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Starting from 2005, in collaboration with G.Parisi, I developed a theory of the glass transition, jamming, and 
the structure of amorphous packings of hard spheres. This theory is based on a mean field approach, and it 
led to nice results: its predictions have by now been successfully compared to numerical results obtained by 
several groups. In the following I will give a short account of the physical problem (A), of our theory (B), 
and of our recent advances (C).

A. Overview of the physical problem
About 50 years ago, Bernal [Bernal and Mason, Nature 1960] used dense disordered  sphere packings as 
model systems to understand the liquid state, at a time where the statistical mechanics of liquids was still in 
its infancy. However, while liquid state theory grew as a cornerstone of theoretical physics, no equivalent 
theory was constructed for disordered packings, because they are a nonequilibrium, amorphous, athermal 
state of matter—a theoretical challenge overlooked by Bernal. Nevertheless, the idea that jammed materials 
share deep similarities with dense liquids and glasses remains popular today [Liu and Nagel, Nature 1998]. 
Besides disordered sphere packings, “jammed matter” might refer to a large class of physical systems, such 
as glasses, colloidal dispersions, granular matter, powders, porous media. Due to this ubiquity of jammed 
matter, after the pioneering works of Bernal, a huge amount of precise numerical and experimental data on 
amorphous sphere packings has become available [e.g. Donev et al., PRE 2005; O’Hern et al., PRL 2002 and 
PRE 2003; Skoge et al., PRE 2006]. Moreover, the sphere packing problem is related to many mathematical 
problems and arises in the context of signal digitalization and of error correcting codes, and it has been 
investigated in detail by the information theory community [see the books by Conway and Sloane, 1993, and 
Rogers, 1964]. This community obtained many interesting rigorous results, but, for space dimension d > 3, 
only some not very restrictive bounds have been obtained, and in particular it is still unclear whether the 
densest packings for  d  going to infinity are amorphous or crystalline (a likely possibility being that  the 
density of amorphous and crystalline packings scales similarly for large d). 

Despite this huge numerical and analytical effort, even a very basic question, namely that of giving a precise 
definition of amorphous packings, is still matter of passionate debate [Kamien and Liu, PRL 2007; O’Hern 
et al., PRL 2002; Torquato et al., PRL 2000]. The reason, already outlined above, is that dense amorphous 
packings of hard spheres are usually produced according to some specific dynamical protocol. Typically one 
starts from an initial random configuration of the spheres, obtained e.g. by throwing them into a container, 
and then shake, tap, or agitate in some way the spheres until a jammed structure is found. In numerical 
simulations, amorphous packings are produced by inflating the particles while avoiding superposition either 
by molecular dynamics or by introducing some energy cost for overlaps, and minimizing the energy in an 
attempt to find a zero energy configuration. As a matter of fact, most of these procedures, if crystallization is 
avoided, lead to a final packing fraction close to 0.64 in d = 3 and to 0.84 in d = 2. These values of density, 
that are approximately 10% smaller than the values of the ordered close packing, have been called “random 
close packing density”. The main problem is that the algorithms (or procedures) that are used to create such 
packings  are  complicated  dynamical  non-equilibrium  procedures.  Obtaining  analytical  results  for  the 
properties of the final states requires an analytical solution of such complicated dynamical processes, that is 
very difficult even in the simplest theoretical models [Krzakala and Kurchan, PRE 2007]. Moreover, a small 
dependency  of  the  final  density  on  the  particular  algorithm  is  observed,  indicating  that  although  the 
properties of the final packings are similar, different algorithms do not lead exactly to the same states.

B. Overview of our research methodology
The main strategy behind the theory is to identify a class of amorphous packings that might be described 
using  equilibrium  statistical mechanics, that is,  in a  static  framework. These packings are defined as the 
infinite pressure limit of glassy states of hard spheres: such glassy states, if dense enough, are well defined 
metastable states with very long life times, and should be then correctly described by equilibrium statistical 
mechanics. The idea of studying amorphous packings as the infinite pressure limit of a metastable state has 
been already discussed in the literature [e.g. Biroli and Mézard, PRL 2001], and is appealing because it 
converts a difficult dynamical problem into a much simpler equilibrium problem. Our approach to study 
glassy states is based on the so-called Random First  Order Transition (RFOT) theory of glasses, whose 



theoretical foundations were posed in a series of papers by Kirkpatrick, Thirumalai and Wolynes [Kirkpatrick 
and Thirumalai, PRL 1987; Kirkpatrick and Wolynes, PRA 1987; see Cavagna, Phys.Rep. 2009 for a detailed 
and recent review]. In this theory the glass transition of particle systems is assumed to be in the universality 
class of the 1-step Replica Symmetry Breaking (1RSB) transition that happens in some mean-field exactly 
solvable spin glass models [Gross and Mézard, Nucl.Phys.B 1984]. Under this assumption, the glassy states 
of realistic finite-dimensional systems can be studied analytically, using equilibrium statistical mechanics by 
means of density functional theory [Stoessel and Wolynes, JCP 1984] and of the replica trick [Mézard and 
Parisi,  JCP 1999;  Monasson,  PRL 1995].  The  replica  method  seems  to  give  much  better  quantitative 
estimates of the glass transition temperature (or density) and of the equation of state of the glass for Lennard-
Jones systems [Mézard and Parisi, JCP 1999]. Remarkably, a class of mean-field hard sphere models have 
been  recently  formulated,  for  which the  RFOT scenario  is  exact  [Biroli  and Mézard,  PRL 2001;  Mari, 
Krzakala and Kurchan, PRL 2009; Tarzia et al., EPL 2004]. These models allowed to test the methodology 
used here, confirming that it is reliable, at least at the mean-field level. 

The replica theory of glasses [Mézard and Parisi, JCP 1999] is based on writing the replicated system as a 
“molecular liquid”, and then use standard tools of liquid theory such as the HNC approximation to compute 
the properties of this molecular liquid. From this computation, one can extract all the thermodynamic of the 
glass  state.  For  hard  spheres,  taking  the  limit  of  infinite  pressure,  one  finally  obtains  the  properties  of 
amorphous packings. This approach, therefore, allows to go back from liquid theory to amorphous packing, 
doing the reverse of the path followed by Bernal in the sixties, and showing that there is indeed an intimate 
connection between the theory of liquids and that of jammed matter.

The  resulting  theory  [Parisi  and  Zamponi,  RMP 2010]  allows  to  compute  several  thermodynamic  and 
structural  properties  of  amorphous  packings  of  hard  spheres.  In  particular,  their  entropy  (the  so-called 
“configurational entropy”), their pair correlation function g(r), and some geometrical informations such as 
the average number of contacts between spheres. All these quantities have been compared with numerical 
simulations, showing a very good overall agreement, with some particularly striking successes, in particular 
for the scaling of the g(r) close to contact [Parisi and Zamponi, RMP 2010].

C. Further developments of the theory

A first extension, that was performed in [Biazzo, Caltagirone, Parisi, Zamponi, PRL 2009], is to apply the 
theory to binary mixtures. This is important since nearly all numerical simulations are performed on binary 
mixtures.  In  addition  to  that,  the  extension  to  binary  mixtures  allow  to  compute  new  observables.  A 
particularly  interesting  example  is  the  following.  Amorphous sphere  packings  are  isostatic:  the  average 
number of contacts for a sphere is equal to twice the dimension of space (so it is 6 in d = 3). This fact is 
reproduced by the theory, which is already an interesting result. However, since in monodisperse packings all 
spheres are equivalent, we can only compare this number between theory and simulation. On the contrary, in 
binary packings, the average coordination number is 6, but it results from an average of partial coordination 
numbers of large and small spheres. A small sphere has a certain average number of contacts with the other 
small  spheres,  and  with  the  large  spheres,  and  viceversa.  Therefore,  by  varying  the  diameter  and 
concentration ratios of the two species, we can vary continuously the partial coordinations (while the total is 
always equal to 6) and compare the prediction of the theory with numerical and experimental results. This 
was done in [Biazzo, Caltagirone, Parisi, Zamponi, PRL 2009], and we found nearly perfect agreement. We 
could also compute the density of packings as a function of diameter and concentration ratios, which also 
compares well with numerical and experimental results.

A second extension, that was performed in [Jacquin, Berthier, Zamponi, preprint 2011] is to a system of soft 
spheres: spheres that can overlap, but at the price of paying an energy cost. This model is often used as a 
model of soft colloidal systems. Because of the finite energy scales, temperature now plays a role and one 
has to study the phase diagram in the temperature, density plane. The computation of the low temperature 
scalings around the jamming density required a major technical improvement of the previous theory, which 
will  be  detailed  in  a  forthcoming  longer  version  of  [Jacquin,  Berthier,  Zamponi,  preprint  2011].  This 
extension allowed us to get a complete picture of the jamming phase diagram in temperature and density. In 
particular, we obtained the scaling of pressure and energy close to the jamming point, and more importantly, 
the scaling of g(r) close to contact. Since g(r) develops a contact delta peak at the jamming point, one obtains 
an extremely non-trivial scaling at low temperature and around the jamming point, characterized by non-
commuting limits and different scaling functions on the two sides of the transition. These scaling functions 
have been computed and successfully compared with numerical data. Experiments could be realized in the 
near future.


