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Motivations: supersolidity of He4

Non-classical rotational inertia
observed in solid He4 (Kim and Chan)

Experimental Results

• Discovery by Kim & Chan in He4 (Nature & Science 2004). 

• Reproduced after by many other groups.

P=51 bars

Possible interpretation: supersolidity

Experimental Results

• Discovery by Kim & Chan in He4 (Nature & Science 2004). 

• Reproduced after by many other groups.

P=51 bars

Supersolidity excluded in perfect He4 crystals (Boninsegni, Ceperley et al.)

Supersolidity strongly enhanced by fast quenches (Rittner and Reppy)

History dependent response and some evidence for aging (Davis et al.)
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Phenomenology

Classical particle system (e.g. Lennard-Jones like potential)
No external disorder

Huge increase of the viscosity (or
density relaxation time) in a small
range of temperature

Second order phase transition: jump
in compressibility



Motivations Classical glasses Quantum glasses Superglass Lattice models Conclusions

Phenomenology

Two steps relaxation:
1. Intra-cage vibrational motion (τβ)
2. Structural relaxation (τα)

First six decades of dynamic slowing
down is well described by
Mode-Coupling Theory (MCT)

MCT predicts power-law
divergence, τ ∼ (T − Tc)−γ ,
with too large Tc

The divergence is ”activated”
τ ∼ exp(A/(T − T0)) instead

Activation is neglected in MCT
(mean field theory)
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Mean field spin glass models

A mean field model for the glass transition: the p-spin model:

H =
∑

i<j<k

JijkSiSjSk

Si Ising spins
Jijk independent Gaussian random variables with zero average

Ts T T
tapmaxT    (E )c T

(1)

(2)

(3)

(4)

(5)

*

Free energy
Liquid phase: dynamics is
described by MCT-like
equations

”Activated” liquid phase:
eNΣ states are populated

Glass phase:
”condensation”, finite
number of ground states

In a suitable limit (infinite number of spin in each interaction) reduces to
the Random Energy Model (REM): 2N levels Ei , i.i.d. Gaussian variables
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Quantum p-spin and QREM

Quantum p-spin in a transverse field: (Goldschimdt; Cugliandolo et al.; Jorg et al.)

H =
∑

i<j<k

JijkS
z
i Sz

j Sz
k − Γ

∑

i

Sx
i

For infinite-body interaction: quantum REM, full spectrum
First order quantum phase transition (paramagnet → glass) at T = 0
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At T = 0, slow dynamics in the glass but not in the paramagnet;
no slowing down observed on approaching Γc from above.
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Helium 4: Monte Carlo results

Quantum Monte Carlo simulation of He4 at high pressure P > 32 bar
Quench from the liquid phase down in the solid phase (Boninsegni et al.)
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Helium 4: Monte Carlo results

Amorphous condensate wavefunction: n(r − r ′) ∼ n0φ(r)φ(r ′)

Plot of φ(x , y , z) on slices at fixed z

Many open problems

What is the nature of the transition?
Is it accompanied by slow dynamics in the liquid phase?
Where does superfluidity come from?



Motivations Classical glasses Quantum glasses Superglass Lattice models Conclusions

Outline
1 Motivations

Supersolidity of He4

2 The glass transition of classical liquids
Phenomenology
Mean field spin glass models for the glass transition

3 The quantum glass transition
Quantum p-spin and QREM
Helium 4: Monte Carlo results

4 A model for the superglass phase
Mapping on classical diffusive dynamics
The phase diagram
Quantum slow dynamics
Condensate fluctuations
Superfluid properties
Perspectives

5 Lattice models
Disordered Bose-Hubbard model: the Bose glass
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Mapping on classical diffusive dynamics

General mapping: Quantum Hamiltonian ⇐ Fokker-Planck operator

Diffusive dynamics (Brownian motion, Langevin equation):

γi
dxi

dt
= − ∂

∂xi
UN(x1, . . . , xN) + ηi (t) , i = 1, ...,N ,

Evolution of probability P(xi ; t): Fokker-Planck eq. ∂tP = −HFPP

Equilibrium distribution PG = exp(−βUN)/Z , HFPPG = 0
All other eigenvectors HFPPE = E PE such that E > 0

Associated quantum (Hermitian) Hamiltonian: H = P
−1/2
G HFP P

1/2
G

Ground state ΨG (xi ) =
√

PG (xi ) is a Jastrow wavefunction
Full spectrum of H equal to spectrum of HFP ⇒ access to real time
quantum dynamics

Remarks:

� H has special properties! No inverse mapping in general...
� Jastrow wavefunctions are good variational ground states for He4
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The phase diagram

We choose UN(xi ) =
∑

i<j VHS(xi − xj) (classical Hard Spheres)
Quantum potential: sticky Hard Sphere + sticky three-body interactions
Glass transition on increasing density
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Slow dynamics approaching the glass phase

Density-density correlation function:

Fcl (q, t) = 〈ρq(t) ρ−q(0)〉 =
R∞

0
dω
2π

ρq(ω) e−ωt

FQ(q, t) = 〈0|{ρq(i t), ρq(0)}|0〉 =
R∞

0
dω
2π

ρq(ω) cos(ωt)

Separation of time scales: ρq(ω) = ρβ(ωτβ) + ρα(ωτα) with τβ � τα
For τβ � t � τα:

the contribution of ρβ(ωτβ) decays to zero
the contribution of ρα(ωτα) is the same since e−ωt ∼ cos(ωt) ∼ 1

hence Fcl (q, t) ∼ FQ(q, t) ∼
R∞

0
dω
2π

ρα(ωτα)⇒ same plateau!
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Condensate fluctuation in the glass

In the glass state τα =∞ →; liquid freezes in many possible states
Amorphous density profile ρα(r) and condensate profile φα(r)
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Superfluid properties

Superfluidity requires a linear spectrum (”phonons”): vc ≤ mink [ε(k)/k]

In our model e(ρ) ≡ 0⇒ sound velocity c = d
dρρ

2 de
dρ = 0⇒ vc = 0

(follows from a special symmetry that allows to map H into a Fokker-Planck operator)

Introduce a perturbation δv(r); then δe(ρ) = ρ
2

∫
dr g(r) δv(r)
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sound velocity c 6= 0⇒ ρs 6= 0

first order transition at ρK

[very weak jump in e′(ρ) = P/ρ2]
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Perspectives

Weak points in the theory:

”Classical”-like solids, small Lindemann ratio and superfluid fraction

”Ad hoc” inclusion of phonons

New quantum phase transition: first order with slow dynamics.
How general?

Quantitative computation for He4, cold atoms...
[ρK for He4 is 10 times larger than the one of Boninsegni et al.]

What happens at finite temperature?

Possible strategies:

Better variational wavefunctions: Shadow and Jastrow with three
body interactions; should give larger Lindemann ratio and ρs

Quantum Mode Coupling Theory (Reichmann and Miyazaki)

Replica computation at finite temperature

Leggett bound: relation between ρ(r) and ρs , apply to superglass
It seems that disorder does not help superfluidity
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Quantum Biroli-Mézard model: a superglass?
Solution of Bose-Hubbard models on the Bethe lattice



Motivations Classical glasses Quantum glasses Superglass Lattice models Conclusions

Disordered Bose-Hubbard model: the Bose glass

H = −J
∑

<i,j>

(a†i aj + a†j ai ) +
U

2

∑

i

ni (ni − 1)−
∑

i

(µ+ εi )ni

εi ∈ [−∆,∆] quenched external disorder

Mott insulator: one particle/site
Strong localization ⇒ no BEC, ρs = 0
Zero compressibility

Bose glass: additional defects
Anderson localization
Finite compressibility

No frustration, no RSB
No slow dynamics
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Quantum Biroli-Mézard model: a superglass?

H = −J
∑

<i,j>

(a†i aj + a†j ai ) +
∑

<i1,··· ,ik>
V (ni1 , · · · , nik )−

∑

i

µni

Classical model (J = 0): glass transition similarly to Hard Spheres
Self-generated disorder, RSB, slow dynamics

Add quantum fluctuations (J 6= 0)

A quantum glass transition? Slow dynamics? Aging?
Nature of the transition (first or second order)?

Bethe-Peierls Approximation
(Replica-Symmetric cavity method)

Solve the model on a tree with the same connectivityStrategy: solve the model on the Bethe lattice
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Solution of Bose-Hubbard models on the Bethe lattice

Solution of functional recurrence
equations for the local action

Gives back DMFT for Z →∞
Successfully tested on the ordered
Bose-Hubbard

Classical Bethe-Peierls Approximation
The Cavity Method: solving by recursion

h1 h2 h3

=
h’

h′ =
3∑

i=1

1
β

tanh−1 (tanhβhi tanhβJ)
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Work in progress... (with G. Semerjian and M. Tarzia)
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Conclusions

Our results:

A semi-realistic model for interacting Bosons displays a superglass
phase

First order quantum glass transition with real time slow dynamics

Variational calculation for more realistic potentials

Possibility of exact solution for Bethe lattice models

Related works:

Quantum Mode Coupling Theory (Reichmann, Miyazaki)

B-DMFT (Vollhardt, Hofstetter, et al.)

Monte Carlo simulations (Boninsegni, Prokof’ev, Svistunov, et al.)
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