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there has been spectacular progress 
over the past three decades in the 
development of a theory of classical 

glasses. Pioneering studies of correlations 
between the dynamic parameters that 
describe glass-forming materials has 
revealed that the glass transition is the 
result of a collective phenomenon. Close to 
the transition, the number of microscopic 
elements (atoms, molecules) that need 
to move together to relax any local 
perturbation increases sharply. This rapidly 
leads to a dynamical arrest that freezes 
these elements into a solid structure. Such 
long-range correlations produce universal 
behaviour across a diverse variety of 
systems, including silica glasses, emulsions, 
polymers and granular materials. Although 
most examples of glass forming are 
classical and occur at temperatures well 
above those at which quantum effects 
become important, there are notable 
exceptions. Yet, despite the aforementioned 
success in modelling wholly classical 
glass transitions, little progress has been 
made towards extending them to include 
the influence of quantum fluctuations. 
Writing in Nature Physics1, Markland and 
colleagues describe a theory that addresses 
this shortcoming.

Most descriptions of phase transitions 
use mean-field theory as their starting 
point. This describes the interaction 
potential of a single atom in terms of a 
‘mean field’ determined self-consistently 
from the average of its interaction with 
all other atoms in the system. This turns 
a complex many-body problem into a 
more computationally tractable single-
body problem. Mean-field theory predicts 
that the glass transition is driven by an 
underlying phase transition at which 
an ‘entropy crisis’ occurs — a point at 
which the entropy associated with the 
number of distinct local structures a 
liquid can form falls to zero. This is 
a strange kind of phase transition — 
called a random first-order transition 
(RFOT) — which is a second-order 
thermodynamic transition, but shares 
several important aspects of first-order 
transitions, such as metastability and the 
role of nucleation2,3.

The dynamic part of RFOT theory is 
called mode-coupling theory (MCT)4, and 
was developed in the context of critical 
phenomena. The thermodynamic part 
of RFOT theory is called replica theory, 
and was developed as a general tool for 
studying disordered systems5. As for any 
mean-field theory, the validity of RFOT 
theory should be discussed with extreme 
care. It is well known in the context of 
critical phenomena that fluctuations 
around the mean-field approximation 
can dramatically affect the behaviour of 
a system, and in some cases completely 
wash out the transition. However, even in 
situations where mean-field predictions are 
heavily altered by fluctuations, mean-field 
theory can retain its quantitative validity 
for systems far enough from their critical 
point and whose correlations are only 
moderately long-ranged. Moreover, both 
MCT and replica theory agree well with 
experiments and numerical simulations4,5.

Several authors attempted to build a 
theory of quantum glasses6,7, but none 
has so far been able to obtain quantitative 
results for realistic systems. That is, until 
now with the quantum glass picture 
developed by Markland et al.1, which they 
have applied to an ensemble of quantum 
hard spheres, with surprising results. 
Basic intuition suggests that increasing the 
strength of quantum fluctuations should 
enable atoms to better explore the phase 
space through tunnelling, and thereby 
inhibit the onset of dynamical arrest that is 
necessary for glass formation. In contrast, 
Markland et al. find that increasing 
quantum fluctuations in a system by 
increasing the thermal wavelength of its 
particles (by reducing their mass) actually 
decreases the packing fraction at which 
it forms a glass. Path integral numerical 
simulations performed by the authors 
corroborate this behaviour and provide an 
explanation: quantum fluctuations increase 
the effective radius of the particles, 
thereby increasing the effective packing 
density, slowing down the dynamics and 
promoting arrest.

There are many potential systems 
beyond the simple system Markland et al. 
study to which their quantum glass 

model could be applied. Perhaps the 
most intriguing is that of disordered solid 
helium-4, which recent experiments suggest 
could form a supersolid phase8 — an 
exotic quantum phase that simultaneously 
exhibits characteristics both of a solid 
and a superfluid9. Could such phenomena 
arise in a quantum glass? To answer this 
requires a model that includes bosonic 
statistics, which is absent in the theory 
of Markland et al. Evidence for similar 
re-entrant behaviour to those presented 
by Markland et al. has recently been 
reported in static calculations based on 
a lattice model10, confirming that RFOT 
models can produce consistent dynamic 
and thermodynamic predictions. Such 
calculations lend themselves more easily 
to including bosonic exchange, and 
suggest that it can indeed result in a 
first-order superfluid to (non-superfluid) 
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Quantum glass forging
Intuition suggests that the occurrence of large quantum fluctuations should prevent a material from forming a 
glass, yet theory and simulations that explicitly incorporate such fluctuations suggest the opposite could be true.
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Figure 1 | Possible phase diagram of quantum 
hard spheres in the presence of bosonic 
exchange, adapted from refs 1 and 10. ϕ is the 
fraction of volume occupied by the spheres, and 
Λ* is the De Broglie thermal wavelength of the 
particles, ϕg is the packing fraction for a classical 
glass transition and ϕrcp is the random close-
packing density. The liquid–glass transition 
line has been determined by Markland et al., 
but they could not investigate the superfluid 
transition because exchange was neglected. 
The superfluid transition can be first or second 
order; in the first-order case the transition is 
accompanied by phase coexistence. Note that at 
very low temperature Λ* is large, therefore there 
is always a first-order transition between the 
superfluid and a non-superfluid glass.
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glass phase transition. This transition is 
accompanied by a region of coexistence 
of the two phases (Fig. 1). Is this result an 
artefact of the lattice? Or could it explain 
at least some of the experiments on 
disordered solid helium? Is it possible to 
make more quantitative calculations on a 
realistic model of helium, in the presence 
of exchange?

Another potential application is the 
study of a class of models that are used 
to describe the dynamics of computer 
algorithms built to solve computationally 
difficult problems. The danger of such 
algorithms failing to find an optimal 
solution to a problem by becoming 
trapped in local minima is well known, 

and directly analogous to the dynamical 
arrest that induces a glass transition. It has 
been conjectured that quantum computers 
might overcome this11. Whether they 
will behave the way we expect them to, 
particularly in light of the counter-intuitive 
phenomena observed in the present work, 
is an open question. But at least if they 
do throw up any surprises, models like 
those developed by Markland et al. should 
help us better understand, and hopefully 
overcome, these problems too. ❐
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the frequency of a nonlinear 
oscillator can become synchronized 
with a chirped driving force of 

decreasing frequency, which results in 
efficient energy transfer. Such behaviour — 
known as autoresonance — only occurs 
when the amplitude of the driving force 
exceeds a certain threshold. The value 
of this threshold is determined by the 
initial state of the oscillator, which in 
turn is influenced by fluctuations in the 
system induced by its environment. As 
they report in Nature Physics1, Murch 
and colleagues extend the study of 
autoresonance to the quantum regime. 
The interplay of nonlinearities and 
quantum fluctuations is intriguing. As 
expected, quantum fluctuations have a 
role in the system dynamics. However, 
the way in which these fluctuations 
come into play is surprising: they make 
the initial state ‘uncertain’, but play no 
role in subsequent system dynamics. 
Understanding the role of quantum 
fluctuations is essential for sensors based 
on autoresonance.

Resonance is one of the most familiar 
concepts in physics. Classically, it is 
described in terms of the response of 
a harmonic oscillator to a harmonic 
driving force. It is usually discussed in 
the context of a simple linear oscillator, 

with potential V(x) = kx 2/2, where k is 
the oscillator spring constant and x is its 
displacement from the mean. This provides 
a remarkably accurate description of 
the dynamics of many different systems, 
including mechanical oscillators, resonant 
electrical circuits, phonon modes in solids, 
Fabry–Perot resonators and molecular 
vibrations. This makes life easier for 
theoreticians, and is a consequence of 
the fact that most degrees of freedom of 
many systems are only weakly excited at 
moderate driving amplitudes. Nonetheless, 
there are many systems, particularly in 
the field of electronics, for which this isn’t 
the case. And they exhibit much richer 
phenomena. Indeed, the mathematician 
Stanislaw Ulam once suggested that using 
the term ‘nonlinear systems’ is equivalent 
to describing the bulk of zoology as “the 
study of non-elephants”2. 

The archetypal nonlinear system is the 
Duffing oscillator, which can be thought 
of as a mechanical oscillator, such as 
a mass connected to a spring, but one 
whose spring ‘constant’ is not constant at 
all; instead, it is dependent on position, 
so that k(x) = k0 – γx 2, where γ is a 
constant. The addition of the nonlinear 
term, γx 2, has important consequences. 
It causes the resonant frequency of the 
oscillator to be amplitude-dependent. 

And for a driving frequency below the 
small-oscillation natural frequency and 
large enough amplitude, two oscillation 
states are possible: a low-amplitude state 
(where the oscillator sees the excitation 
as non-resonant) or a high-amplitude 
state (where the resonant frequency is 
reduced and therefore driving is more 
effective). Crucially, the driving parameters 
(that is, mass and/or spring constant) 
that induce the system to switch from 
one state to the other are sensitively 
dependent on the initial conditions of 
the oscillator. This effect has the potential 
to increase mass detection sensitivity3, 
and it has been used to detect the state 
of superconducting quantum two-level 
systems or quantum bits (see ref. 4 and 
references therein).

Another intriguing and potentially 
useful characteristic of nonlinear 
oscillators is their ability to undergo 
autoresonant behaviour. For a linear 
oscillator, the optimum transfer of 
energy from a driving force occurs at 
exactly the resonant frequency, which in 
the ideal case is constant regardless of 
the amplitude of the oscillation. But for 
a nonlinear oscillation, as has already 
been noted, the resonant frequency 
changes as its amplitude increases, so 
the frequency of the driving force must 
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Quantum pendula locked in
A study of the autoresonant behaviour of a superconducting pendulum reveals that quantum fluctuations 
determine only the initial oscillator motion and not its subsequent dynamics. This could be important in the 
development of more efficient methods for reading solid-state qubits.
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