Using
the Laplace method,

lim
N→∞

1

N
lnE[Z2] = max

−1<q<1
G2(q) , (22.14)

where

G2(q) = ln 2 −
(
1 + q

2

)
ln

(
1 + q

2

)
−
(
1− q

2

)
ln

(
1− q

2

)
+ α ln

(
1

2
− 1

2π
Arcosq

)
. (22.15)

Unfortunately no useful lower bound to αs can be obtained from such a direct
application of the second moment method. Indeed, maximization of G2 (22.15)
over q shows that E[Z2] ≫ (E[Z])2 when N diverges, whenever α > 0, and in
consequence the left hand side of (22.9) vanishes. What causes this failure, and
how it can be cured with the use of the ’replica method’ will be discussed in
Section 22.2.5.
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Note that the perceptron problem is not as far as it could seem from the
main subject of this review. There exists indeed a natural mapping between the
binary perceptron problem and k-SAT. Assume the vertices T of the perceptron
problem, instead of being drawn on the hypersphere, have coordinates that can
take three values: Ti = −1, 0, 1. Consider now a k-SAT formula F . To each
clause a of F we associate the vertex T a with coordinates T a

i = −Ja
i if variable

i appears in clause a, 0 otherwise. Of course
∑

i |T a
i | = k: exactly k coordinates

have non zero values for each vertex. Then replace condition (22.1) with
N∑
i=1

σi T
a
i > −(k − 1) , ∀ a = 1, . . . ,M . (22.16)

The scalar product is not required to be positive any longer, but to be larger
than −(k− 1). It is an easy check that the perceptron problem admits a solution
on the hypercube (σi = ±1) if and only if F is satisfiable. While in the binary
perceptron model all coordinates are non-vanishing, only a finite number of them
take non zero values in k-SAT. For this reason k-SAT is called a diluted model
in statistical physics.

22.2.4. From random CSP to statistical mechanics of disordered
systems

The binary perceptron example demonstrated that, while the number of solu-
tions Z of a satisfiable random CSP usually scales exponentially with the size of
the problem, large fluctuations can prevent the direct use of standard moment
methods1. The concepts and computation techniques used to tackle this difficulty
were in fact developed in an apparently different field, the statistical mechanics
of disordered systems [MPV87].

Let us review some basic concepts of statistical mechanics (for introductory
books see for example [Ma85, Hua90]). A physical system can be modeled by a
space of configuration σ ∈ XN , on which an energy function E(σ) is defined. For
instance usual magnets are described by Ising spins σi = ±1, the energy being
minimized when adjacent spins take the same value. The equilibrium properties of
a physical system at temperature T are given by the Gibbs-Boltzmann probability
measure on XN ,

µ(σ) =
1

Z
exp[−βE(σ)] , (22.17)

where the inverse temperature β equals 1/T and Z is a normalization called par-
tition function. The energy function E has a natural scaling, linear in the number
N of variables (such a quantity is said to be extensive). In consequence in the
thermodynamic limit the Gibbs-Boltzmann measure concentrates on configura-
tions with a given energy density (e = E/N), which depends on the conjugated
parameter β. The number of such configurations is usually exponentially large,
≈ exp[Ns], with s called the entropy density. The partition function is thus dom-
inated by the contribution of these configurations, hence lim(lnZ/N) = s− βe.

1The second moment method fails for the random k-SAT problem; yet a refined version of
it was used in [AP04], which leads to asymptotically (at large k) tight bounds on the location
of the satisfiability threshold.
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In the above presentation we supposed the energy to be a simple, known func-
tion of the configurations. In fact some magnetic compounds, called spin-glasses,
are intrinsically disordered on a microscopic scale. This means that there is no
hope in describing exactly their microscopic details, but that one should rather
assume their energy to be itself a random function with a known distribution.
Hopefully in the thermodynamic limit the fluctuations of the thermodynamic ob-
servables as the energy and entropy density vanish, hence the properties of a
typical sample will be closely described by the average (over the distribution of
the energy function) of the entropy and energy density.

The random CSPs fit naturally in this line of research. The energy function
E(σ) of a CSP is defined as the number of constraints violated by the assign-
ment σ, in other words this is the cost function to be minimized in the associated
optimization problem (MAXSAT for instance). Moreover the distribution of ran-
dom instances of CSP is the counterpart of the distribution over the microscopic
description of a disordered solid. The study of the optimal configurations of a
CSP, and in particular the characterization of a satisfiability phase transition, is
achieved by taking the β → ∞ limit. Indeed, when this parameter increases (or
equivalently the temperature goes to 0), the law (22.17) favors the lowest energy
configurations. In particular if the formula is satisfiable µ becomes the uniform
measures over the solutions. Two important features of the formula can be de-
duced from the behavior of Z at large β: the ground-state energy Eg = minσ E(σ),
which indicates how good are the optimal configurations, and the ground state
entropy Sg = ln(|{σ : E(σ) = Eg}|), which counts the number of these optimal
configurations. The satisfiability of a formula is equivalent to its ground-state
energy being equal to 0. In the large N limit these two thermodynamic quanti-
ties are supposed to concentrate around their mean values (this is proven for E
in [BFU93]), we thus introduce the associated typical densities,

eg(α) = lim
N→∞

1

N
E[Eg] , sg(α) = lim

N→∞

1

N
E[Sg] . (22.18)

Notice that, in the satisfiable phase, sg is simply the expected log of the number
of solutions.

Some criteria are needed to relate these thermodynamic quantities to the (pre-
sumed) satisfiability threshold αs. A first approach, used for instance in [MZ97],
consists in locating it as the point where the ground-state energy density eg be-
comes positive. The assumption underlying this reasoning is the absence of an
intermediate, typically UNSAT regime, with a sub-extensive positive Eg. In the
discussion of the binary perceptron we used another criterion, namely we recog-
nized αs as the ratio at which the ground-state entropy density vanishes. This
argument will be true if the typical number of solutions vanishes continuously
at αs. It is easy to realize that this is not the case for random k-SAT: at any
finite value of α a finite fraction exp[−αk] of the variables do not appear in any
clause, which leads to a trivial lower bound (ln 2) exp[−αk] on sg (in the satis-
fiable regime). This quantity is thus finite at the transition, a large number of
solutions disappear suddenly at αs. Even if it is wrong, the criterion sg(α) = 0
for the determination of the satisfiability transition is instructive for two reasons.
First, it becomes asymptotically correct at large k (free variables are very rare
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in this limit), this is why it works for the binary perceptron of Section 22.2.3
(which is, as we have seen, close to k-SAT with k of order N). Second, it will
reappear below in a refined version: we shall indeed decompose the entropy in
two qualitatively distinct contributions, one of the two being indeed vanishing at
the satisfiability transition.

22.2.5. Large deviations and the replica method

We have seen in Section 22.2.3 that the number of solutions of the binary percep-
tron exhibits large fluctuations around its expectation i.e. E[Z2] ≫ (E[Z])2 when
N diverges, whenever α > 0. A possible scenario which explains this absence of
concentration of the number of solutions is the following. As shown by the mo-
ment calculation the natural scaling of Z is exponentially large in N (as is the total
configuration space XN ). We shall thus denote s = (lnZ)/N the random variable
counting the log of the number of solutions. Suppose s follows a large deviation
principle [DZ98] that we state in a very rough way as Prob[s] ≈ exp[NL(s)], with
L(s) a negative rate function, assumed for simplicity to be concave. Then the
moments of Z are given, at the leading exponential order, by

lim
N→∞

1

N
lnE[Zn] = max

s
[L(s) + ns] , (22.19)

and are controlled by the values of s such that L′(s) = −n. The moments of
larger and larger order n are thus dominated by the contribution of rarer and
rarer instances with larger and larger numbers of solutions. On the contrary the
typical value of the number of solutions is given by the maximum of L, reached
in a value we denote sg(α): with high probability when N → ∞, Z is comprised
between eN(sg(α)−ϵ) and eN(sg(α)+ϵ), for any ϵ > 0. From this reasoning it appears
that the relevant quantity to be computed is

sg(α) = lim
N→∞

1

N
E[lnZ] = lim

N→∞
lim
n→0

1

nN
lnE[Zn] . (22.20)

This idea of computing moments of vanishing order is known in statistical mechan-
ics as the replica2 method [MPV87]. Its non-rigorous implementation consists in
determining the moments of integer order n, which are then continued towards
n = 0. The outcome of such a computation for the binary perceptron problem
reads [KM89]

sg(α) = max
q,q̂

{
− 1

2
q(1− q̂) +

∫ ∞

−∞
Dz ln(2 cosh(z

√
q̂)) (22.21)

+ α

∫ ∞

−∞
Dz ln

[∫ ∞

z
√

q/(1−q)

Dy

]}
,

where Dz ≡ dz e−z2/2/
√
2π. The entropy sg(α) is a decreasing function of α,

which vanishes in αs ≃ 0.833. Numerical experiments support this value for the
critical ratio of the satisfiable/unsatisfiable phase transition.

2The vocable replicas comes from the presence of n copies of the vector σ in the calculation
of Zn (see the n = 2 case in formula (22.10)).
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The calculation of the second moment is naturally related to the determina-
tion of the value of the overlap q between pairs of solutions (or equivalently their
Hamming distance, recall Eq. (22.12)). This conclusion extends to the calcula-
tion of the nth moment for any integer n, and to the n → 0 limit. The value of
q maximizing the r.h.s. of (22.21), q∗(α), represents the average overlap between
two solutions of the same set of constraints (22.1). Actually the distribution of
overlaps is highly concentrated in the large N limit around q∗(α), in other words
the (reduced) Hamming distance between two solutions is, with high probability,
equal to d∗(α) = (1 − q∗(α))/2. This distance d∗(α) ranges from 1

2 for α = 0 to
≃ 1

4 at α = αs. Slightly below the critical ratio solutions are still far away from
each other on the hypercube3.

22.3. Phase transitions in random CSPs

22.3.1. The clustering phenomenon

We have seen that the statistical physics approach to the perceptron problem
naturally provided us with information about the geometry of the space of its
solutions. Maybe one of the most important contribution of physicists to the
field of random CSP was to suggest the presence of further phase transitions in
the satisfiable regime α < αs, affecting qualitatively the geometry (structure) of
the set of solutions [BMW00, MZ02, KMRT+07].

This subset of the configuration space is indeed thought to break down into
“clusters” in a part of the satisfiable phase, α ∈ [αd, αs], αd being the thresh-
old value for the clustering transition. Clusters are meant as a partition of the
set of solutions having certain properties listed below. Each cluster contains an
exponential number of solutions, exp[Nsint], and the clusters are themselves ex-
ponentially numerous, exp[NΣ]. The total entropy density thus decomposes into
the sum of sint, the internal entropy of the clusters and Σ, encoding the num-
ber of these clusters, usually termed complexity in this context. Furthermore,
solutions inside a given cluster should be well-connected, while two solutions of
distinct clusters are well-separated. A possible definition for these notions is the
following. Suppose σ and τ are two solutions of a given cluster. Then one can
construct a path (σ = σ0, σ1, . . . , σn−1, σn = τ) where any two successive σi are
separated by a sub-extensive Hamming distance. On the contrary such a path
does not exist if σ and τ belong to two distinct clusters. Clustered configura-
tion spaces as described above have been often encountered in various contexts,
e.g. neural networks [MO94] and mean-field spin glasses [KT87]. A vast body
of involved, yet non-rigorous, analytical techniques [MPV87] have been devel-
oped in the field of statistical mechanics of disordered systems to tackle such
situations, some of them having been justified rigorously [Tal03, PT04, FL03].
In this literature clusters appear under the name of “pure states”, or “lumps”
(see for instance the chapter 6 of [Tal03] for a rigorous definition and proof of
existence in a related model). As we shall explain in a few lines, this clustering
phenomenon has been demonstrated rigorously in the case of random XORSAT

3This situation is very different from the continuous perceptron case, where the typical
overlap q∗(α) reaches one when α tends to 2: a single solution is left right at the critical ratio.
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instances [MRTZ03, CDMM03]. For random SAT instances, where in fact the
detailed picture of the satisfiable phase is thought to be richer [KMRT+07], there
are some rigorous results [MMZ05, DMMZ08, ART06] on the existence of clusters
for k ≥ 8.

22.3.2. Phase transitions in random XORSAT

Consider an instance F of the XORSAT problem [RTWZ01], i.e. a list of M
linear equations each involving k out of N boolean variables, where the additions
are computed modulo 2. The study performed in [MRTZ03, CDMM03] provides
a detailed picture of the clustering and satisfiability transition sketched above. A
crucial point is the construction of a core subformula according to the following
algorithm. Let us denote F0 = F the initial set of equations, and V0 the set
of variables which appear in at least one equation of F0. A sequence FT , VT is
constructed recursively: if there are no variables in VT which appear in exactly
one equation of FT the algorithm stops. Otherwise one of these “leaf variables”
σi is chosen arbitrarily, FT+1 is constructed from FT by removing the unique
equation in which σi appeared, and VT+1 is defined as the set of variables which
appear at least once in FT+1. Let us call T∗ the number of steps performed
before the algorithm stops, and F ′ = FT∗ , V ′ = VT∗ the remaining clauses and
variables. Note first that despite the arbitrariness in the choice of the removed
leaves, the output subformula F ′ is unambiguously determined by F . Indeed,
F ′ can be defined as the maximal (in the inclusion sense) subformula in which
all present variables have a minimal occurrence number of 2, and is thus unique.
In graph theoretic terminology F ′ is the 2-core of F , the q-core of hypergraphs
being a generalization of the more familiar notion on graphs, thoroughly studied
in random graph ensembles in [PSW96]. Extending this study, relying on the
approximability of this leaf removal process by differential equations [Kur70], it
was shown in [MRTZ03, CDMM03] that there is a threshold phenomenon at
αd(k). For α < αd the 2-core F ′ is, with high probability, empty, whereas it
contains a finite fraction of the variables and equations for α > αd. αd is easily
determined numerically: it is the smallest value of α such that the equation
x = 1− exp[−αkxk−1] has a non-trivial solution in (0, 1].

It turns out that F is satisfiable if and only if F ′ is, and that the number of
solutions of these two formulas are related in an enlightening way. It is clear that if
the 2-core has no solution, there is no way to find one for the full formula. Suppose
on the contrary that an assignment of the variables in V ′ that satisfy the equations
of F ′ has been found, and let us show how to construct a solution of F (and count
in how many possible ways we can do this). Set N0 = 1, and reintroduce step
by step the removed equations, starting from the last: in the n’th step of this
new procedure we reintroduce the clause which was removed at step T∗−n of the
leaf removal. This reintroduced clause has dn = |VT∗−n−1| − |VT∗−n| ≥ 1 leaves;
their configuration can be chosen in 2dn−1 ways to satisfy the reintroduced clause,
irrespectively of the previous choices, and we bookkeep this number of possible
extensions by setting Nn+1 = Nn2

dn−1. Finally the total number of solutions
of F compatible with the choice of the solution of F ′ is obtained by adding the
freedom of the variables which appeared in no equations of F , Nint = NT∗2

N−|V0|.
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Figure 22.2. Complexity and total entropy for 3-XORSAT, in units of ln 2. The inset presents
an enlargement of the regime α ∈ [αd, αs].

Let us underline that Nint is independent of the initial satisfying assignment of
the variables in V ′, as appears clearly from the description of the reconstruction
algorithm; this property can be traced back to the linear algebra structure of
the problem. This suggests naturally the decomposition of the total number of
solutions of F as the product of the number of satisfying assignments of V ′, call it
Ncore, by the number of compatible full solutions Nint. In terms of the associated
entropy densities this decomposition is additive

s = Σ+ sint , Σ ≡ 1

N
lnNcore , sint ≡

1

N
lnNint , (22.22)

where the quantity Σ is the entropy density associated to the core of the formula.
It is in fact much easier technically to compute the statistical (with respect to the
choice of the random formula F ) properties of Σ and sint once this decomposition
has been done (the fluctuations in the number of solutions is much smaller once
the non-core part of the formula has been removed, and the second moment
method can be applied). The outcome of the computations [MRTZ03, CDMM03]
is the determination of the threshold value αs for the appearance of a solution
of the 2-core F ′ (and thus of the complete formula), along with explicit formulas
for the typical values of Σ and s. These two quantities are plotted on Fig. 22.2.
The satisfiability threshold corresponds to the cancellation of Σ: the number of
solutions of the core vanishes continuously at αs, while the total entropy remains
finite because of the freedom of choice for the variables in the non-core part of
the formula.

On top of the simplification in the analytical determination of the satisfia-
bility threshold, this core decomposition of a formula unveils the change in the
structure of the set of solutions that occurs at αd. Indeed, let us call clusters the
sets of solutions of F reconstructed from a common solution of F ′. Then one can
show that this partition of the solution set of F exhibits the properties exposed
in Sec. 22.3.1, namely that solutions are well-connected inside a cluster and sepa-
rated from one cluster to another. The number of clusters is precisely equal to the
number of solutions of the core subformula, it thus undergoes a drastic change at
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Table 22.1. Critical connectivities for the dynamical, condensation and satisfiability transi-
tions for k-SAT random formulas.

αd [KMRT+07] αc [KMRT+07] αs[MMZ06]
k = 3 3.86 3.86 4.267
k = 4 9.38 9.547 9.93
k = 5 19.16 20.80 21.12
k = 6 36.53 43.08 43.4

αd. For smaller ratio of constraints the core is typically empty, there is one single
cluster containing all solutions; when the threshold αd is reached there appears
an exponential numbers of clusters, the rate of growth of this exponential being
given by the complexity Σ. Before considering the extension of this picture to
random SAT problems, let us mention that further studies of the geometry of the
space of solutions of random XORSAT instances can be found in [MS06a, MM06].

22.3.3. Phase transitions in random SAT

The possibility of a clustering transition in random SAT problems was first stud-
ied in [BMW00] by means of variational approximations. Later developments
allowed the computation of the complexity and, from the condition of its vanish-
ing, the estimation of the satisfiability threshold αs. This was first done for k = 3
in [MZ02] and generalized for k ≥ 4 in [MMZ06], some of the values of αs thus
computed are reported in Tab. 22.1. A systematic expansion of αs at large k was
also performed in [MMZ06].

SAT formulas do not share the linear algebra structure of XORSAT, which
makes the analysis of the clustering transition much more difficult, and leads to
a richer structure of the satisfiable phase α ≤ αs. The simple arguments are not
valid anymore, one cannot extract a core subformula from which the partition
of the solutions into clusters follows directly. It is thus necessary to define them
as a partition of the solutions such that each cluster is well-connected and well-
separated from the other ones. A second complication arises: there is no reason
for the clusters to contain all the same number of solutions, as was ensured by the
linear structure of XORSAT. On the contrary, as was observed in [BMW00] and
in [MPR05] for the similar random COL problem, one faces a variety of clusters
with various internal entropies sint. The complexity Σ becomes a function of sint,
in other words the number of clusters of internal entropy density sint is typically
exponential, growing at the leading order like exp[NΣ(sint)]. Drawing the con-
sequences of these observations, a refined picture of the satisfiable phase, and in
particular the existence of a new (so-called condensation) threshold αc ∈ [αd, αs],
was advocated in [KMRT+07]. Let us briefly sketch some of these new features
and their relationship with the previous results of [MZ02, MMZ06]. Assuming the
existence of a positive, concave, complexity function Σ(sint), continuously van-
ishing outside an interval of internal entropy densities [s−, s+], the total entropy
density is given by

s = lim
N→∞

1

N
ln

∫ s+

s−

dsint e
N [Σ(sint)+sint] . (22.23)
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In the thermodynamic limit the integral can be evaluated with the Laplace
method. Two qualitatively distinct situations can arise, whether the integral
is dominated by a critical point in the interior of the interval [s−, s+], or by the
neighborhood of the upper limit s+. In the former case an overwhelming major-
ity of the solutions are contained in an exponential number of clusters, while in
the latter the dominant contributions comes from a sub-exponential number of
clusters of internal entropy s+, as Σ(s+) = 0. The threshold αc separates the
first regime [αd, αc] where the relevant clusters are exponentially numerous, from
the second, condensated situation for α ∈ [αc, αs] with a sub-exponential number
of dominant clusters4.

The computations of [MZ02, MMZ06] did not take into account the distribu-
tion of the various internal entropies of the clusters, which explains the discrep-
ancy in the estimation of the clustering threshold αd between [MZ02, MMZ06] and
[KMRT+07]. Let us however emphasize that this refinement of the picture does
not contradict the estimation of the satisfiability threshold of [MZ02, MMZ06]:
the complexity computed in these works is Σmax, the maximal value of Σ(sint)
reached at a local maximum with Σ′(s) = 0, which indeed vanishes when the
whole complexity function disappears.

It is fair to say that the details of the picture proposed by statistical me-
chanics studies have rapidly evolved in the last years, and might still be im-
proved. They rely indeed on self-consistent assumptions which are rather tedious
to check [MPRT04]. Some elements of the clustering scenario have however been
established rigorously in [MMZ05] (see also [DMMZ08, ART06] for more results).
In particular, for some values of (large enough) k and α in the satisfiable regime,
there exist forbidden intermediate Hamming distances between pairs of configu-
rations, which are either close (in the same cluster) or far apart (in two distinct
clusters).

Note finally that the consequences of such distributions of clusters internal
entropies were investigated on a toy model in [MZ08], and that yet another thresh-
old αf > αd for the appearance of frozen variables constrained to take the same
values in all solutions of a given cluster was investigated in [Sem08].

22.3.4. A glimpse at the computations

The statistical mechanics of disordered systems [MPV87] was first developed on
so-called fully-connected models, where each variable appears in a number of
constraints which diverges in the thermodynamic limit. This is for instance the
case of the perceptron problem discussed in Sec. 22.2. On the contrary, in a
random k-SAT instance a variable is typically involved in a finite number of
clauses, one speaks in this case of a diluted model. This finite connectivity is a
source of major technical complications. In particular the replica method, alluded
to in Sec. 22.2.3 and applied to random k-SAT in [MZ97, BMW00], turns out to
be rather cumbersome for diluted models in the presence of clustering [Mon98].
The cavity formalism [MP01, MP03, MZ02], formally equivalent to the replica
one, is more adapted to the diluted models. In the following paragraphs we shall

4This picture is expected to hold for k ≥ 4; for k = 3, the dominant clusters are expected to
be of sub-exponential number in the whole clustered phase, hence αc = αd in this case.
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try to give a few hints at the strategy underlying the cavity computations, that
might hopefully ease the reading of the original literature.

The description of the random formula ensemble has two complementary
aspects: a global (thermodynamic) one, which amounts to the computation of
the typical energy and number of optimal configurations. A more ambitious
description will also provide geometrical information on the organization of this
set of optimal configurations inside the N -dimensional hypercube. As discussed
above these two aspects are in fact interleaved, the clustering affecting both the
thermodynamics (by the decomposition of the entropy into the complexity and
the internal entropy) and the geometry of the configuration space. Let us for
simplicity concentrate on the α < αs regime and consider a satisfiable formula
F . Both thermodynamic and geometric aspects can be studied in terms of the
uniform probability law over the solutions of F :

µ(σ) =
1

Z

M∏
a=1

wa(σa) , (22.24)

where Z is the number of solutions of F , the product runs over its clauses, and wa

is the indicator function of the event “clause a is satisfied by the assignment σ”
(in fact this depends only on the configuration of the k variables involved in the
clause a, that we denote σa). For instance the (information theoretic) entropy of
µ is equal to lnZ, the log of the number of solutions, and geometric properties
can be studied by computing averages with respect to µ of well-chosen functions
of σ.

A convenient representation of such a law are factor graphs [KFL01]. These
are bipartite graphs with two types of vertices (see Fig. 22.3 for an illustration):
one variable node (filled circle) is associated to each of the N Boolean variables,
while the clauses are represented by M constraint nodes (empty squares). By
convention we use the indices a, b, . . . for the constraint nodes, i, j, . . . for the
variables. An edge is drawn between variable node i and constraint node a if and
only if a depends on i. To indicate which value of σi satisfies the clause a one can
use two type of linestyles, solid and dashed on the figure. A notation repeatedly
used in the following is ∂a (resp. ∂i) for the neighborhood of a constraint (resp.
variable) node, i.e. the set of adjacent variable (resp. constraint) nodes. In this
context \ denotes the subtraction from a set. We shall more precisely denote
∂+i(a) (resp. ∂−i(a)) the set of clauses in ∂i \ a agreeing (resp. disagreeing)
with a on the satisfying value of σi, and ∂σi the set of clauses in ∂i which are
satisfied by σi = σ. This graphical representation naturally suggests a notion
of distance between variable nodes i and j, defined as the minimal number of
constraint nodes crossed on a path of the factor graph linking nodes i and j.

Suppose now that F is drawn from the random ensemble. The corresponding
random factor graph enjoys several interesting properties [JLR00]. The degree |∂i|
of a randomly chosen variable i is, in the thermodynamic limit, a Poisson random
variable of average αk. If instead of a node one chooses randomly an edge a−i, the
outdegree |∂i \ a| of i has again a Poisson distribution with the same parameter.
Moreover the sign of the literals being chosen uniformly, independently of the
topology of the factor graph, the degrees |∂+i|, |∂−i|, |∂+i(a)| and |∂−i(a)| are
Poisson random variables of parameter αk/2. Another important feature of these
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Figure 22.3. The factor graph representation of a small 3-SAT formula:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨ x6 ∨ x7).

random factor graphs is their local tree-like character: if the portion of the formula
at graph distance smaller than L of a randomly chosen variable is exposed, the
probability that this subgraph is a tree goes to 1 if L is kept fixed while the size
N goes to infinity.

Let us for a second forget about the rest of the graph and consider a finite
formula whose factor graph is a tree, as is the case for the example of Fig. 22.3.
The probability law µ of Eq. (22.24) becomes in this case a rather simple object.
Tree structures are indeed naturally amenable to a recursive (dynamic program-
ming) treatment, operating first on sub-trees which are then glued together. More
precisely, for each edge between a variable node i and a constraint node a one
defines the amputated tree Fa→i (resp. Fi→a) by removing all clauses in ∂i apart
from a (resp. removing only a). These subtrees are associated to probability laws
µa→i (resp. µi→a), defined as in Eq. (22.24) but with a product running only on
the clauses present in Fa→i (resp. Fi→a). The marginal law of the root variable
i in these amputated probability measures can be parametrized by a single real,
as σi can take only two values (that, in the Ising spin convention, are ±1). We
thus define these fields, or messages, hi→a and ua→i, by

µi→a(σi) =
1− Ja

i σi tanhhi→a

2
, µa→i(σi) =

1− Ja
i σi tanhua→i

2
, (22.25)

where we recall that σi = Ja
i is the value of the literal i unsatisfying clause a. A

standard reasoning (see for instance [BMZ05]) allows to derive recursive equations
(illustrated in Fig. 22.4) on these messages,

hi→a =
∑

b∈∂+i(a)

ub→i −
∑

b∈∂−i(a)

ub→i , (22.26)

ua→i = −1

2
ln

1−
∏

j∈∂a\i

1− tanhhj→a

2

 .

Because the factor graph is a tree this set of equations has a unique solution
which can be efficiently determined: one start from the leaves (degree 1 variable
nodes) which obey the boundary condition hi→a = 0, and progresses inwards the
graph. The law µ can be completely described from the values of the h’s and u’s
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solutions of these equations for all edges of the graph. For instance the marginal
probability of σi can be written as

µ(σi) =
1 + σi tanhhi

2
, hi =

∑
a∈∂+i

ua→i −
∑

a∈∂−i

ua→i . (22.27)

In addition the entropy s of solutions of such a tree formula, can be computed
from the values of the messages h and u [BMZ05].

We shall come back to the equations (22.26), and justify the denomina-
tion messages, in Sec. 22.5.3; these can be interpreted as the Belief Propaga-
tion [KFL01, YFW01, YFW03] heuristic equations for loopy factor graphs.

The factor graph of random formulas is only locally tree-like; the simple
computation sketched above has thus to be amended in order to take into account
the effect of the distant, loopy part of the formula. Let us call FL the factor
graph made of variable nodes at graph distance smaller than or equal to L from
an arbitrarily chosen variable node i in a large random formula F , and BL the
variable nodes at distance exactly L from i. Without loss of generality in the
thermodynamic limit, we can assume that FL is a tree. The cavity method
amounts to an hypothesis on the effect of the distant part of the factor graph,
F \FL, i.e. on the boundary condition it induces on FL. In its simplest (so called
replica symmetric) version, that is believed to correctly describe the unclustered
situation for α ≤ αd, F \FL is replaced, for each variable node j in the boundary
BL, by a fictitious constraint node which sends a bias uext→j . In other words the
boundary condition is factorized on the various nodes of BL. The factorization
property is intuitively sound because, in the amputated factor graph F \ FL, the
distance between the variables of BL is typically large (of order lnN), and these
variables should thus be weakly correlated. Actually this property holds only
when α ≤ αd, as strong correlations arise in the clustered phase. The external
biases are then turned into random variables to take into account the randomness
in the construction of the factor graphs, and Eq. (22.26) acquires a distributional
meaning. The messages h (resp. u) are supposed to be i.i.d. random variables
drawn from a common distribution, the degrees ∂±i(a) being two independent
Poisson random variables of parameter αk/2. These distributional equations can
be numerically solved by a population dynamics algorithm [MP01], also known as
a particle representation in the statistics litterature. The typical entropy density
is then computed by averaging s over these distributions of h and u.

This description fails in the presence of clustering, which induces correlations
between the variable nodes of BL in the amputated factor graph F \FL. To take
these correlations into account a refined version of the cavity method (termed
one step of replica symmetry breaking, in short 1RSB) has been developed. It
relies on the hypothesis that the partition of the solution space into clusters γ has
nice decorrelation properties: once decomposed onto this partition, µ restricted
to a cluster γ behaves essentially as in the unclustered phase (it is a pure state in
statistical mechanics jargon). Each directed edge a → i should thus bear a family
of messages uγ

a→i, one for each cluster, or alternatively a distribution Qa→i(u)
of the messages with respect to the choice of γ. The equations (22.26) are thus
promoted to recursions between distributions Pi→a(h), Qa→i(u), which depends
on a real m known as the Parisi breaking parameter. Its role is to select the
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Figure 22.4. A schematic representation of Eq. (22.26).

size of the investigated clusters, i.e. the number of solutions they contain. The
computation of the typical entropy density is indeed replaced by a more detailed
thermodynamic potential [Mon95],

Φ(m) =
1

N
ln
∑
γ

Zm
γ =

1

N
ln

∫ s+

s−

dsint e
N [Σ(sint)+msint] . (22.28)

In this formula Zγ denotes the number of solutions inside a cluster γ, and we
used the hypothesis that at the leading order the number of clusters with internal
entropy density sint is given by exp[NΣ(sint)]. The complexity function Σ(sint)
can thus be obtained from Φ(m) by an inverse Legendre transform. For generic
values of m this approach is computationally very demanding; following the same
steps as in the replica symmetric version of the cavity method one faces a distri-
bution (with respect to the topology of the factor graph) of distributions (with
respect to the choice of the clusters) of messages. Simplifications however arise
for m = 1 and m = 0 [KMRT+07]; the latter case corresponds in fact to the orig-
inal Survey Propagation approach of [MZ02]. As appears clearly in Eq. (22.28),
for this value of m all clusters are treated on an equal footing and the dominant
contribution comes from the most numerous clusters, independently of their sizes.
Moreover, as we further explain in Sec. 22.5.3, the structure of the equations can
be greatly simplified in this case, the distribution over the cluster of fields being
parametrized by a single number.

22.3.5. Finite Size Scaling results

As we explained in Sec. 22.2.2 the threshold phenomenon can be more precisely
described by finite size scaling relations. Let us mention some FSS results about
the transitions we just discussed.

For random 2-SAT, where the satisfiability property is known [dlV01] to ex-
hibit a sharp threshold at αs = 1, the width of the transition window has been de-
termined in [BBC+01]. The range of α where the probability of satisfaction drops
significantly is of order N−1/3, i.e. the exponent ν is equal to 3, as for the random
graph percolation. This similarity is not surprising, the proof of [BBC+01] relies
indeed on a mapping of 2-SAT formulas onto random (directed) graphs.

The clustering transition for XORSAT was first conjectured in [AMRU04]
(in the related context of error-correcting codes) then proved in [DM07] to be
described by

P (N,M = N(αd +N−1/2λ+N−2/3δ)) = F(λ) +O(N−5/26) , (22.29)
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where δ is a subleading shift correction that has been explicitly computed, and the
scaling function F is, upto a multiplicative factor on λ, the same error function
as in Eq. (22.4).

A general result has been proved in [Wil02] on the width of transition win-
dows. Under rather unrestrictive conditions one can show that ν ≥ 2: the tran-
sitions cannot be arbitrarily sharp. Roughly speaking the bound is valid when
a finite fraction of the clauses are not decisive for the property of the formulas
studied, for instance clauses containing a leaf variable are not relevant for the sat-
isfiability of a formula. The number of these irrelevant clauses is of order N and
has thus natural fluctuations of order

√
N ; these fluctuations blur the transition

window which cannot be sharper than N−1/2.
Several studies (see for instance [KS94, MZK+99, RTWZ01]) have attempted

to determine the transition window from numeric evaluations of the probability
P (N,α), for instance for the satisfiability threshold of random 3-SAT [KS94,
MZK+99] and XORSAT [RTWZ01]. These studies are necessarily confined to
small formula sizes, as the typical computation cost of complete algorithms grows
exponentially around the transition. In consequence the asymptotic regime of
the transition window, N−1/ν , is often hidden by subleading corrections which
are difficult to evaluate, and in [KS94, MZK+99] the reported values of ν were
found to be in contradiction with the latter derived rigorous bound. This is not
an isolated case, numerical studies are often plagued by uncontrolled finite-size
effects, as for instance in the bootstrap percolation [GLBD05], a variation of the
classical percolation problem.

22.4. Local search algorithms

The rest of this review will be devoted to the study of various SAT-solving algo-
rithms. Algorithms are, to some extent, similar to dynamical processes studied
in statistical physics. In this context the focus is however mainly on stochastic
processes that respect detailed balance with respect to the Gibbs-Boltzmann mea-
sure [Cug03], a condition which is rarely respected by solving algorithms. Physics
inspired techniques can yet be useful, and will emerge in three different ways. The
random walk algorithms considered in this Section are stochastic processes in the
space of configurations (not fulfilling the detailed balance condition), moving by
small steps where one or a few variables are modified. Out-of-equilibrium physics
(and in particular growth processes) provide an interesting view on classical com-
plete algorithms (DPLL), as shown in Sec. 22.5.2. Finally, the picture of the
satisfiable phase put forward in Sec. 22.3 underlies the message-passing proce-
dures discussed in Sec. 22.5.3.

22.4.1. Pure random walk sat, definition and results valid for all
instances

Papadimitriou [Pap91] proposed the following algorithm, called Pure Random
Walk Sat (PRWSAT) in the following, to solve k-SAT formulas:

1. Choose an initial assignment σ(0) uniformly at random and set T = 0.
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2. If σ(T ) is a solution of the formula (i.e. E(σ(T )) = 0), output solution
and stop. If T = Tmax, a threshold fixed beforehand, output undeter-
mined and stop.

3. Otherwise, pick uniformly at random a clause among those that are UNSAT
in σ(T ); pick uniformly at random one of the k variables of this clause and
flip it (reverse its status from True to False and vice-versa) to define the
next assignment σ(T + 1); set T → T + 1 and go back to step 2.

This defines a stochastic process σ(T ), a biased random walk in the space of
configurations. The modification σ(T ) → σ(T + 1) in step 3 makes the selected
clause satisfied; however the flip of a variable i can turn previously satisfied clauses
into unsatisfied ones (those which were satisfied solely by i in σ(T )).

This algorithm is not complete: if it outputs a solution one is certain that the
formula was satisfiable (and the current configuration provides a certificate of it),
but if no solution has been found within the Tmax allowed steps one cannot be
sure that the formula was unsatisfiable. There are however two rigorous results
which makes it a probabilistically almost complete algorithm [MR95].

For k = 2, it was shown in [Pap91] that PRWSAT finds a solution in a time
of order O(N2) with high probability for all satisfiable instances. Hence, one is
almost certain that the formula was unsatisfiable if the output of the algorithm
is undetermined after Tmax = O(N2) steps.

Schöning [Sch02] proposed the following variation for k = 3. If the algorithm
fails to find a solution before Tmax = 3N steps, instead of stopping and printing
undetermined, it restarts from step 1, with a new random initial condition σ(0).
Schöning proved that if after R restarts no solution has been found, then the
probability that the instance is satisfiable is upper-bounded by exp[−R× (3/4)N ]
(asymptotically in N). This means that a computational cost of order (4/3)N

allows to reduce the probability of error of the algorithm to arbitrary small values.
Note that if the time scaling of this bound is exponential, it is also exponentially
smaller than the 2N cost of an exhaustive enumeration. Improvements on the
factor 4/3 are reported in [BS04].

22.4.2. Typical behavior on random k-SAT instances

The results quoted above are true for any k-SAT instance. An interesting phe-
nomenology arises when one applies the PRWSAT algorithm to instances drawn
from the random k-SAT ensemble [SM03, BHW03]. Figure 22.5 displays the
temporal evolution of the number of unsatisfied clauses during the execution of
the algorithm, for two random 3-SAT instances of constraint ratio α = 2 and 3.
The two curves are very different: at low values of α the energy decays rather
fast towards 0, until a point where the algorithm finds a solution and stops. On
the other hand, for larger values of α, the energy first decays towards a strictly
positive value, around which it fluctuates for a long time, until a large fluctua-
tion reaches 0, signaling the discovery of a solution. A more detailed study with
formulas of increasing sizes reveals that a threshold value αrw ≈ 2.7 (for k = 3)
sharply separates this two dynamical regimes. In fact the fraction of unsatisfied
clauses φ = E/M , expressed in terms of the reduced time t = T/M , concentrates
in the thermodynamic limit around a deterministic function φ(t). For α < αrw
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Figure 22.5. Fraction of unsatisfied constraints φ = E/M in function of reduced time t = T/M

during the execution of PRWSAT on random 3-SAT formulas with N = 500 variables. Top:
α = 2, Bottom: α = 3.

the function φ(t) reaches 0 at a finite value tsol(α, k), which means that the algo-
rithm finds a solution in a linear number of steps, typically close to Ntsol(α, k).
On the contrary for α > αrw the reduced energy φ(t) reaches a positive value
φas(α, k) as t → ∞; a solution, if any, can be found only through large fluctua-
tions of the energy which occur on a time scale exponentially large in N . This
is an example of a metastability phenomenon, found in several other stochastic
processes, for instance the contact process [Lig85]. When the threshold αrw is
reached from below the solving time tsol(α, k) diverges, while the height of the
plateau φas(α, k) vanishes when αrw is approached from above.

In [SM03, BHW03] various statistical mechanics inspired techniques have
been applied to study analytically this phenomenology, some results are presented
in Figure 22.6. The low α regime can be tackled by a systematic expansion of
tsol(α, k) in powers of α. The first three terms of these series have been computed,
and are shown on the left panel to be in good agreement with the numerical
simulations.

Another approach was followed to characterize the transition αrw, and to
compute (approximations of) the asymptotic fraction of unsatisfied clauses φas

and the intensity of the fluctuations around it. The idea is to project the Marko-
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Figure 22.6. Top: linear solving time tsol(α, 3) for random 3-SAT formulas in function of
α; symbols correspond to numerical simulations, solid line to the second order expansion in
α obtained in [SM03]. Bottom: fraction of unsatisfied constraints reached at large time for
α > αrw for random 3-SAT formulas; symbols correspond to numerical simulations, solid line
to the approximate analytical computations of [SM03, BHW03].

vian evolution of the configuration σ(T ) on a simpler observable, the energy E(T ).
Obviously the Markovian property is lost in this transformation, and the dynam-
ics of E(T ) is much more complex. One can however approximate it by assuming
that all configurations of the same energy E(T ) are equiprobable at a given step
of execution of the algorithm. This rough approximation of the evolution of E(T )
is found to concentrate around its mean value in the thermodynamic limit, as was
observed numerically for the original process. Standard techniques allow to com-
pute this average approximated evolution, which exhibits the threshold behavior
explained above at a value α = (2k − 1)/k which is, for k = 3, slightly lower
than the threshold αrw. The right panel of Fig. 22.6 confronts the results of this
approximation with the numerical simulations; given the roughness of the hy-
pothesis the agreement is rather satisfying, and is expected to improve for larger
values of k.

The rigorous results on the behavior of PRWSAT on random instances are
very few. Let us mention in particular [ABS06], which proved that the solving
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time for random 3-SAT formulas is typically polynomial up to α = 1.63, a result
in agreement yet weaker than the numerical results presented here.

22.4.3. More efficient variants of the algorithm

The threshold αrw for linear time solving of random instances by PRWSAT was
found above to be much maller than the satisfiability threshold αs. It must how-
ever be emphasized that PRWSAT is only the simplest example of a large fam-
ily of local search algorithms, see for instance [SKC94, MSK97, SAO05, AA06,
AAA+07]. They all share the same structure: a solution is searched through a
random walk in the space of configurations, one variable being modified at each
step. The choice of the flipped variable is made according to various heuristics;
the goal is to find a compromise between the greediness of the walk which seeks
to minimize locally the energy of the current assignment, and the necessity to
allow for moves increasing the energy in order to avoid the trapping in local min-
ima of the energy function. A frequently encountered ingredient of the heuristics,
which is of a greedy nature, is focusing: the flipped variable necessarily belongs
to at least one unsatisfied clause before the flip; this clause thus becomes satisfied
after the move. Moreover, instead of choosing randomly one of the k variables of
the unsatisfied clause, one can avoid flipping variables which would turn satisfied
clauses into unsatisfied ones [SKC94, MSK97]. Another way to implement the
greediness [SAO05] consists in bookkeeping the lowest energy found so far during
the walk, and forbids flips which will raise the energy of the current assignment
above the registered record plus a tolerance threshold. These demanding require-
ments have to be balanced with noisy, random steps, allowing to escape traps
which are only locally minima of the objective function.

These more elaborate heuristics are very numerous, and depend on parame-
ters that are finely tuned to achieve the best performances, hence an exhaustive
comparison is out of the scope of this review. Let us only mention that some
of these heuristics are reported in [SAO05, AA06] to efficiently find solutions of
large (up to N = 106) random formulas of 3-SAT at ratio α very close to the
satisfiability threshold, i.e. for α ≲ 4.21.

22.5. Decimation based algorithms

The algorithms studied in the remainder of the review are of a very different
nature compared to the local search procedures described above. Given an ini-
tial formula F whose satisfiability has to be decided, they proceed by assigning
sequentially (and permanently) the value of some of the variables. The formula
can be simplified under such a partial assignment: clauses which are satisfied by
at least one of their literal can be removed, while literals unsatisfying a clause
are discarded from the clause. It is instructive to consider the following thought
experiment: suppose one can consult an oracle who, given a formula, is able to
compute the marginal probability of the variables, in the uniform probability
measure over the satisfying assignments of the formula. With the help of such
an oracle it would be possible to sample uniformly the satisfying assignments of
F , by computing these marginals, setting one unassigned variable according to
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its marginal, and then proceed in the same way with the simplified formula. A
slightly less ambitious, yet still unrealistic, task is to find one satisfying configu-
ration (not necessarily uniformly distributed) of F ; this can be performed if the
oracle is able to reveal, for each formula he is questioned about, which of the
unassigned variables take the same value in all satisfying assignments, and what
is this value. Then it is enough to avoid setting incorrectly such a constrained
variable to obtain at the end a satisfying assignment.

Of course such procedures are not meant as practical algorithms; instead of
these fictitious oracles one has to resort to simplified evidences gathered from the
current formula to guide the choice of the variable to assign. In Sec. 22.5.1 we
consider algorithms exploiting basic information on the number of occurrences
of each variable, and their behavior in the satisfiable regime of random SAT
formulas. They are turned into complete algorithms by allowing for backtracking
the heuristic choices, as explained in 22.5.2. Finally in Sec. 22.5.3 we shall use
more refined message-passing sub-procedures to provide the information used in
the assignment steps.

22.5.1. Heuristic search: the success-to-failure transition

The first algorithm we consider was introduced and analyzed by Franco and his
collaborators [CF86, CF90].

1. If a formula contains a unit clause i.e. a clause with a single variable,
this clause is satisfied through an appropriate assignment of its unique
variable (propagation); If the formula contains no unit-clause a variable
and its truth value are chosen according to some heuristic rule (free choice).
Note that the unit clause propagation corresponds to the obvious answer
an oracle would provide on such a formula.

2. Then the clauses in which the assigned variable appears are simplified:
satisfied clauses are removed, the other ones are reduced.

3. Resume from step 1.

The procedure will end if one of two conditions is verified:

1. The formula is completely empty (all clauses have been removed), and a
solution has been found (success).

2. A contradiction is generated from the presence of two opposite unit clauses.
The algorithm halts. We do not know if a solution exists and has not been
found or if there is no solution (failure).

The simplest example of heuristic is called Unit Clause (UC) and consists in
choosing a variable uniformly at random among those that are not yet set, and
assigning it to true or false uniformly at random. More sophisticated heuristics
can take into account the number of occurrences of each variable and of its nega-
tion, the length of the clauses in which each variable appears, or they can set more
than one variable at a time. For example, in the Generalized Unit Clause (GUC),
the variable is always chosen among those appearing in the shortest clauses.

Numerical experiments and theory show that the results of this procedure
applied to random k-SAT formulas with ratios α and size N can be classified in
two regimes:
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• At low ratio α < αH the search procedure finds a solution with positive
probability (over the formulas and the random choices of the algorithm)
when N → ∞.

• At high ratio α > αH the probability of finding a solution vanishes when
N → ∞. Notice that αH < αs: solutions do exist in the range [αH , αs] but
are not found by this heuristic.

The above algorithm modifies the formula as it proceeds; during the execution
of the algorithm the current formula will contain clauses of length 2 and 3 (we
specialize here to k = 3-SAT for the sake of simplicity but higher values of k can
be considered). The sub-formulas generated by the search procedure maintain
their statistical uniformity (conditioned on the number of clauses of length 2 and
3). Franco and collaborators used this fact to write down differential equations
for the evolution of the densities of 2- and 3-clauses as a function of the fraction
t of eliminated variables. We do not reproduce those equations here, see [Ach01]
for a pedagogical review. Based on this analysis Frieze and Suen [FS96] were able
to calculate, in the limit of infinite size, the probability of successful search. The
outcome for the UC heuristic is

P(UC)
success(α) = exp

{
− 1

4
√
8/3α− 1

arctan

[
1√

8/3α− 1

]
− 3

16
α

}
(22.30)

when α < 8
3 , and P = 0 for larger ratios. The probability Psuccess is, as expected,

a decreasing function of α; it vanishes in αH = 8
3 . A similar calculation shows

that αH ≃ 3.003 for the GUC heuristic [FS96].
Franco et al’s analysis can be recast in the following terms. Under the opera-

tion of the algorithm the original 3-SAT formula is turned into a mixed 2+p-SAT
formula where p denotes the fraction of the clauses with 3 variables: there are
Nα · (1− p) 2-clauses and Nαp 3-clauses. As we mentioned earlier the simplicity
of the heuristics maintains a statistical uniformity over the formulas with a given
value of α and p. This observation motivated the study of the random 2 + p-
SAT ensemble by statistical mechanics methods [MZK+99, BMW00], some of
the predictions being later proven by the rigorous analysis of [AKKK01]. At the
heuristic level one expects the existence of a p dependent satisfiability threshold
αs(p), interpolating between the 2-SAT known threshold, αs(p = 0) = 1, and the
conjectured 3-SAT case, αs(p = 1) ≈ 4.267. The upperbound αs(p) ≤ 1/(1 − p)
is easily obtained: for the mixed formula to be satisfiable, necessarily the sub-
formula obtained by retaining only the clauses of length 2 must be satisfiable as
well. In fact this bound is tight for all values of p ∈ [0, 2/5]. During the execu-
tion of the algorithm the ratio α and the fraction p are ‘dynamical’ parameters,
changing with the fraction t = T/N of variables assigned by the algorithm. They
define the coordinates of the representative point of the instance at ‘time’ t in
the (p, α) plane of Figure 22.7. The motion of the representative point defines
the search trajectory of the algorithm. Trajectories start from the point of co-
ordinates p(0) = 1, α(0) = α and end up on the α = 0 axis when a solution
is found. A necessary condition for the probability of success to be positive is
that the 2-SAT subformula is satisfiable, that is, α · (1 − p) < 1. In other words
success is possible provided the trajectory does not cross the contradiction line
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Figure 22.7. Trajectories generated by heuristic search acting on 3-SAT for α = 2 and α = 3.5.
For all heuristics, the starting point is on the p = 1 axis, with the initial value of α as ordinate.
The curves that end at the origin correspond to UC, those ending on the p = 1 axis correspond
to GUC. The thick line represents the satisfiability threshold: the part on the left of the critical
point (2/5, 5/3) is exact and coincides with the contradiction line, where contradictions are
generated with high probability, of equation α = 1/(1 − p), and which is plotted for larger
values of p as well; the part on the right of the critical point is only a sketch. When the
trajectories hit the satisfiability threshold, at points G for UC and G’ for GUC, they enter a
region in which massive backtracking takes place, and the trajectory represents the evolution
prior to backtracking. The dashed part of the curves is “unphysical”, i.e. the trajectories stop
when the contradiction curve is reached.

α = 1/(1 − p) (Figure 22.7). The largest initial ratio α such that no crossing
occurs defines αH . Notice that the search trajectory is a stochastic object. How-
ever deviations from its average locus in the plane vanish in the N → ∞ limit
(concentration phenomenon). Large deviations from the typical behavior can be
calculated e.g. to estimate the probability of success above αH [CM05].

The precise form of Psuccess and the value αH of the ratio where it vanishes
are specific to the heuristic considered (UC in (22.30)). However the behavior of
the probability close to αH is largely independent of the heuristic (provided it
preserves the uniformity of the subformulas generated):

lnPsuccess

(
α = αH(1− λ)

)
∼ −λ−1/2. (22.31)

This universality can loosely be interpreted by observing that for α close to αH

the trajectory will pass very close to the contradiction curve α · (1 − p) = 1,
which characterizes the locus of the points where the probability that a variable
is assigned by the heuristics H vanishes (and all the variables are assigned by
Unit Propagation). The value of αH depend on the “shape” of the trajectory far
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from this curve, and will therefore depend on the heuristics, but the probability
of success (i.e. of avoiding the contradiction curve) for values of α close to αH

will only depend on the local behavior of the trajectory close to the contradiction
curve, a region where most variables are assigned through Unit Propagation and
not sensitive to the heuristics.

The finite-size corrections to equation (22.30) are also universal (i.e. inde-
pendent on the heuristics):

lnPsuccess(α = αH(1− λ), N) ∼ −N1/6 F(λN1/3) , (22.32)

where F is a universal scaling function which can be exactly expressed in terms of
the Airy function [DM04]. This result indicates that right at αH the probability
of success decreases as a stretched exponential ∼ exp(−cst N

1
6 ).

The exponent 1
3 suggests that the critical scaling of P is related to random

graphs. After T = tN steps of the procedure, the sub-formula will consists of
C3, C2 and C1 clauses of length 3, 2 and 1 respectively (notice that these are
extensive, i.e. O(N) quantities). We can represent the clauses of length 1 and 2
(which are the relevant ones to understand the generation of contradictions) as
an oriented graph G in the following way. We will have a vertex for each literal,
and represent 1-clauses by “marking” the literal appearing in each; a 2-clause
will be represented by two directed edges, corresponding to the two implications
equivalent to the clause (for example, x1∨ x̄2 is represented by the directed edges
x̄1 → x̄2 and x2 → x1). The average out-degree of the vertices in the graph is
γ = C2/(N − T ) = α(t)(1− p(t)).

What is the effect of the algorithm on G? The algorithm will proceed in
“rounds”: a variable is set by the heuristics, and a series of Unit Propagations are
performed until no more unit clauses are left, at which point a new round starts.
Notice that during a round, extensive quantities as C1, C2, C3 are likely to vary by
bounded amounts and γ to vary by O( 1

N ) (this is the very reason that guarantees
that these quantities are concentrated around their mean). At each step of Unit
Propagation, a marked literal (say x) is assigned and removed from G, together
with all the edges connected to it, and the “descendants” of x (i.e. the literals at
the end of outgoing edges) are marked. Also x̄ is removed together with its edges,
but its descendants are not marked. Therefore, the marked vertices “diffuse” in
a connected component of G following directed edges. Moreover, at each step
new edges corresponding to clauses of length 3 that get simplified into clauses of
length 2 are added to the graph.

When γ > 1, G undergoes a directed percolation transition, and a giant
component of size O(N) appears, in which it is possible to go from any vertex
to any other vertex by following a directed path. When this happens, there is
a finite probability that two opposite literals x and x̄ can be reached from some
other literal y following a directed path. If ȳ is selected by Unit Propagation, at
some time both x and x̄ will be marked, and this corresponds to a contradiction.
This simple argument explains more than just the condition γ = α ·(1−p) = 1 for
the failure of the heuristic search. It can also be used to explain the the exponent
1
6 in the scaling (22.32), see [DM04, Mon07] for more details.
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22.5.2. Backtrack-based search: the
Davis-Putnam-Loveland-Logemann procedure

The heuristic search procedure of the previous Section can be easily turned into
a complete procedure for finding solutions or proving that formulas are not sat-
isfiable. When a contradiction is found the algorithm now backtracks to the last
assigned variable (by the heuristic; unit clause propagations are merely conse-
quences of previous assignments), invert it, and the search resumes. If another
contradiction is found the algorithm backtracks to the last-but-one assigned vari-
able and so on. The algorithm stops either if a solution is found or all possible
backtracks have been unsuccessful and a proof of unsatisfiability is obtained. This
algorithm was proposed by Davis, Putnam, Loveland and Logemann and is re-
ferred to as DPLL in the following.

The history of the search process can be represented by a search tree, where
the nodes represent the variables assigned, and the descending edges their values
(Figure 22.8). The leaves of the tree correspond to solutions (S), or to contradic-
tions (C). The analysis of the α < αH regime in the previous Section leads us to
the conclusion that search trees look like Figure 22.8A at small ratios5.

For ratios α > αH DPLL is very likely to find a contradiction. Backtracking
enters into play, and is responsible for the drastic slowing down of the algorithm.
The success-to-failure transition takes place in the non-backtracking algorithm
into a polynomial-to-exponential transition in DPLL. The question is to compute
the growth exponent of the average tree size, T ∼ eNτ(α), as a function of the
ratio α.

22.5.2.1. Exponential regime: Unsatisfiable formulas

Consider first the case of unsatisfiable formulas (α > αs) where all leaves carry
contradictions after DPLL halts (Figure 22.8B). DPLL builds the tree in a se-
quential manner, adding nodes and edges one after the other, and completing
branches through backtracking steps. We can think of the same search tree built
in a parallel way [CM01]. At time (depth T ) our tree is composed of L(T ) ≤ 2T

branches, each carrying a partial assignment over T variables. Step T consists
in assigning one more variable to each branch, according to DPLL rules, that is,
through unit-propagation or the heuristic rule. In the latter case we will speak of
a splitting event, as two branches will emerge from this node, corresponding to
the two possible values of the variable assigned. The possible consequences of this
assignment are the emergence of a contradiction (which put an end to the branch),
or the simplification of the attached formulas (the branch keeps growing).

The number of branches L(T ) is a stochastic variable. Its average value can
be calculated as follows [Mon05]. Let us define the average number L(C⃗;T ) of
branches of depth T which bear a formula containing C3 (resp. C2, C1) equa-
tions of length 3 (resp. 2,1), with C⃗ = (C1, C2, C3) Initially L(C⃗; 0) = 1 for
C⃗ = (0, 0, αN), 0 otherwise. We shall call M(C⃗ ′, C⃗;T ) the average number of
branches described by C⃗ ′ generated from a C⃗ branch once the T th variable is

5A small amount of backtracking may be necessary to find the solution since Psuccess < 1
[FS96], but the overall picture of a single branch is not qualitatively affected.
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Figure 22.8. Search trees generated by DPLL: A. linear, satisfiable (α < αH); B. exponential,
unsatisfiable (α > αc). C. exponential, satisfiable (αH < α < αc); Leaves are marked with S
(solutions) or C (contradictions). G is the highest node to which DPLL backtracks, see Fig. 22.7.

assigned [CM01, Mon07]. We have 0 ≤ M ≤ 2, the extreme values corresponding
to a contradiction and to a split respectively. We claim that

L(C⃗ ′;T + 1) =
∑
C⃗

M(C⃗ ′, C⃗;T ) L(C⃗;T ) . (22.33)

Evolution equation (22.33) could look like somewhat suspicious at first sight due
to its similarity with the approximation we have sketched in Sec. 22.4.2 for the
analysis of PRWSAT. Yet, thanks to the linearity of expectation, the correlations
between the branches (or better, the instances carried by the branches) do not
matter as far as the average number of branches is concerned.

For large N we expect that the number of alive (not hit by a contradiction)
branches grows exponentially with the depth, or, equivalently,∑

C1,C2,C3

L(C1, C2, C3;T ) ∼ eN λ(t)+o(N) (22.34)

The argument of the exponential, λ(t), can be found using partial differential
equation techniques generalizing the ordinary differential equation techniques of
a single branch in the absence of backtracking (Section 22.5.1). Details can be
found in [Mon05]. The outcome is that λ(t) is a function growing from λ = 0 at
t = 0, reaching a maximum value λM for some depth tM , and decreasing at larger
depths. tM is the depth in the tree of Figure 22.8B where most contradictions
are found; the number of contradiction leaves is, to exponential order, eNλM . We
conclude that the logarithm of the average size of the tree we were looking for is

τ = λM . (22.35)

For large α ≫ αs one finds τ = O(1/α), in agreement with the asymptotic scaling
of [BKPS02]. The calculation can be extended to higher values of k.
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22.5.2.2. Exponential regime: Satisfiable formulas

The above calculation holds for the unsatisfiable, exponential phase. How can we
understand the satisfiable but exponential regime αH < α < αs? The resolution
trajectory crosses the SAT/UNSAT critical line αs(p) at some point G shown in
Figure 22.7. Immediately after G the instance left by DPLL is unsatisfiable. A
subtree with all its leaves carrying contradictions will develop below G (Figure
22.8C). The size τG of this subtree can be easily calculated from the above theory
from the knowledge of the coordinates (pG, αG) of G. Once this subtree has been
built DPLL backtracks to G, flips the attached variable and will finally end up
with a solution. Hence the (log of the) number of splits necessary will be equal to
τ = (1− tG) τ

G
split [CM01]. Remark that our calculation gives the logarithm of the

average subtree size starting from the typical value of G. Numerical experiments
show that the resulting value for τ coincides very accurately with the most likely
tree size for finding a solution. The reason is that fluctuations in the sizes are
mostly due to fluctuations of the highest backtracking point G, that is, of the
first part of the search trajectory [CM05].

22.5.3. Message passing algorithms

According to the thought experiment proposed at the beginning of this Section
valuable information could be obtained from the knowledge of the marginal prob-
abilities of variables in the uniform measure over satisfying configurations. This
is an inference problem in the graphical model associated to the formula. In this
field message passing techniques (for instance Belief Propagation, or the min-sum
algorithm) are widely used to compute approximately such marginals [KFL01,
YFW01]. These numerical procedures introduce messages on the directed edges
of the factor graph representation of the problem (recall the definitions given in
Sec. 22.3.4), which are iteratively updated, the new value of a message being
computed from the old values of the incoming messages (see Fig. 22.4). When
the underlying graph is a tree, the message updates are guaranteed to converge in
a finite number of steps, and provide exact results. In the presence of cycles the
convergence of these recurrence equations is not guaranteed; they can however
be used heuristically, the iterations being repeated until a fixed point has been
reached (within a tolerance threshold). Though very few general results on the
convergence in presence of loops are known [TJ02] (see also [MS07] for low α
random SAT formulas) these heuristic procedures are often found to yield good
approximation of the marginals on generic factor graph problems.

The interest in this approach for solving random SAT instances was trig-
gered in the statistical mechanics community by the introduction of the Survey
Propagation algorithm [MZ02]. Since then several generalizations and reinterpre-
tations of SP have been put forward, see for instance [BZ04, MMW05, AGK04,
Par03b, BKcvZ04, CFMZ05]. In the following paragraph we present three differ-
ent message passing procedures, which differ in the nature of the messages passed
between nodes, following rather closely the presentation of [BMZ05] to which we
refer the reader for further details. We then discuss how these procedures have to
be interleaved with assignment (decimation) steps in order to constitute a solver
algorithm. Finally we shall review results obtained in a particular limit case (large
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α satisfiable formulas).

22.5.3.1. Definition of the message-passing algorithms

• Belief Propagation (BP)
For the sake of readability we recall here the recursive equations (22.26)

stated in Sec. 22.3.4 for the uniform probability measure over the solutions
of a tree formula,

hi→a =
∑

b∈∂+i(a)

ub→i −
∑

b∈∂−i(a)

ub→i , (22.36)

ua→i = −1

2
ln

1−
∏

j∈∂a\i

1− tanhhj→a

2

 .

where the h and u’s messages are reals (positive for u), parametrizing the
marginal probabilities (beliefs) for the value of a variable in absence of some
constraint nodes around it (cf. Eq. (22.25)). These equations can be used in
the heuristic way explained above for any formula, and constitute the BP
message-passing equations. Note that in the course of the simplification
process the degree of the clauses change, we thus adopt here and in the
following the natural convention that sums (resp. products) over empty
sets of indices are equal to 0 (resp. 1).

• Warning Propagation (WP)
The above-stated version of the BP equations become ill-defined for an

unsatisfiable formula, whether this was the case of the original formula or
because of some wrong assignment steps; in particular the normalization
constant of Eq. (22.24) vanishes. A way to cure this problem consists in in-
troducing a fictitious inverse temperature β and deriving the BP equations
corresponding to the regularized Gibbs-Boltzmann probability law (22.17),
taking as the energy function the number of unsatisfied constraints. In
the limit β → ∞, in which the Gibbs-Boltzmann measure concentrates on
the satisfying assignments, one can single out a part of the information
conveyed by the BP equations to obtain the simpler Warning Propagation
rules. Indeed the messages h, u are at leading order proportional to β,
with proportionality coefficients we shall denote ĥ and û. These messages
are less informative than the ones of BP, yet simpler to handle. One finds
indeed that instead of reals the WP messages are integers, more precisely
ĥ ∈ Z and û ∈ {0, 1}. They obey the following recursive equations (with a
structure similar to the ones of BP),

ĥi→a =
∑

b∈∂+i(a)

ûb→i −
∑

b∈∂−i(a)

ûb→i ,

ûa→i =
∏

j∈∂a\i

I(ĥj→a < 0) , (22.37)

where I(E) is the indicator function of the event E. The interpretation
of these equations goes as follows. ûa→i is equal to 1 if in all satisfying
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assignments of the amputated formula in which i is only constrained by a,
i takes the value satisfying a. This happens if all other variables of clause
a (i.e. ∂a \ i) are required to take their values unsatisfying a, hence the
form of the right part of (22.37). In such a case we say that a sends a
warning to variable i. In the first part of (22.37), the message ĥi→a sent
by a variable to a clause is computed by pondering the number of warnings
sent by all other clauses; it will in particular be negative if a majority of
clauses requires i to take the value unsatisfying a.

• Survey Propagation (SP)
The convergence of BP and WP iterations is not ensured on loopy

graphs. In particular the clustering phenomenon described in Sec. 22.3.1 is
likely to spoil the efficiency of these procedures. The Survey Propagation
(SP) algorithm introduced in [MZ02] has been designed to deal with these
clustered space of configurations. The underlying idea is that the simple
iterations (of BP or WP type) remain valid inside each cluster of satisfying
assignments; for each of these clusters γ and each directed edge of the factor
graph one has a message hγ

i→a (and uγ
a→i). One introduces on each edge

a survey of these messages, defined as their probability distribution with
respect to the choice of the clusters. Then some hypotheses are made on
the structure of the cluster decomposition in order to write closed equations
on the survey. We now make this approach explicitin a version adapted
to satisfiable instances [BMZ05], taking as the basic building block the
WP equations. This leads to a rather simple form of the survey. Indeed
ûa→i can only take two values, its probability distribution can thus be
parametrized by a single real δa→i ∈ [0, 1], the probability that ûa→i = 1.
Similarly the survey γi→a is the probability that ĥi→a < 0. The second
part of (22.37) is readily translated in probabilistic terms,

δa→i =
∏

j∈∂a\i

γj→a . (22.38)

The other part of the recursion takes a slightly more complicated form,

γi→a =
(1− π−

i→a)π
+
i→a

π+
i→a + π−

i→a − π+
i→aπ

−
i→a

,

with


π+
i→a =

∏
b∈∂+i(a)

(1− δb→i)

π−
i→a =

∏
b∈∂−i(a)

(1− δb→i)
. (22.39)

In this equation π+
i→a (resp. π−

i→a) corresponds to the probability that none
of the clauses agreeing (resp. disagreeing) with a on the value of the literal
of i sends a warning. For i to be constrained to the value unsatisfying a, at
least one of the clauses of ∂−i(a) should send a warning, and none of ∂+i(a),
which explains the form of the numerator of γi→a. The denominator arises
from the exclusion of the event that both clauses in ∂+i(a) and ∂−i(a) send
messages, a contradictory event in this version of SP which is devised for
satisfiable formulas.
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From the statistical mechanics point of view the SP equations arise
from a 1RSB cavity calculation, as sketched in Sec. 22.3.4, in the zero
temperature limit (β → ∞) and vanishing Parisi parameter m, these two
limits being either taken simultaneously as in [MZ02, BKcvZ04] or suc-
cessively [KMRT+07]. One can thus compute, from the solution of the
recursive equations on a single formula, an estimation of its complex-
ity, i.e. the number of its clusters (irrespectively of their sizes). The
message passing procedure can also be adapted, at the price of technical
complications, to unsatisfiable clustered formulas [BKcvZ04]. Note also
that the above SP equations have been shown to correspond to the BP
ones in an extended configuration space where variables can take a ‘joker’
value [BZ04, MMW05], mimicking the variables which are not frozen to a
single value in all the assignments of a given cluster. Interpolations between
the BP and SP equations have been studied in [AGK04, MMW05].

22.5.3.2. Exploiting the information

The information provided by these message passing procedures can be exploited
in order to solve satisfiability formulas; in the algorithm sketched at the beginning
of Sec. 22.5.1 the heuristic choice of the assigned variable, and its truth value,
can be done according to the results of the message passing on the current for-
mula. If BP were an exact inference algorithm, one could choose any unassigned
variable, compute its marginal according to Eq. (22.27), and draw it according
to this probability. Of course BP is only an approximate procedure, hence a
practical implementation of this idea should privilege the variables with marginal
probabilities closest to a deterministic law (i.e. with the largest |hi|), motivated
by the intuition that these are the least subject to the approximation errors of
BP. Similarly, if the message passing procedure used at each assignment step is
WP, one can fix the variable with the largest |ĥi| to the value corresponding to
the sign of ĥi. In the case of SP, the solution of the message passing equations are
used to compute, for each unassigned variable i, a triplet of numbers (γ+

i , γ−
i , γ0

i )
according to

γ+
i =

(1− π+
i )π

−
i

π+
i + π−

i − π+
i π

−
i

, γ−
i =

(1− π−
i )π

+
i

π+
i + π−

i − π+
i π

−
i

, γ0
i = 1− γ+

i − γ−
i ,

with


π+
i =

∏
a∈∂+i

(1− δa→i)

π−
i =

∏
a∈∂−i

(1− δa→i)
. (22.40)

γ+
i (resp. γ−

i ) is interpreted as the fraction of clusters in which σi = +1 (resp.
σi = −1) in all solutions of the cluster, hence γ0

i corresponds to the clusters
in which σi can take both values. In the version of [BMZ05], one then choose
the variable with the largest |γ+

i − γ−
i |, and fix it to σi = +1 (resp. σi = −1)

if γ+
i > γ−

i (resp. γ+
i < γ−

i ). In this way one tries to select an assignment
preserving the maximal number of clusters.

Of course many variants of these heuristic rules can be devised; for instance
after each message passing computation one can fix a finite fraction of the vari-
ables (instead of a single one), allows for some amount of backtracking [Par03a],
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or increase a soft bias instead of assigning completely a variable [CFMZ05]. More-
over the tolerance on the level of convergence of the message passing itself can also
be adjusted. All these implementation choices will affect the performances of the
solver, in particular the maximal value of α up to which random SAT instances
are solved efficiently, and thus makes difficult a precise statement about the lim-
its of these algorithms. In consequence we shall only report the impressive result
of [BMZ05], which presents an implementation 6 working for random 3-SAT in-
stances up to α = 4.24 (very close to the conjectured satisfiability threshold
αs ≈ 4.267) for problem sizes as large as N = 107.

The theoretical understanding of these message passing inspired solvers is still
poor compared to the algorithms studied in Sec. 22.5.1, which use much simpler
heuristics in their assignment steps. One difficulty is the description of the residual
formula after an extensive number of variables have been assigned; because of the
correlations between successive steps of the algorithm this residual formula is not
uniformly distributed conditioned on a few dynamical parameters, as was the
case with (α(t), p(t)) for the simpler heuristics of Sec. 22.5.1. One version of BP
guided decimation could however be studied analytically in [MRTS07], by means
of an analysis of the thought experiment discussed at the beginning of Sec. 22.5.
The study of another simple message passing algorithm is presented in the next
paragraph.

22.5.3.3. Warning Propagation on dense random formulas

Feige proved in [Fei02] a remarkable connection between the worst-case complex-
ity of approximation problems and the structure of random 3-SAT at large (but
independent of N) values of the ratio α. He introduced the following hardness
hypothesis for random 3-SAT formulas:

Hypothesis 1: Even if α is arbitrarily large (but independent of N), there is
no polynomial time algorithm that on most 3-SAT formulas outputs UNSAT, and
always outputs SAT on a 3-SAT formula that is satisfiable.

and used it to derive hardness of approximation results for various computational
problems. As we have seen these instances are typically unsatisfiable; the problem
of interest is thus to recognize efficiently the rare satisfiable instances of the
distribution.

A variant of this problem was studied in [FMV06], where WP was proven to
be effective in finding solutions of dense planted random formulas (the planted
distribution is the uniform distribution conditioned on being satisfied by a given
assignment). More precisely, [FMV06] proves that for α large enough (but inde-
pendent of N), the following holds with probability 1− e−O(α):

1. WP converges after at most O(lnN) iterations.
2. If a variable i has ĥi ̸= 0, then the sign of ĥi is equal to the value of σi

in the planted assignment. The number of such variables is bigger than
N(1 − e−O(α)) (i.e. almost all variables can be reconstructed from the
values of ĥi).

6http://www.ictp.trieste.it/˜zecchina/SP
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3. Once these variables are fixed to their correct assignments, the remaining
formula can be satisfied in time O(N) (in fact, it is a tree formula).

On the basis of non-rigorous statistical mechanics methods, these results were
argued in [AMZ07] to remain true when the planted distribution is replaced by the
uniform distribution conditioned on being satisfiable. In other words by iterating
WP for a number of iterations bigger than O(lnN) one is able to detect the
rare satisfiable instances at large α. The argument is based on the similarity
of structure between the two distributions at large α, namely the existence of
a single, small cluster of solutions where almost all variables are frozen to a
given value. This correspondence between the two distributions of instances was
proven rigorously in [COKV], where it was also shown that a related polynomial
algorithm succeeds with high probability in finding solutions of the satisfiable
distribution of large enough density α.

These results indicate that a stronger form of hypothesis 1, obtained by re-
placing always with with probability p (with respect to the uniform distribution
over the formulas and possibly to some randomness built in the algorithm), is
wrong for any p < 1. However, the validity of hypothesis 1 is still unknown for
random 3-SAT instances. Nevertheless, this result is interesting because it is one
of the rare cases in which the performances of a message-passing algorithm could
be analyzed in full detail.

22.6. Conclusion

This review was mainly dedicated to the random k-Satisfiability and k-Xor-
Satisfiability problems; the approach and results we presented however extend
to other random decision problems, in particular random graph q-coloring. This
problem consists in deciding whether each vertex of a graph can be assigned one
out of q possible colors, without giving the same color to the two extremities of
an edge. When input graphs are randomly drawn from Erdős-Renyi (ER) en-
semble G(N, p = c/N) a phase diagram similar to the one of k-SAT (Section
22.3) is obtained. There exists a colorable/uncolorable phase transition for some
critical average degree cs(q), with for instance cs(3) ≃ 4.69 [KPW04]. The col-
orable phase also exhibits the clustering and condensation transitions [ZK07] we
explained on the example of the k-Satisfiability. Actually what seems to matter
here is rather the structure of inputs and the symmetry properties of the decision
problem rather than its specific details. All the above considered input models
share a common, underlying ER random graph structure. From this point of
view it would be interesting to ‘escape’ from the ER ensemble and consider more
structured graphs e.g. embedded in a low dimensional space.

To what extent the similarity between phase diagrams correspond to simi-
lar behaviour in terms of hardness of resolution is an open question. Consider
the case of rare satisfiable instances for the random k-SAT and k-XORSAT well
above their sat/unsat thresholds (Section 22.5). Both problems share very simi-
lar statistical features. However, while a simple message-passing algorithm allows
one to easily find a (the) solution for the k-SAT problem this algorithm is ineffi-
cient for random k-XORSAT. Actually the local or decimation-based algorithms
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of Sections 22.4 and 22.5 are efficient to find solution to rare satisfable instances
of random k-SAT [BHL+02], but none of them works for random k-XORSAT
(while the problem is in P!). This example raises the important question of the
relationship between the statistical properties of solutions (or quasi-solutions)
encoded in the phase diagram and the (average) computational hardness. Very
little is known about this crucial point; on intuitive grounds one could expect the
clustering phenomenon to prevent an efficient solving of formulas by local search
algorithms of the random walk type. This is indeed true for a particular class of
stochastic processes [MS06b], those which respect the so-called detailed balance
conditions. This connection between clustering and hardness of resolution for
local search algorithms is much less obvious when the detailed balance conditions
are not respected, which is the case for most of the efficient variants of PRWSAT.
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Survey-propagation decimation through distributed local computa-
tions. Journal of Statistical Mechanics: Theory and Experiment,
2005(11):P11016, 2005.

[CM01] S. Cocco and R. Monasson. Trajectories in phase diagrams, growth
processes, and computational complexity: How search algorithms
solve the 3-satisfiability problem. Phys. Rev. Lett., 86(8):1654–1657,

38



Feb 2001.
[CM05] S. Cocco and R. Monasson. Restarts and exponential acceleration

of the Davis-Putnam-Loveland-Logemann algorithm: A large devi-
ation analysis of the generalized unit clause heuristic for random
3-SAT. Ann. Math. Artif. Intell., 43(1-4):153–172, 2005.

[COKV] A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik. Why almost all
k-cnf formulas are easy. to appear (2007).

[Cov65] T. M. Cover. Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition. IEEE
Transactions on Electronic Computers, 14:326–334, 1965.

[Cug03] L. Cugliandolo. Dynamics of glassy systems. In J. Barrat, M. Feigel-
man, J. Kurchan, and J. Dalibard, editors, Slow relaxations and
nonequilibrium dynamics in condensed matter, Les Houches, France,
2003. Springer-Verlag.

[dlV01] W. F. de la Vega. Random 2-sat: results and problems. Theor.
Comput. Sci., 265(1-2):131–146, 2001.

[DM04] C. Deroulers and R. Monasson. Critical behaviour of combinatorial
search algorithms, and the unitary-propagation universality class.
EPL (Europhysics Letters), 68(1):153–159, 2004.

[DM07] A. Dembo and A. Montanari. Finite size scaling for the core of large
random hypergraphs. arXiv:math.PR/0702007, 2007.
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[MMZ06] S. Mertens, M. Mézard, and R. Zecchina. Threshold values of ran-

40



dom K-SAT from the cavity method. Random Struct. Algorithms,
28(3):340–373, 2006.

[MO94] R. Monasson and D. O’Kane. Domains of solutions and replica
symmetry breaking in multilayer neural networks. EPL (Europhysics
Letters), 27(2):85–90, 1994.

[Mon95] R. Monasson. Structural glass transition and the entropy of the
metastable states. Phys. Rev. Lett., 75(15):2847–2850, Oct 1995.

[Mon98] R. Monasson. Optimization problems and replica symmetry break-
ing in finite connectivity spin glasses. Journal of Physics A: Math-
ematical and General, 31(2):513–529, 1998.

[Mon05] R. Monasson. A generating function method for the average-case
analysis of DPLL. Chekuri, Chandra (ed.) et al., Approxima-
tion, randomization and combinatorial optimization. Algorithms
and techniques. 8th international workshop on approximation al-
gorithms for combinatorial optimization problems, APPROX 2005,
and 9th international workshop on randomization and computation,
RANDOM 2005, Berkeley, CA, USA, August 22–24, 2005. Proceed-
ings. Berlin: Springer. Lecture Notes in Computer Science 3624,
402-413 (2005)., 2005.

[Mon07] R. Monasson. Introduction to phase transitions in random optimiza-
tion problems. In J. Bouchaud, M. Mézard, and J. Dalibard, editors,
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[MPV87] M. Mézard, G. Parisi, and M. A. Virasoro. Spin glass theory and
beyond. World Scientific, Singapore, 1987.

[MR95] R. Motwani and P. Ravaghan. Randomized algorithms. Cambridge
University Press, Cambridge, 1995.

[MRTS07] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Solving con-
straint satisfaction problems through belief propagation-guided deci-
mation. 2007. arXiv:0709.1667, to be published in the Proceedings
of the 45th Allerton Conference (2007).
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