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Introduction
This research project is motivated by the potentially numerous applications of a technique that has been recently 
developed by the PI and collaborators,  that goes under the name of  quantum cavity method,  and is capable to 
describe a broad class of strongly interacting disordered  systems. Typical  examples are  systems of disordered 
fermions or bosons, and quantum spin glasses. Given the generality of the setting, we expect the method to have 
many potential  applications to concrete physical  problems arising in different  fields:  indeed,  we have in mind 
applications to fields as diverse as quantum computing and condensed matter. Moreover, via the standard mapping 
between quantum Hamiltonians and stochastic processes, the results of this project will also be relevant for the 
stochastic  dynamics  of  classical  systems,  with applications  in chemistry,  biology and information  theory;  this 
constitutes an interesting perspective for future developments.

For the sake of concreteness, we will initially focus on some specific problems that have recently emerged in the 
first two fields mentioned above (namely, quantum computing and condensed matter), on which we believe that 
progress can be made in the short term using the quantum cavity method. These problems include:
(i) Adiabatic quantum computing: Some quantum algorithms exploit quantum fluctuations to find the ground state 
of classical spin-glass like disordered Hamiltonians. The Hamiltonian describing the quantum computer is therefore 
that of a quantum spin glass. It is commonly believed that these algorithms will run into problems if the quantum 
computer undergoes a phase transition during the optimization process. Hence, the study of the phase diagram of 
quantum spin glasses is essential to assess the performances of these quantum optimization algorithms.
(ii)  Localization in presence of interactions: The question whether an interacting system can display Anderson 
localization is strongly debated since the original Anderson paper of 1958. Exact solutions of interacting models are 
very important in this context and may shed light on the problem and confirm or disprove recent results based on 
perturbation theory. These results should also be relevant in connection with experiments on disordered cold atomic 
systems, in the experimental quest for a Bose glass phase.
(iii)  Superfluidity and superconductivity in disordered systems: Many aspects of superfluidity in a disordered 
environment are still poorly understood: for instance, in disordered solid phases, such as the recently proposed 
superglass phase. These exotic phases are observed in Helium 4 confined in porous media or by producing “dirty” 
crystals by fast quenches from the liquid phase. Moreover, they could be observed in cold atoms assemblies in 
presence of disordered external potentials.

What are the reasons why these problems are so hard? Why do we believe that a common treatment of them 
is possible? The answer to these questions is that all these problems share the following common ingredients, that 
complicate a lot their theoretical description:
- disorder/frustration: frustration  means  that  each  degree  of  freedom of  the  system is  subject  to  competing 
interactions, that give it contradictory indications. For instance, for a given Ising spin, some interactions could 
favor  the  “up”  state  while  others  could  favor  the  “down”  state.  In  this  situation,  many  locally  stable and 
inhomogeneous states appear, and the description of the system becomes much more complicated than that of 
homogeneous systems characterized by only a limited number of possible states.
- strong interactions: the presence of strong interactions makes the problem difficult because perturbation theory, 
which is one of the main tools to study interacting systems, becomes completely ineffective. Non-perturbative 
phenomena become important and one has to find new methods to understand them.
- quantum  fluctuations:  the  quantum  nature  of  the  problem  constitutes  an  additional  complication,  because 
quantum strongly interacting problems are technically more difficult  to handle than their classical counterparts 
already in absence of disorder and strong interactions. Moreover, new physical phenomena (such as tunnelling 
between different locally stable states, or interference effects leading to localization) appear, that are completely 
absent in the classical limit.
The interplay between all these effects makes the theoretical description of these systems a very difficult task. Most 
of the standard methods of theoretical physics suffer from severe drawbacks when applied to these problems. For 
instance, mean field theory assumes the existence of an “effective” background field produced by the whole system 
and hence fails to capture the spatial fluctuations due to disorder; numerical methods such as Quantum Monte 
Carlo  are  severely limited  by  ergodicity  problems and slow dynamics,  hence they  only allow to study small 
systems; the renormalization group is very difficult to formulate in presence of frustration, already for classical 
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systems. On the other hand, the problem is very general and common to different fields: making progress towards 
its general solution will be very beneficial for several concrete problems, leading also to cross-fertilization between 
different domains.

Why do we believe, with reasonable confidence, that some progress on this difficult problem can be achieved 
in the near future?
In a nutshell, the answer to this question is that a method, the quantum version of the so-called “cavity method” 
(also known as the “Bethe approximation” in condensed matter and “Belief Propagation” in information theory), 
specifically designed to tackle these problems, has very recently become available. The method is based on a mean 
field treatment of these systems and allows for a full analytical solution of the problem within this approximation. 
It allows to handle the presence of several locally stable states in a compact way, at the same time keeping track of 
local fluctuations which are essential in the study of these problems. Moreover, the method includes, in special 
limits, some recently developed theories such as Dynamical Mean Field Theory (DMFT). The method is still in the 
earliest stage of its development, but it already allowed to the PI and his collaborators to obtain important results 
and predictions on the phase diagram of these systems [CTZ09,JKSZ10,FSZ10a]. The main aim of this project is 
its further development, and its application to the physical problems described above. 

We expect to obtain several new results, the most important being:
- full computation of the phase diagram of quantum optimization problems, such as random satisfiability, exact 
cover,  and the coloring of  random graphs.  Instances  of  these  problems are  standard benchmarks  for quantum 
computation, and these results will give important indications on the performances of quantum adiabatic algorithms 
in solving them;
- exactly solvable models displaying a Bose glass phase; this result will be important to give indications on the 
nature of the superconductor-insulator transition in strongly disordered materials, elucidating the relation between 
the Mott (interaction-driven) and Anderson (disorder-driven) localization mechanisms and providing a good model 
to study Many-Body Localization effects.  They will find applications in the physics of cold atoms and that of 
disordered superconducting electrons, since Cooper pairs can be treated as Bosons;
- a complete theory of the superglass phase; the existence of this phase has been recently proposed by mean of 
numerical simulations and analytical arguments. It might exist in Helium 4, but it is expected to be very difficult to 
observe  in  experiments.  This  study  will  allow to  obtain  information  on  what  are  the  crucial  features  of  the 
interaction potentials (attractive or repulsive? two-body, three-body, or more?) that give rise to this phase. This will 
help to identify the right system to observe this phase in experiments.

In the following, we will provide additional details on the background (section a), on the methodology and on the 
expected results (section b), and on the resources that are needed for the success of the project (section c). 

a. State-of-the-art and objectives
In this paragraph we will discuss in details the theoretical background for the specific fields on which the project 
will initially focus. We will present the physical setting, explain what are the problems and challenges, and identify 
specific objectives to be solved during the project.

a1. Adiabatic quantum computing: a quantum algorithm for optimization
The theoretical research on quantum computing is motivated by the exciting perspective of computers that take 
intrinsically advantage of the laws of quantum mechanics. Besides the great effort of research towards the physical 
realization of these devices, a lot of activity has been devoted to the development of “softwares”, that is algorithms 
that  could  use  the  specific  properties  of  quantum  computers  to  achieve  a  faster  velocity  in  performing 
computational tasks with respect to classical devices. Some of the quantum algorithms proposed up to now have 
been written with a specific task in mind (for instance factoring a large integer [S97]). A typical problem that is 
encountered in almost all branches of science is that of optimizing irregularly shaped cost functions: the Quantum 
Adiabatic Algorithm (QAA) [FGGLLP01], also known as quantum annealing [KN98], is an adaptable proposition 
that is in principle able to tackle such problems in an universal way. Suppose one wishes to find the ground state of 
an  Hamiltonian  HP acting  on  N qubits  of  the  quantum computer.  To  run  the  QAA one  considers  a  simpler 
Hamiltonian HQ, such that the quantum computer can be easily initialized in the ground state of HQ. If one slowly 
interpolates the Hamiltonian H(t) of the quantum computer from HQ (at time t=0) to HP (at a final time t=T), the 
adiabatic theorem ensures that, with high enough probability, the system will remain at all times in the ground state 
of the interpolating Hamiltonian. Hence, at the end of the evolution, it will be in the ground state of HP and the 
original  problem will  be  solved.  The  crucial  question  is  of  course  how slow the evolution should  be,  in  the 
thermodynamic  limit  in  which  the  number  of  qubits  N  goes  to  infinity.  The  total  time  T needed  to  ensure 
adiabaticity is expected to diverge for large N, and one would like in particular to distinguish between a polynomial 
and an exponential scaling of T with N, for large N.



ZAMPONI Part B2 AQUAMAN
Quite generally, the adiabaticity condition requires the rate of change of H(t) to be smaller than the (squared) gap 
between the ground state and the first  excited state of H(t). Hence, the time needed to ensure adiabaticity will 
diverge in the thermodynamic limit whenever a quantum phase transition, at which the gap is expected to vanish 
[S99], is encountered during the interpolation between HQ and HP. 
It is well established that the gap vanishes at least polynomially in N at a quantum second order critical point [S99] 
(except in some cases in presence of disorder, where it might exhibit a stronger dependence on N [F95]), while it 
vanishes exponentially in N at a first order phase transition [JKKM08]. Hence, establishing the presence of phase 
transitions and their nature is of extreme importance to assess the performances of the QAA on these problems.

The formal computational complexity theory [GJ79] classifies the difficulty of a problem according to a worst case 
criterion. It might however well be that “most” of the instances of a given problem are easy, even though a few 
atypical instances are very difficult. To give a precise content to this notion of typicality the research has turned to 
the study of random ensembles of instances, defining a probability distribution on the space of instances. The 
difficulty of these instances is usually controlled by a parameter c, that quantifies the amount of constraints put on 
the degrees  of  freedom of  the problem, and which corresponds to the average connectivity  of  the underlying 
random graph. They provide a tunable benchmark of instances very useful for evaluating the typical performances 
of algorithms, and in fact the proposition of [FGGLLP01] was made on such random instances. Rephrasing the 
open issue of above, we can say that a major goal of research should be the determination of the typical efficiency 
of the quantum adiabatic algorithm in the thermodynamic limit, as a function of the control parameter c. A classical 
example is the famous graph coloring problem (q-COL): one is given a graph of N vertices, and a set of q possible 
colors (for q=3, one could choose blue, red and green). The problem is the following: does it exist an assignment of  
colors to each vertex, such that no pair of vertices connected by a link of the graph have the same color?  Suppose 
we look to the ensemble of all possible graphs of average connectivity c. It might well be that there is a “worst” 
graph for which finding the answer to this question is very difficult, although for most graphs the answer can be 
found very easily. Depending on the application one has in mind, studying the worst or the typical case might be 
more relevant. In this project we will focus on typical cases. For instance, in the q-COL problem, one may pick 
graphs at random among all graphs that have average connectivity c and study the typical properties with respect to 
this measure over graphs. This is known as Random q-COL.

Combinatorial optimization problems (the Hamiltonian HP one is typically interested in) can be represented as 
classical spin models [MPV87]. For instance, the q-COL problem can be reformulated as follows: we represent the 
color  of  each  node  by  a  Potts  spin  assuming  values  from 1  to  q.  The  Hamiltonian  HP is  a  classical  Potts 
antiferromagnet: if two spins connected by an edge have different values, the energy is zero, while if the two spins 
have the same value,  one pays a fixed energy price. For a given graph, the q-COL amounts to the following 
question: does the Potts antiferromagnet on this graph have a zero-energy ground state? If the answer is yes, then 
the graph is colorable. Random q-COL amounts to find the ground state energy of a Potts antiferromagnet defined 
on a random graph of average connectivity  c . In more general cases the Hamiltonian HP will contain quenched 
disorder  and hence will  be  a  spin glass.  Therefore,  determining the  generic  phase  diagram of  Quantum Spin 
Glasses  is  essential  to investigate the performances of  the QAA in solving these  problems.  This problem has 
intensively been investigated in the past decade, and early results generated considerable excitement by reporting 
polynomial scaling of the minimum gap for sizes up to N~100 [FGGLLP01,YKS08]. The problem is that all these 
studies rely on the study of very small systems and/or on perturbation theory. Moreover, particular choices of 
random ensembles of instances have been made in [FGGLLP01,YKS08], by selecting instances that have a single 
ground  state.  This  is  conceptually  dangerous  since  generically  random  optimization  problems  have  many 
degenerate solutions, and their difficulty could be underestimated by this restriction. Indeed, it has been recently 
established [MZ97,MPZ02,KMRTSZ07] that the exponential degeneracy of the ground state in these problems can 
lead to a very complex structure, characterized by a series of non-standard phase transitions upon varying the 
parameter c. What is the quantum analog of these phase transition? Are they characterized by a vanishing gap, and 
if yes, what is the scaling of the gap for large N? These questions remain at present completely open.

To summarize in a few words the above discussion:
- The QAA is a versatile algorithm that can tackle a variety of optimization problems of great practical importance. 
It amounts to slowly change the Hamiltonian H(t) of the quantum computer to follow adiabatically its ground state.
- An important benchmark for the QAA are random optimization problems like Random q-COL. The quantum 
Hamiltonian associated to these problem is a Quantum Spin Glass. It is characterized by strong frustration, coming 
from the different conflicting constraints that have to be solved (otherwise the problem would be easy).
- Assessing the performances of the QAA is related to finding the scaling of the minimum gap of the Hamiltonian 
H(t) in the thermodynamic limit. Since the gap is expected to vanish at quantum phase transitions, and the scaling 
of the gap is connected to the nature of the transition, the first task is to fully characterize the phase diagram of 
Quantum Spin Glasses. The second task is to understand the behavior of the gap at the quantum analogs of the 
exotic phase transitions that are encountered in classical limit of these problems.
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The two tasks defined above constitute two main objectives of this project. Solving them will be a considerable 
advance in the field of quantum information: indeed, as already stated, assessing the performances of "quantum 
softwares" is of extreme practical importance to motivate research oriented towards the realization of quantum 
computers. Additionally, a more complete understanding of the structure of quantum optimization problems might 
result in the design of more efficient quantum algorithms: this is indeed what happened in the classical case, where 
a new very efficient algorithm, known as  Survey Propagation (SP),  has been proposed by physicists [MPZ02] 
based  on the understanding  of  the structure  of  the classical  problem that  has  been recently  achieved  [MZ97, 
MPZ02, KMRTSZ07].

a2. Quantum fluctuations and disorder in condensed matter systems: many-body localization, superfluidity and 
superconductivity in disordered environments
Quantum  particles  moving  in  a  disordered  environment  exhibit  a  plethora  of  non-trivial  phenomena.  The 
competition between disorder and quantum fluctuations has been the subject of vast literature since the milestone 
papers  [A58,  FWGF89],  with a  renewed interest  following the  exciting  frontiers  opened by  the  experimental 
research  with cold-atoms [FFI08,  BG08].  One  of  the  most  striking  features  resulting  from the presence  of  a 
disordered external potential is the appearance of localized states [A58], that is driven by interference effects in 
presence of disorder. Localization happens both for Fermions and Bosons, but in the latter case one has to introduce 
repulsive interactions to prevent condensation of particles in the lowest energy state. This results in the existence of 
an insulating phase called “Bose glass” [FWGF89], which is observed in Helium 4 absorbed in porous media and 
more recently in cold atomic systems  [FFI08, BG08]. This localization mechanism, driving the formation of an 
insulating phase, is very different from the interaction-driven localization, originally proposed by Mott [M68], in 
which the formation of an insulator is related to strong hopping suppression due to the repulsion between particles. 
Indeed,  the  Bose  glass  is  characterized  by a  finite  compressibility  and  gapless  density  excitations  in  striking 
contrast with the Mott insulating phase [FWGF89]. Yet, it is believed that these two mechanisms coexist in many 
realistic materials  close to the superfluid-insulator transition [W09], giving rise to interesting phenomena, in a 
region of parameters where interactions and disorder are so strong that perturbation theory completely breaks down 
and the theoretical description of the system becomes extremely challenging. To further complicate the picture, 
latest  research  stimulated  by  the  possible  discovery  of  a  supersolid  phase  of  Helium [KC04]  has  led  to  the 
theoretical foresight of a “superglass” phase [BPS06, BCZ08], corroborated by recent experimental evidence [S09, 
HPGYBD09], where a metastable amorphous solid features both condensation and superfluidity, in absence of any 
random external potential. The apparent irreconcilability between the current picture of insulating “Bose glasses” 
and the emergence of this novel phase of matter calls for a better understanding of the physics of Bose-Einstein 
condensation  in  strongly  disordered  quantum  glasses.  Achieving  this  better  understanding  for  the  technically 
simpler case of Bosons will have also an important impact on Fermions: paradigmatic example are the electron 
glass [DLR82, BOP93] and the superconductor-to-insulator  transition driven by disorder in thin films [GM98, 
HP90], which has been related in some cases to a Bose glass transition of Cooper pairs [FWGF89, M09].

In addition (and in connection) to the above problems, a very basic question in quantum statistical mechanics is 
whether a system made of an infinite number of interacting degrees of freedom can act as a heat bath for a given 
subsystem of itself. The first suggestion that certain infinite systems may fail to do so was already contained in the 
original Anderson paper about localization [A58]. This long-standing problem can be rephrased as follows: is it 
possible  that  transport  coefficients  of  an  infinite  interacting  quantum  system  are  strictly  vanishing  at  finite 
temperature?  A lot  of  activity  in this  field  has  been generated  by a  recent  paper  [BAA06],  claiming to  have 
demonstrated that this is indeed possible. It was predicted in [BAA06] that a system of interacting electrons in 
presence  of  strong  enough  disorder  will  undergo  a  finite-temperature  phase  transition  between  a  completely 
insulating  low-temperature  phase,  characterized  by  a  strictly  vanishing  conductivity,  and  a  standard  high-
temperature phase where conductivity is possible through activated hopping between localized levels. This result is 
based on perturbation theory and one can be worried that non-perturbative terms may wash out the effect. The 
problem is very difficult because the transition is not associated to any obvious order parameter; one has to resort to 
exact diagonalization of small systems, and using standard finite-size-scaling techniques seems not very useful to 
establish the existence of the transition [OH07, BR10, PH10]. Recently, it has been suggested that this phenomenon 
might have important phenomenological implications for the physics of Bose glasses discussed above [M09]. Exact 
(non-perturbative) solutions of interacting models are very important in this context and may shed light on the 
problem and confirm or disprove the general picture proposed in [BAA06, M09].

From a theoretical point of view, all these systems are usually described by variations of the Hubbard Model, 
whose Hamiltonian is made by the sum of a hopping term, a local on-site repulsion, and possibly other short range 
interactions. Both Fermionic and Bosonic versions of the Hubbard model have been considered in the literature. 
Unfortunately, exact solutions of these models could be obtained only in one dimension [G04] and in special cases. 
In higher dimensions,  information about the behavior of the model came mostly from perturbative expansions 
around special limits (zero hopping, zero interaction, low density), and more recently from exact diagonalization 
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[PH10] and Quantum Monte Carlo (QMC) numerical simulations [BS96, PST98, GPPST09]. There were attempts 
to resum classes of diagrams of a given perturbative expansion, but these resummations are difficult to control.

A standard way to tackle difficult interacting problems is mean field theory. In the case of Bosons, an earlier 
attempt  to  formulate  a  mean  field  theory  was  performed  in  [FWGF89]  where  a  fully  connected  lattice  was 
considered (particles  could hop from each site to any other).  However in this  limit  both spatial  and quantum 
fluctuations are frozen and, for instance, the Bose glass phase disappears. A recent important development was the 
formulation  of  a  consistent  mean-field  theory of  the Fermionic  Hubbard model,  that  goes  under the name of 
Dynamical  Mean  Field  Theory  (DMFT)  [GKKR96].  DMFT  proved  to  be  a  good  approximation  for  finite 
dimensional  models  and  provided  important  insight  into  the  Mott  transition  and  the  emergence  of 
superconductivity. Its generalization to take into account disorder [DK97] was capable to describe both the Mott 
and Anderson transitions in the respective limits of zero disorder and zero interaction giving important indications 
on the regime where the two mechanisms are simultaneously at work. One of the virtues of DMFT is that it is exact 
in a controlled and still non-trivial limit, namely when the number of neighboring sites where a particle can hop is 
very large (for instance in very large spatial dimension). In principle well-defined expansions around this limit are 
possible. Bosonic DMFT (B-DMFT) has only recently been formulated in a consistent way [BV08]. This is due to 
a technical difficulty in performing the large connectivity limit, related to the possible presence of a Bose-Einstein 
condensate. Despite its  many successes, the main drawback of DMFT is that in the limit  in which it  is exact 
(infinite dimension) localization effects disappear. Indeed the extended DMFT of [DK97] can only be thought as an 
approximation of a finite dimensional system, and at variance to standard DMFT it does not become exact in any 
well controlled limit. At the same time, the subtleties associated with the physics of localization in presence of 
strong interactions, disorder and frustration strongly call for exact solutions, as discussed above. This is required to 
avoid making predictions that might turn out to be only artefacts of the approximations made.

This is precisely what we intend to achieve in this project through the development of the quantum cavity method 
for particle systems. In fact, the cavity method has the virtue of being a good approximation of finite dimensional 
systems, at the same time being exact on a class of lattices that locally look like trees and go under the name of 
Bethe lattices (indeed the cavity method is a refinement of the so-called Bethe approximation). In Bethe lattices, 
each site has a finite connectivity, or in other words the number of neighbors where a particle can hop is kept finite: 
this allows to retain spatial fluctuations, and indeed it was shown that the Anderson delocalization transition can 
happen on such lattices [ATA73]. This is a striking result and shows that the Bethe lattice is indeed the simplest 
candidate to discuss the physics of localization in presence of strong interactions. Remarkably, DMFT has also 
been formulated on Bethe lattices in the limit of infinite connectivity [GKKR96]. Another advantage of the Bethe 
lattice is that it is amenable to numerical studies using Quantum Monte Carlo or Density-Matrix Renormalization 
Group (DMRG) and Matrix-Product States [SDV06, NFGSS08, PP08]. Recently, a new type of glassy phase of 
electrons (Valence Bond Glass phase), due to the interplay of quantum fluctuations and magnetic frustration, has 
been predicted on the Bethe lattice [BT08]. Finally, a one-dimensional lattice can be viewed as a special tree (with 
connectivity two), therefore Bethe lattices allow to interpolate in a simple way (by changing the connectivity) 
between one-dimensional and infinite-dimensional models.

To summarize in a few words the above discussion:
- The study of quantum particles moving in a disordered environment, either due to an external potential (e.g. 
impurities) or self-induced by frustration, is obviously important in almost all aspects of condensed matter systems. 
Concrete  examples,  that  will  be  addressed  in this  project,  are  Bose  glasses  (recently  realized  in  cold atoms), 
superglasses  (that  might  have  been  recently  observed  in  Helium 4),  electron  glasses,  and  superconductor-to-
insulator transitions driven by disorder in thin films.
-  Additionally,  the  problem of  localization  in  presence of  interactions  is  a  very  fundamental  one  in  quantum 
statistical mechanics, being related to the ability of a quantum system to act as a bath for its subsystems.
- In both problems, elusive and subtle effects play important roles, and one is in a regime of parameters where 
interaction and disorder are strong, and perturbation theory might not be reliable. Hence, exact solutions are of key 
importance to obtain a clear picture of the problem. 
- Bethe lattices provide exactly solvable models: this has been successfully exploited in the non-interacting case, 
showing that Anderson localization is possible. But up to now only an approximate treatment has been possible in 
the interacting case, by means of DMFT.

Our task in this part of the project will be to exploit the quantum cavity method to obtain the exact solution of 
interacting models on the Bethe lattice, fully including frustration effects, glassy physics, and localization effects. 
We strongly believe that this will have an important impact in this field, since this study will be able to shed light 
on fundamental issues such as the physics of the localization transition in presence of interactions, the difference 
between Bose glasses and superglasses, and the interplay of Mott and Anderson localization mechanisms close to 
the metal-insulator transition.
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b. Methodology
Having identified  the  main objectives  of  the project  and  explained  the  physical  context,  we  now turn to  the 
discussion of the methodology we will use to make progress on them and eventually come to a solution.

b1. Methodological background:
All the examples above belong to a wider class of problems where the interplay between quantum  fluctuations, 
strong interactions and disorder/frustration plays a key role. Indeed, the models that have been used to investigate 
these problems are strikingly similar.  Typically, the quantum Hamiltonian is the sum of a “classical” part  that 
contains strong interactions and disorder, and a term inducing the quantum fluctuations (hopping for particles, or a 
transverse  field  for  spins).  The  “classical”  part  of  the  Hamiltonian  can  typically  be  reduced  to  a  classically 
frustrated system, such as  a Random Field Ising Model  or  a spin glass.  Therefore, one can expect  that  these 
problems can be tackled by properly translating to the quantum world our experience in the study of classically 
frustrated systems. This is the main methodological objective of this project.

Why do we believe, with reasonable confidence, that some progress on all these apparently different problems can 
be achieved in the near future? In a nutshell, the answer to this question is that a method, the quantum version of 
the so-called cavity method, was very recently developed by a Princeton group [LSS08] and a French based group 
involving the PI [KRSZ08]. The method is still in its earliest stage: many technical problems have yet to be solved, 
and we believe that technical progress will lead to very interesting results when the method will be applied to the 
different problems listed above. We will now explain why.

Our main aim in this project will be that of developing a method to compute  quantitatively, within reasonable 
approximation, the phase diagram of a wide class of quantum strongly interacting disordered Hamiltonian. This is 
extremely difficult, mainly because due to the strong interactions, perturbation theory (that is the standard way of 
tackling difficult quantum problems) breaks down. Note that we will not focus on the critical regime close to a 
phase transition, hence sophisticated techniques such as the Renormalization Group are of little help in this case. 
Apart  from  special  cases  (mainly  one  dimensionals)  where  one  can  obtain  exact  solutions  [G04],  two  main 
strategies to tackle these problems have become standard nowadays: on the analytical side, one often resorts to 
mean-field like theories; on the numerical  side,  one makes use of  Quantum Monte Carlo simulation schemes. 
However,  both  methods,  despite  many  successes,  suffer  from  severe  drawbacks  when  applied  to  disordered 
strongly interacting systems.
 
Numerical simulations are difficult for several reasons. First of all, strongly disordered and glassy systems are 
characterized (almost  by definition) by ergodicity problems.  The standard strategy to compute thermodynamic 
properties of quantum systems is to exploit the Feynman path-integral formulation of quantum mechanics and map 
the quantum problem into a classical one, where the original quantum variables are replaced by their classical 
imaginary time trajectories. A proper sampling of the probability distribution of these paths is already technically 
difficult  in standard cases.  For disordered and glassy systems,  the equilibration time becomes so large that in 
practice one is limited to very small systems [GBH94]. A second difficulty is that one has to average over many 
independent  samples (or  equivalently consider very large samples)  in order to properly take into account  rare 
realizations  of  the disorder,  that  are  often relevant  in  determining the  physical  behavior  of  the system in the 
thermodynamic  limit  close  to  the  quantum critical  point  [GPPST09,W09].  The  behavior  of  small  systems  is 
sometimes  misleading,  as  the  scaling  with  system  size  can  change  dramatically  for  larger  systems.  Striking 
examples of this are the Bose glass phase [GPPST09,W09] and Griffiths phases in quantum disordered magnets. 
Hence, although numerical simulations can give very precious indications, analytical methods that are capable of 
taking directly the thermodynamic limit and the average over the disorder are very much needed.

The other traditional tool is the mean field approach, in which one assumes that the behavior of the system can be 
captured by a “representative” degree of freedom subject to a “mean external field” which is averaged over the 
whole system. The latter is determined self-consistently by assuming that the representative degree of freedom 
describes the environment of its neighbors. However, disordered systems are strongly heterogeneous, and each 
degree  of  freedom  feels  a  very  different  local  field  coming  from  its  local  environment.  The  interplay  of 
heterogeneity and quantum fluctuations is at  the basis of the interesting phenomena observed in such systems. 
Another important ingredient that has to be taken into account by the theory is that frustration often induces the 
existence of a very large number of metastable states (i.e. local minima of a suitable free energy functional), each 
described by a different set of local fields. Hence, solving these problems requires the development of a method 
capable of taking into account the strong fluctuations of the local fields, while at the same time being analytically 
solvable in the thermodynamic limit, and being able of performing the correct average over the disorder.
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b2. The cavity method
In the classical case, a consistent mean field description of frustrated systems has been achieved by the so-called 
cavity method [MP01]. This method is designed to tackle exactly a physical situation in which local fields display 
strong fluctuations from site to site, and from one metastable state to the other. Its more elaborate versions allow to 
deal with glassy phases that arise in frustrated spin models and which manifest themselves by the proliferation of 
the  number  of  metastable  states.  This  method  has  been  very  successfully  applied  in  the  context  of  random 
combinatorial optimization, thanks to the analogy between these problems and finite connectivity mean-field spin-
glasses. There are two different and complementary ways in which this method can be described, that we now 
discuss in some details.

i) First of all, the cavity method provides the exact solution of models defined on Bethe lattices. Before illustrating 
this point in detail, let us stress that in this context, the word “exact solution” means that the method allows to 
reduce the computation of the partition function of a system made of many interacting degrees of freedom to the 
solution of  a single equation. Clearly this equation will be complicated and in most cases one will have to solve it 
numerically, but the important point is that the thermodynamic limit is taken from the beginning, avoiding the need 
of complicated finite-size scaling procedures to detect, for instance, phase transitions. Given this remark, we now 
turn to the definition of a Bethe lattice. A Bethe lattice has often been defined in the literature as a rooted tree. 
However, in the case of frustrated spin models (spin-glasses) some care has to be paid in the definition of a Bethe 
lattice because of the importance of the boundary conditions for models defined on trees. Indeed, the “surface” (the 
number of leaves) of a rooted tree of N sites scales as its “bulk” in the thermodynamic limit of large N, which 
creates  several  technical  problems:  for  instance,  extensive  quantities  like  the  free  energy  are  dominated  by 
boundary effects. The most satisfying definition of a Bethe lattice corresponds to a random regular graph [MP01], 
namely a graph chosen uniformly at random in the set of graphs in which each vertex has the same number of 
neighbors. In other words, one considers the set of all possible graphs of N sites, such that each site is connected to 
exactly c other sites, and gives the same probability to each graph in this set. It can be shown that typical graphs in 
this ensemble locally look like trees, since the size of their loops diverges as log(N). Yet, all sites are statistically 
equivalent, hence there is no boundary: the graph is statistically “translationally invariant”. In the following we 
shall use “Bethe lattice” and  “random graph” as synonymous. Note that with this definition in terms of random 
graphs it is straightforward to incorporate, if necessary, local quenched fluctuations of the environment of a spin 
like a fluctuating local connectivity. 
The cavity method exploits the locally tree-like structure of random graphs to provide the exact solution of the 
model. This is possible because classical models on trees are very simple to solve. Indeed trees have a natural 
recursive definition, that allows to solve independently the models on sub-trees, and glue the solutions together to 
construct the one of a larger tree. In random graphs the structure of interactions is a tree only locally; the cavity 
method is a way to incorporate in a self-consistent way the effect of the long loops, that act as a boundary condition 
on the tree portions of the graphs. This effect can be of different type depending on the amount of constraints the 
interactions put on the degrees of freedom. When these are weak enough the correlations between variables decay 
rapidly with the distance, the system is almost insensitive to the presence of the loops and the local recursions 
derived exactly on the tree remain exact in the random graph for N going to infinity; in this case the cavity method 
is equivalent to the Bethe approximation or the Belief Propagation method. Increasing the intensity of interactions 
(for instance lowering the temperature) this property might not hold anymore, if one encounters a phase transition. 
The description of the transition is relatively easy if one enters a phase with a finite number of pure states that can 
be easily characterized (for instance the two states of positive and negative magnetization of a ferromagnet at low 
temperature); one can always break explicitly the symmetry between the pure states (for instance with a small 
magnetic field) and effectively recover the simple situation described above. The problem becomes however much 
more difficult in mean-field disordered systems, where the number of pure states can grow exponentially in the size 
of the system, with no obvious way to select one of them. This is where the cavity method is most useful and 
provides a convenient way to deal with this proliferation of pure states (mean-field glassiness). 

ii) A different perspective on the cavity method is to consider it as a “refined” mean-field like approximation (the 
so-called  Bethe  approximation)  of  models  defined,  for  instance,  on  a  square  or  cubic  lattice.  The  Bethe 
approximation is the second in a hierarchy of mean field approximations. To illustrate this let us consider a given 
variable of the system. In standard mean field theory one neglects not only the correlations between neighbors of a 
given variable, but also the feedback that a given variable has on its neighbors. In the Bethe approximation the 
latter assumption is removed: one still treats the neighbors as independent in absence of the reference variable (as 
they would be on a tree), but at the same time one takes fully into account the correlations among the neighbors 
induced by the reference variable.  Indeed, the Bethe approximation is quantitatively much more accurate than 
standard mean field: we recently demonstrated this fact in the case of the Bosonic Hubbard model [STZ09].
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In summary, the cavity method can be seen as the exact solution of Bethe lattice models or as a “refined” mean-
field like approximation (the Bethe approximation) of models defined on a square or cubic lattice. Moreover, this 
method has several important advantages:
1) It takes into account local spatial fluctuations of the environment, and the existence of many different states; it 
allows to take the thermodynamic limit and in this limit it allows to compute probability distributions of local 
observables with respect to disorder;
2) It can be formulated via a variational principle: in other words there is a suitable free energy functional whose 
minimization yields the cavity equations; this allows a direct access to the free energy of the system, and makes 
easy to devise variational approximations to the true solution.
3) It allows to define a distance between two spins as the number of interactions on a shortest path between them, 
leading to a consistent definition of a correlation length. 

b3.The method that will be used in this project: the quantum cavity method
From a technical point of view the goal of this project is to develop a full generalization of the cavity method to 
quantum models, suitable to be applied to the diverse problems outlined above. Indeed, in the quantum case the 
cavity method allows to study phenomena that are intrinsically related to the notion of distance, the most striking of 
them being Anderson localization [ATA73], that can be studied on a Bethe lattice while it disappears in the standard 
mean field limit of infinite connectivity. The main technical difficulties in this program come from the fact that 
quantum models on trees are already much more difficult than their classical counterparts. The global configuration 
of the system in the classical case can be easily decomposed into the configurations of the various branches around 
a node taken as the root,  and the total classical energy as the sum of contributions arising from each branch. 
Turning instead to a quantum system, the global configuration is described by a vector in the total Hilbert space 
(the wavefunction). This, in general, cannot be written as the tensor product of vectors of the Hilbert space spanned 
by the spins of the various branches. In other words the configurations of the subtrees are  entangled. 

To overcome this problem, it has been proposed in [LSS08] to use the same path integral formulation that is used in 
Quantum Monte  Carlo.  Thanks  to  this  formulation  the  variables  of  the  quantum model  are  replaced  by their 
classical imaginary time trajectories; in [LSS08] a discretization of time (Suzuki-Trotter) was used. The PI and his 
collaborators improved over this preliminary investigation by showing how to perform the continuum imaginary-
time limit, and they applied the method to solve exactly the quantum Ising ferromagnet in a transverse field on a 
random regular lattice  [KRSZ08]. In a subsequent paper we showed how to generalize the method to Bosonic 
systems [STZ09]. In this way, the cavity method allows to reduce the solution of the model to the problem of 
finding the fixed point of a functional equation for the local effective action for imaginary time paths. In two 
subsequent works appeared on Phys.Rev.Lett. [CTZ09, JKSZ10], we included in the quantum cavity method a 
crucial ingredient that has been developed in the classical case (known in jargon as replica symmetry breaking 
effect), that is needed to treat the most interesting situations, where many metastable glassy states are present. 
Including  these  effects  does  not  pose  any  particular  conceptual  challenge,  but  increases  considerably  the 
computational cost of the numerical solution of the cavity equations. These results constitute the basic starting 
point  of  this  project,  whose  objective  is  the  further  development  of  the  method  and  its  application  to  other 
interesting physical problems.

The cavity equations are complicated recurrence equations for the local effective action, and one has to find their 
fixed point. At variance with DMFT equations, in which only the leading Gaussian term is kept,  in the cavity 
method one explicitly takes into account all many-points local correlations in time, therefore having access to the 
full local effective action. However, the equations are difficult to handle. The strategy introduced in [KRSZ08] 
consists in constructing a sample of spin trajectories from the local effective action and finding statistically a fixed 
point by iterating the cavity equation on this sample. This method has been shown to work well for spin and 
Bosonic models where the matrix elements of the Hamiltonian in the Suzuki-Trotter representation are all positive 
and the effective action is then a probability distribution. However, this method is limited because it cannot access 
directly the zero-temperature limit, and it does not work for cases (such as fermions or the real-time dynamics of 
bosons) where a sign problem arises. It is desirable to develop alternative strategies that could address, possibly in 
an approximate way, these more complicated cases.

It is important to stress at this point the relation between our formulation of the quantum cavity method and other 
attempts to go beyond the simplest mean-field theory for disordered quantum systems. As already discussed, the 
quantum cavity method is  exact on random graphs (Bethe lattices). It turns out that it contains, as special limits, 
many different methods that have been very recently developed to investigate these problems. These all correspond 
to large connectivity limits, in particular:
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1) The stochastic mean-field theory of [BH09] and the closely related method of [IM10] both correspond to the 
leading order in a large connectivity expansion of the cavity method, for bosons and spins respectively.
2)  A certain  class  of  extensions  of  the  Fermionic  DMFT  [DK97]  correspond  to  the  leading  order  in  large 
connectivity of the cavity method for fermions.
3) The recently formulated Bosonic DMFT [BV08] and the original formulation of [LSS08] take into account the 
next-to-leading order in the same expansion for bosons and spins, respectively.
In some cases we will make use of these methods in this project. This will allow to simplify the computations in 
order to extract the physics more easily when a complete solution of the cavity equations will be too demanding, at 
the price of loosing part of the information on the local quantum dynamics, which is treated exactly in the cavity 
method. However, we will always check the results against the solution of the full cavity equations, whenever 
possible. The fact that so many cavity-like approximations have been recently derived testify the vitality of the 
method in the present moment.

b4. Specific goals of the project in the short term

Technical problems to be solved:
Based on the above considerations, here follows a list of technical issues that we will have to solve in order to 
achieve some of the goals of this project:
a)  Find  reliable  and  efficient  approximation  schemes  to  solve  the  quantum  cavity  equations,  possibly  of  a 
variational nature, and/or based on large connectivity expansions as in DMFT. These methods should work down to 
zero temperature. More concretely, we believe that the static approximations developed in [IM10] could be very 
helpful to give indications on the qualitative behavior of complicated models.
b) Extend the method to Fermions. In this case, a path-integral formulations in the basis of occupation numbers 
(such as the one used in [STZ09]) gives rise to negative path weights that generate sign problems in the stochastic 
procedure that we used in [KRSZ08, STZ09], that becomes ineffective. A possible way out of the problem is based 
on a different path integral formulation in term of Fermionic (Grassmanian) coherent states. In this formulation the 
signs  are  automatically  taken  into  account  by the  anticommuting  nature  of  Grassman variables.  The problem 
becomes that of parametrizing the local effective action, that is a functional of Grassman paths. We plan to do this 
at first by discretizing time; in this case the action is easily parametrized, however the number of parameters scales 
exponentially in the number of time slices. We will try to find ways to optimize the computation for large number 
of slices.
c) Optimize the efficiency of our code for the solution of replica symmetry breaking quantum cavity equations. 
Indeed, the preliminary investigations of [CTZ09, JKSZ10] required a considerable computational effort, at the 
limit of our current capacities. Improving over these results crucially requires a more efficient code and improved 
computational  power.  Hence,  the task is  to  optimize as  much as  possible  the algorithms that  are  used in  the 
computation  (which  will  require  some conceptual  work to  improve  the sampling  techniques  we  are  currently 
using), and make heavy use of parallelism to speed up the execution of the code. Fortunately, the algorithm we 
proposed in [KRSZ08, JKSZ10] can be very naturally and efficiently parallelized.

However, it is important to stress that many applications that will be discussed in the rest of this section can already 
be tackled with the existing machinery of the quantum cavity method. We will now explain in more details, for 
each domain of application of the method, what are the technical challenges and the expected results; we will also 
provide a specific list of mid-term objectives for the project. 

(i) Adiabatic quantum computing:
As it has been discussed in the background section above (section a, part  (i)), assessing the performances of the 
Quantum Adiabatic  Algorithm is  related  to finding the scaling of the gap  of  a  spin glass  Hamiltonian in  the 
thermodynamic limit. Since the gap is expected to vanish at quantum phase transitions, and the scaling of the gap is 
connected to the nature of the transition, the first task is to fully characterize the phase diagram of Quantum Spin 
Glasses.  The  second  task  is  to  understand  the  behavior  of  the  gap  at  the  exotic  phase  transitions  that  are 
encountered  in  these  problems.  We  already  performed  a  preliminary  investigation  [JKSZ10]  of  the  simplest 
optimization problem, namely the random XORSAT problem in a transverse field. XORSAT is a system of linear 
equations on Boolean variables, each of the form x+y+z=b, where the sum is modulo 2 and b=0,1. In random 
XORSAT one picks at random the variables entering in each clause among N variables,  and chooses for each 
equation the term b at random in 0,1. The structure of the solution space of this problem in the classical case has 
been rigorously established [CDMM03, MRZ03], and we made use of these results and of the quantum cavity 
method to understand how this structure is modified when adding quantum fluctuations to the problem. We showed 
that this problem displays a first order quantum phase transition as a function of the quantum fluctuations intensity. 
This transition is accompanied by an exponentially small gap in the thermodynamic limit, which makes the QAA 
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ineffective for this problem [JKSZ10]. In this project we plan to continue this line of research by extending this 
study to other problems in order to assess the universal features of their phase diagram. More concretely, our 
program is the following:
(i.1) We will investigate more complex optimization problems, such as the coloring of random graphs described 
above, and random satisfiability (random k-SAT). These problems have a much richer structure already at the 
classical level, that has been described only recently by mean of the classical cavity method [KMRTSZ07]. We 
expect  their  quantum  extensions  to  display  a  rich  phase  diagram  characterized  by  different  quantum  phase 
transitions  of  exotic  nature,  related  to  the  glassiness  of  the  classical  problem,  or  in  other  words  to  the  large 
degeneracy of its ground states. We will compute the phase diagram of these problem in the thermodynamic limit 
and taking the average over the disorder.
(i.2) The exponentially large (in the number of variables) degeneracy of the ground and excited states of these 
problems should have an important impact on the minimum gap and on the performances of the QAA. In such a 
situation  the  relevant  gap  probably  involves  the  excited  states  that  are  not  continuously  transformed  to  the 
degenerate classical ground states. Preliminary results pointing in this direction have been very recently obtained 
[AKR09, FGGGMS09, FSZ10b]. To address this problem, one should study the spectrum of the Hamiltonian on 
given instances of the problem of fixed size,  and then study the scaling as a function of system size and the 
distribution over the disorder. We plan to investigate this question by exact diagonalization on toy models involving 
a small number of variables, yet which present such a degeneracy of levels. Later we will extend this study to the 
more  realistic  problems  described  above,  being  guided  by  the  knowledge  of  the  system's  properties  in  the 
thermodynamic limit obtained previously. 

(ii) Localization in presence of interactions (Many-body localization):
The application of the cavity method to the problem of many-body localization (explained in the second part of the 
background section above, section a part  (ii)) has been recently initiated in [IM10]. However, in this paper some 
not  well-controlled  approximations  within  the  cavity  method  have  been  made.  Since  the  problem  is  highly 
controversial,  this  first  study is an important  guideline,  but  needs to be improved and confirmed by an exact 
solution of the cavity equations in order to exclude that the results are artefacts of the approximation. Technically, 
the difficulty comes from the fact that the transition is of a dynamical nature and therefore requires to obtain 
information on the real time dynamics of a given model. We will achieve this by the following strategy:
(ii.1)  We will  initially  focus  on the simplest  candidate  to  show such a transition,  namely,  a  one dimensional 
Heisemberg spin chain in a random transverse field. We will solve the model by the cavity method (recall that the 
method is exact in one dimension) and compare the solution in the thermodynamic limit with exact diagonalization 
results  for  small  instances  [PH10,  BR10].  This  should  allow  to  identify  the  correct  order  parameter  for  the 
transition.
(ii.2)  Then we will  turn to the same model defined on a Bethe lattice of  fixed connectivity. In this case very 
interesting predictions have been made in [IM10] by means of an approximate solution: in particular it has been 
shown that the problem displays a low-temperature glassy phase where the magnetic susceptibility is dominated by 
rare fluctuations. We will check these predictions accurately by means of the exact cavity computation.
(ii.3) Finally, we will investigate the disordered Bose-Hubbard model [FWGF89], for which a huge amount of 
QMC data [GPPST09] are available, and that is most relevant for experiments [FFI08, BG08]. If successful, this 
study will be important in several aspects: first of all, we will provide an exactly solvable model that shows a Bose 
glass phase; second, we will compute precise numerical values for  the transition predicted in [IM10], that should 
be helpful to look for this phase in experiments; third, we will check the recent phenomenological proposal of 
[M09] that uses concepts of many-body localization in order to explain the superconductor-to-insulator transition in 
thin disordered films.

(iii) Superfluidity and superconductivity in disordered systems:
We will initially focus on Bosonic systems. They are technically easier, and their investigation is very timely since 
cold-atoms experiments  recently provided access  to exotic  phases  of  disordered  bosons  [FFI08,  BG08].  In a 
preliminary investigation, we already confirmed, by mean of the cavity method, an earlier suggestion [BPS06, 
BCZ08] that geometrical frustration alone can induce a “superglass” phase of bosons in which the system supports 
at the same time glassy ordering and superfluidity [CTZ09]. We then investigated quantum extensions of lattice 
glass models,  that are simply obtained by adding an hopping term to the Hamiltonian studied in [BM02], and 
established their phase diagram by the cavity method [FSZ10a]. We found a very interesting phase diagram. At low 
enough temperature the glass transition line is re-entrant as a function of the strength of quantum fluctuations, 
meaning that a glass can be formed upon increasing quantum fluctuations at fixed density. Similar results have 
been obtained by the group of D.Reichman at Columbia University using a different method [MMBMRR10]. In 
addition, we showed that the glass transition becomes a first order superfluid-insulating glass transition at zero 
temperature, accompanied by a phase coexistence between the two phases. In other words, in a given region of the 
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phase diagram one might have a coexistence, in the same sample, of glassy and superfluid regions. This result will 
contribute  to  the  current,  highly  controversial,  theoretical  and  experimental  debate  about  the  very  nature  of 
superfluidity in solid Helium. We also expect this phase diagram to be quite similar to the one of random SAT and 
coloring, hence the study of these problems (task i.1 above) will allow to check the degree of “universality” of 
phase diagrams of quantum glassy systems.
We plan to continue this new line of research by studying the existence of superglass phases in more realistic 
models and try to understand which are the relevant features of the interactions that determine their existence. In 
particular:
(iii.1) We will make use of the expertise we acquired on simpler models to design a finite-dimensional lattice 
model with realistic interactions, that could be realized in cold atomic gases, and that could exhibit a superglass 
phase. We will simulate the model via Quantum Monte Carlo in order to provide a detailed phase diagram that 
should serve as a guide for experiments designed to find this new phase of matter.
(iii.2) We will apply these concepts to off-lattice models, in order to clarify the relation between lattice superglassy 
phases  and  the  recently  proposed  supersolid  phase  of  bulk  Helium  [KC04]  through  accurate  quantitative 
computations. We will then extend the computation to other systems, for instance particles interacting via dipolar 
interactions,  in  which  glassy phases  might  be  more easily  detected  in  experiments.  We will  do this  by three 
complementary techniques:
(iii.2a) We will  improve over the variational  method of [BCZ08]; the latter employed the simplest variational 
wavefunctions for Helium (of the Jastrow form), while much better wavefunctions are known, such as the Shadow 
wavefunctions. We will repeat the calculation of [BCZ08] for these wavefunctions, which should allow to obtain an 
accurate zero temperature glassy phase diagram for Helium.
(iii.2b) We will adapt the replica method that has been developed in the past decade to obtain a quantitative theory 
of  classical  glasses  [MP99,  PZ10]  to  the  quantum case.  It  is  worth  to  note  that  the  PI  has  acquired  a  solid 
experience on this subject, and he recently wrote a review of the method for Rev.Mod.Phys. [PZ10]. The method is 
based on a combination of the replica approach and of standard liquid theory, and is extremely successful in the 
classical case to locate the glass transition temperature and to compute correlation functions of glasses. The exact 
solution of quantum lattice glass models that we recently obtained [FSZ10a] will serve as a guide to extend it to the 
quantum case.
(iii.2c)  We  will  perform Path  Integral  quantum simulations  to  confirm numerically  our  findings.  Since  these 
simulations  are  extremely  demanding,  having  obtained  an  analytical  estimate  of  the  transition  lines  will  be 
extremely useful to find the good range of parameters that we will investigate numerically. 

For Fermions the problem is technically much more difficult,  yet  we think that progress can be made in this 
direction, as discussed above. In addition to the problem of formulating the cavity method for Fermions, we will 
explore other complementary research directions:
(iii.3) In the large connectivity limit, the cavity method reduces to the disordered extension of DMFT introduced by 
[DK97]. We plan to extend this method by including replica symmetry breaking effects, that are needed to describe 
frustrated  glassy  situations  characterized  by  many  amorphous  metastable  states.  A natural  application  of  this 
method is the study of the electron glass [BOP93, DLR82].
(iii.4)  Another  natural  application  of  the  method  is  the  description  of  cold  Fermionic  gases  in  a  disordered 
environment [FFI08]. In this case the temperatures that are currently achieved are not much lower than the Fermi 
temperature. Hence, a description using a discretization of imaginary time with a moderate number of slices might 
be enough to obtain reasonable results on the experimental scales.

b5. Perspectives for a longer term research
(iv) Stochastic dynamics of disordered systems
After most of the research outlined above will be completed, we will turn to the application of the method to 
classical dynamics. Indeed, it is well known that the master equation describing the Markovian stochastic dynamics 
of a classical system can be mapped onto a quantum Hamiltonian. Hence, similar methods can be used to tackle 
both problems. Dynamical problems involving a large number of interacting entities in presence of disorder are 
encountered in a wide class of applications: examples are the analysis of stochastic algorithms in computer science 
and of gene regulatory networks in biology. It is difficult to exhaust here all the potential applications of the method 
is this context. At present we plan to focus initially on the following two studies, but we expect that many other 
interesting application will emerge during the development of the project.
(iv.1) Classical optimization problems are often solved by mean of stochastic algorithms that perform a random 
walk in the space of configurations according to some local update rule. It can be proven in many cases that for 
random instances,  a  given algorithm will  be effective,  in the thermodynamic limit,  up to a given  algorithmic 
threshold in the ratio of clauses to variables (which is a simple measure of the "difficulty" of a problem). Above the 
threshold the algorithm fails with very high probability. The analytical computation of algorithmic thresholds has 
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been performed only in very simple cases; by mean of the dynamic cavity method we will be able to compute it for 
a  much wider  class  of  algorithms,  and hopefully  to obtain  insight  into the structural  reasons that  make these 
algorithms fail.
(iv.2)  In  many applications  to  chemistry and  biology one  is  interested  in  the  computation  of  transition rates 
between different stable states of a network. For large systems, it is tempting to identify these states as metastable 
states. Hence, one would like to compute transition rates between different metastable states of the network. We 
expect this to be possible for sparse random networks by mean of the dynamic cavity method, combined with 
standard sampling methods like the one proposed in [DBCC98]. An interesting example of an application is to gene 
regulatory networks; these are characterized by a complicated stochastic dynamics, in which the expression of each 
gene is regulated by a number of  other genes.  Describing this  dynamics is challenging  but  very important to 
understand the functioning of these networks. 
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c. Resources (incl. project costs)
The structure of the project requires working in parallel on several distinct (although related) research directions, 
and to perform a lot of computational work. For this reason, a team of at least three persons working at full time on 
the project, coordinated by the PI, is necessary. The team will be composed by the PI and by two post-doc fellows 
per year at the beginning, or one post-doc and one PhD student for the three last years of the project. We will also 
provide support to two young researchers that will work part time on the project, to help the team members for 
some specific tasks, and allocate some money for visiting students from other EU countries.

Personnel: the core of the team
The PI has a permanent CNRS position which gives him total freedom to work on his research projects. He has no 
obligation of any kind (apart from performing excellent scientific work) with respect to its institute. He has no 
teaching duties. Hence, he will be committed at 80% to the project without the need of any direct funding (leaving 
a 20% free time for implication in other projects, students supervision, etc.). The total actual cost of PI salary is 
6167 euros/month (74000 euros/year);  80% of the salary (59200 euros/year)  should be funded directly by the 
project budget.

Every year of the project, two persons will work under the direct supervision of the PI; they are central figures of 
the project.  They will bring experience on specific topics (such as Quantum Monte Carlo and other numerical 
methods) and perform both analytic computations and numerical simulations. Post-docs will be hired on “junior” 
positions  (less  than  2  years  of  research  experience  from PhD,  approximate  cost  4083 euros/month  or  49000 
euros/year) and on “senior” positions (more than 2 years of research experience from PhD, approximate cost 4520 
euros/month or 54250 euros/year). We will open at first two “two-years junior positions”; on the third year we will 
open one “three-years senior position” (see table below), and at the same time a PhD student will join the project. 
The student will be supported for three years (33000 euros/year). 

We expect this arrangement to keep a good equilibrium in the team, since in the initial (more critical) phase of the 
project the two “junior” post-docs will work in parallel and in direct collaboration with the PI, while in the last 
three years when the project will  be more advanced, the “senior” post-doc will  help the PI in supervising the 
student, whose activity will focus on some specific tasks, among the objectives of the project, that will emerge at 
that time as promising and yet not too risky.

Personnel: collaborators and visiting students
The PI has a long standing collaboration with Italian colleagues from Rome and Trieste in joint supervision of PhD 
students. This co-supervising activity will be pursued by allocating some money (10000 euros for the first two 
years, and 5000 euros for the other years) to support PhD students from other European countries wishing to spend 
long or short periods of research in France working on this project under the PI supervision, in collaboration with 
their supervisors in their home country. These students will provide additional manpower to perform specific tasks, 
and at the same time these collaborations will contribute to circulation of ideas related to the project among the EU.

Finally, the team will be completed by two associates. In the French system, young researchers are often appointed 
as  Assistant  Professors  (Maitre  de  Conference,  MdC).  These  are  permanent  teaching/research  positions  that 
however  require  an  important  teaching  charge  (192 hours  per  year).  Universities  allow them to  reduce  their 
teaching duties if the corresponding part of their salary is payed by a third institution. Hence 20000 euros/year will 
be used to discharge two young MdC from a part of their teaching, so that they will be able to participate part-time 
to the research activity related to the project. These MdC will be selected, each year, based on scientific excellence 
and on the complementarity of their skills with the rest of the team. They will  bring specific expertise to the 
project, acting as “consultants” on specific topics.

Other direct costs:

The calculations needed for the success of the project require a substantial computational power. In order to take 
full advantage of the parallelization of the code, a cluster of at least 320 cores is needed. The cluster will be bought 
at  the  beginning  of  the  project  and  will  serve  during  the  full  duration (5 years)  of  the  project.  To speed  up 
communication between the cores and optimize the parallelization, we will use 32-core blades, the current standard 
of technology. We estimated the price of one such blade by asking for a quote to the Dell official seller in France. 
The best option is to use Dell PowerEdge R815 blades, each equipped with 4 processors AMD Opteron 6136, 8 
cores each, 2.4GHz, 4M Cache. The price for one such blade is 7068 euros including taxes. We will need at least 10 
such blades, therefore we consider a total price of 70680 euros which we round to 75000 euros to take into account 
a possible increase of prices during the next year.
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The success and dissemination of the project requires to keep important contacts with the leading groups in the 
field (many European groups, the MIT group of Prof. Farhi, the Princeton group of Prof. Sondhi, etc.). Therefore it 
will be necessary to allocate a substantial amount of money for travelling. While it is not obvious to estimate the 
money needed for travelling each year, we considered around 4000 Euros per year for the PI, 2000 euros for each 
Postdoc and the PhD student, and 1000 euros for each senior associate. This amounts to approximately 10000 euros 
per year.  Some money (3000 Euros per year)  will  also be used to invite collaborators from other Institutions 
(indicated in 'Other'). 

Finally, the overheads are estimated as 20% of the total budget.

 
Cost 
Category Year 1 Year 2 Year 3 Year 4 Year 5 Total (Y1-5)

  
Direct Costs: Personnel:       

PI 59200 59200 59200 59200 59200 296000
Senior Staff 20000 20000 20000 20000 20000 100000 
Post doc J1
Post doc J2
Post doc S1

49000
49000
0

49000
49000
0

0
0
54250

0
0
54250

0
0
54250

98000
98000
162750

PhD Student
Support for
EU students

0

10000

0

10000

33000

5000

33000

5000

33000

5000

99000

35000 
Other 0 0 0 0 0 0 
Total 
Personnel: 187200 187200 171450 171450 171450 888750

 
Other Direct 
Costs:       
Equipment 75000 0 0 0 0 75000
Consumables 0 0 0 0 0 0
Travel 10000 10000 10000 10000 10000 50000
Publications 0 0 0 0 0 0
Other 3000 3000 3000 3000 3000 15000
Total Other 
Direct Costs: 88000 13000 13000 13000 13000 140000

Total Direct 
Costs: 275200 200200 184450 184450 184450 1028750

Indirect Costs 
(overheads):

Max 20% of 
Direct Costs 55040 40040 36890 36890 36890 205750

Subcontracting 
Costs:

(No 
overheads)

Total Costs of 
project:

(by year and 
total) 330240 240240 221340 221340 221340 1234500

Requested 
Grant:

(by year and 
total) 330240 240240 221340 221340 221340 1234500

For the above cost table, please indicate the % of working  time the PI dedicates to the 
project over the period of the grant:

80%
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d. Ethical issues ETHICS ISSUES TABLE
 Research on Human Embryo/ Foetus YES Page

Does the proposed research involve human Embryos?   
Does the proposed research involve human Foetal Tissues/ Cells?   
Does the proposed research involve human Embryonic Stem Cells (hESCs)?   
Does the proposed research on human Embryonic Stem Cells involve cells in 
culture?

  

Does the proposed research on Human Embryonic Stem Cells involve the derivation 
of cells from Embryos?

  

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY PROPOSAL X

 Research on Humans YES Page
Does the proposed research involve children?   
Does the proposed research involve patients?   
Does the proposed research involve persons not able to give consent?   
Does the proposed research involve adult healthy volunteers?   

 Does the proposed research involve Human genetic material?   
 Does the proposed research involve Human biological samples?   
 Does the proposed research involve Human data collection?   

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY PROPOSAL X

 Privacy YES Page

 
Does the proposed research involve processing of genetic information or 
personal data (e.g. health, sexual lifestyle, ethnicity, political opinion, religious or 
philosophical conviction)?

  

 
Does the proposed research involve tracking the location or observation of 
people?

  

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY PROPOSAL X

 Research on Animals YES Page
 Does the proposed research involve research on animals?   
 Are those animals transgenic small laboratory animals?   
 Are those animals transgenic farm animals?   

Are those animals non-human primates?   
 Are those animals cloned farm animals?   

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY PROPOSAL X

 Research Involving non-EU Countries  (ICPC Countries)  YES Page
Is the proposed research (or parts of it) going to take place in one or more of the 
ICPC Countries?

 
Is any material used in the research (e.g. personal data, animal and/or human 
tissue samples, genetic material, live animals, etc) :
a) Collected in any of the ICPC countries?

  

b)  Exported to any other country (including ICPC and EU Member States)?

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY PROPOSAL X

 Dual Use YES Page

 Research having direct military use   

 Research having the potential for terrorist abuse   

I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY PROPOSAL X


