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Introduction
The sphere packing problem

Hard spheres are ubiquitous in condensed matter (d = 2, 3)...

Liquids

Solids: crystals and glasses

Colloids

Granulars

Powders

Binary mixtures, alloys...

...and in computer science!

Digitalization of signals (d →∞)

Error correcting codes (spheres on the hypercube)

Constraint satisfaction problem (CSP)
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Introduction
The sphere packing problem

Mathematicians have studied in great detail the problem of finding the
densest packing in Rd (http://www.research.att.com/∼njas/)

In d = 3 the densest packing is a simple lattice...
...but in some dimensions (e.g. d = 10) the best known packing is a
complicated lattice with a very large fundamental cell!

No exact results for d →∞ (see G.Parisi, arXiv:0710.0882)
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Introduction
The random close packing density

Amorphous packings are interesting: in colloids and granulars the crystal
is not reached for kinetic reasons (glass transition, jamming)

Nonequilibrium states: they are prepared using dynamical protocols
(algorithms)

Throw spheres at random in a box and shake/tap the box

Randomly deposit spheres around a disordered seed cluster

Inflate the spheres during a molecular dynamics run

Use a soft potential and inflate the spheres while minimizing the
energy

Repeat until jamming: particles cannot move anymore

Universality of random close packing?

In d = 3 all these procedures give a final density ϕ ∼ 0.64

Still a small dependence on the protocol is observed
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Introduction
The random close packing density

Universal structural properties of amorphous packings:

Isostatic: z = 2d + anomalous vibrational spectrum (excess of soft modes)
Square root singularity g(r) ∼ (r − 1)−0.5

Peak in r =
√

3 and jump in r = 2
Long range correlations, g(r)− 1 ∼ r−4

Close to ϕ ∼ 0.64 there is a pocket of amorphous states with similar structural
properties.
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Introduction
Entropy and surface tension

(At least) three different approaches to the sphere packing problem:

1 “Geometry of phase space”: classify all configurations

2 “Equilibrium stat.mech.”: look to the flat measure over all configurations and
study its structure (equilibrium and metastable states)

3 “Algorithmic”: choose a (non-equilibrium) dynamical protocol to generate an
ensemble of final packings. Study the occurrence frequencies of packings.

The relation between the three is not at all trivial, already in simple mean-field models!

Here we will focus on equilibrium statistical mechanics and identify packings with
infinite pressure limit of metastable states:
a central role will be played by entropy and (entropic) surface tension.
⇒ a classical example: first order liquid-crystal transition

The study of surface tension in disordered systems is very difficult and only recently
numerical results appeared for glasses
(Cavagna et al. arXiv:0805.4427; arXiv:0903.4264; arXiv:0904.1522).
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A simple example: 25 particles in two dimensions

Fast compression starting from a random configuration

“Phase diagram”

!
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, P

Volume fraction, 

Woodcock and Angell, 1981
Stoessel and Wolynes, 1984
Speedy, 1994, 1998
Krzakala and Kurchan, 2007
Parisi and Zamponi, 2008
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Questions, and some answers

In the thermodynamic limit many questions arise...

Q There are special configurations (crystals). What is their role?
Can one separate them from amorphous configurations?

A This is a very tricky question. Let’s discuss it later...

Q Are different configurations really disconnected?

A No, unless P =∞. The self-diffusion coefficient is always finite at finite pressure [Osada, 1998].

Q In what sense they might be disconnected?

A1 the time needed to go from one to the other diverges exponentially, τ ∼ exp(N) [metastability].

A2 If we add an infinitesimal external potential that favors one configuration, the system will stay

forever close to that one.

Q Is the jamming density ϕj unique in the thermodynamic limit?

A1 ϕj = ϕ
(∞)
j + O(1/

√
N)

A2 ϕj ∈ [ϕth, ϕGCP ]
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1000 particles are interesting

τ0 microscopic scale (relaxation time at very low density)

Accessible time and length scales in some disordered particle systems

Numerical simulations: N ∼ 1000÷ 10000 and τ/τ0 ∼ 107

Colloids: D ∼ 200 nm, L ∼ 1 mm, N ∼ (L/D)3 = 1011; τ0 ∼ 10−3 s and
τ/τ0 ∼ 107

Granulars: D ∼ 1 cm, L ∼ 1 m, N ∼ 106; τ0 ∼ 0.1 s and τ/τ0 ∼ 105

Glass forming liquids: D ∼ 1 A, N ∼ NA ∼ 1023; τ0 ∼ 1 ps, τ/τ0 ∼ 1011
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Slow dynamics of disordered systems:
Observing a rearrangement of N0 particles
needs a time τ ∼ exp(Nα0 )
[Glass theory: Adam-Gibbs, RFOT]

Having N � N0 does not help much if one
cannot wait for a long enough time...
...so N ∼ 1000 seems already enough to be
relevant for colloids and granulars!

On relatively small length and time scales, mean field theory is a good approximation
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The mean field theory of glasses: a long story (1980-2009...)

Density Functional Theory: Stoessel and Wolynes, 1984

Mode-Coupling Theory: Bengtzelius, Gotze, Sjolander, 1984

Replicas: Cardenas, Franz, Parisi, 1998 + Parisi and Zamponi, 2005

‘‘Energy’’ Landscape: Krzakala and Kurchan, 2007

Random lattice: Mari, Krzakala, Kurchan, 2008

GCP!

Pr
es

su
re

, P

! ! ! !th KMCT

!

"

j

Volume fraction, 

Nonequilibrium glasses
m

Metastable states with very large life time

Jammed states
m

P →∞ limit of metastable states

ϕj is a function of ϕin

(protocol dependence)

Note: no crystal here, by definition
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Phase transitions in Random CSP

Structure of the configuration space:
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Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

Phase transitions in Random CSP:

c < cd : Most of the configurations form a unique cluster

cd < c < cK : The configurations form many (∼ eNΣ) clusters

cK < c < c0: A small number of clusters dominate

c > c0: No configurations (UNSAT)

cd , cK , c0: Discontinuous jump of an “order parameter”
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A “mean-field” model

Site: xi ∈ [0, 1]d PBC
Box:

∏
i<j e−ϕ(xi−xj )

x

x
x

xx 1

5
7

32

x6

x4

a b

c

N variables

Each variable connected to z boxes

Each box connected to p variables

Pick the graph at random with these constraints

Introduced by Mari, Krzakala and Kurchan (PRL, 2009);
Same qualitative phase diagram
Compression at given rate leads to isostatic packings with soft modes etc.
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The replica method

How to compute the distribution of entropies of the states?

GCP!

Pr
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! ! ! !th KMCT

!

"

j

Volume fraction, 

Zm(ϕ) = partition function
of m copies of the system
constrained to be all in the
same cluster

N (s, ϕ) = eNΣ(s,ϕ)

Z (ϕ) =
∑
α eNsα =

∫
ds eN[Σ(s,ϕ)+s]

Zm(ϕ) =
∑
α eNmsα =

∫
ds eN[Σ(s,ϕ)+ms]
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The replica method

Zm =
∑
α eNmsα =

∫
ds eN[Σ(s,ϕ)+ms] ⇒ S(m, ϕ) = maxs [Σ(s, ϕ)+ms]

s(m, ϕ) = ∂ S(m,ϕ)
∂m

Σ(m, ϕ) = −m2 ∂ [m−1S(m,ϕ)]
∂m

⇒ Σ(s, ϕ) (at constant ϕ)

To constrain the replicas in the same state we add a coupling:

Zm(ε) =
∫

V
dN x1···dN xm

N! e−
P

i<j

P
a v(xai−xaj )− ε

m

P
i

P
a<b(xai−xbi )

2

We use standard liquid theory for the replicated liquid:

Integral equations, HNC, PY... (Franz, Parisi)

Large coupling (small cage) expansion (Parisi, Mézard)

Resummations → mapping on a Baxter adhesive model

The crystal is automatically excluded by assuming that the replicated
system is liquid, i.e. translationally invariant
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Replicated liquid theory

Zm(ε) =
R

V
dN x1···d

N xm
N!

e
−

P
i<j

P
a v(xai−xaj )− ε

m

P
i

P
a<b (xai−xbi )2

Integral equations, HNC, PY... (Franz, Parisi)

Each replica is a different “chemical” species α: ρα(x) its density, gαβ (x, y) pair correlation. Write
S[ρα(x), gαβ (x, y)] using HNC approximation for mixtures.

Advantage: full access to g(r) and non-ergodicity factor
Disadvantage: does not work at m < 1 and in general when the cage radius is small (e.g. d →∞).

Large coupling (small cage) expansion (Parisi, Mézard)

Assume “molecules” composed of one atom per molecule: (x1, · · · , xm) = x . Write S[ρ(x)] using virial

series. Assume ρ(x) is a Gaussian of width A. Expand the entropy in powers of
√

A.
Advantage: very good for small A (large pressure, large dimension, etc.)
Disadvantage: no dynamical transition, very difficult to compute correlation functions

Resummations→ mapping on a Baxter adhesive model

In the “molecular” framework S[ρ(x)], integrate over replicas 2 to m. Obtain effective potentials for
replica 1. Study the liquid of replica 1 with standard techniques.
Very good results in d =∞, very poor in d = 3 (for the moment)

In the comparison with numerics, all the theoretical results come from a first order small cage expansion
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Baxter resummation

It is possible to rewrite the
replicated liquid as an atomic liquid
with an effective potential
veff (r) = vHS (r) + δv(r)

δv(r) has short range (∼ the
amplitude of vibration) and is
attractive

0 0.5 1 1.5 2 2.5 3
(r-D)/(2A1/2)

-5

-4

-3

-2

-1

0

1

2

-ln
[1
+Q
(r)
]

m=0.01
m=0.1
m=0.5
m=3

This approximation should be very effective for small cage radius

Infinite dimension

Exact solution: all the phase diagram obtained within the same
approximation

ϕ0, ϕK ∼ 2−d d log d , ϕd ∼ 2−d d

Cage radius ∼ 1/d ⇒ Lindemann ratio L ∼ d−1/2
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Numerical results: many glasses
Skoge, Donev, Torquato, Stillinger (d = 4)
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φ(a)
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Γ-1=10000
Fluid EOS [15]
Solid EOS [16]

(a)
Hermes and Dijkstra (binary d = 3)

Berthier and Witten (binary d = 3)

BMCSL
Glass (soft)

Glass (hard)
Equil. (soft)

Equil. (hard)

ϕ0ϕMCTϕonset

ϕ

Z
(ϕ

)

6560555045
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10

0.52 0.56 0.6 0.64 0.68ϕ0
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0.08

1/p

Metastable glass Σ
j
 = 0.5

Metastable glass Σ
j
 = 1.2

Metastable glass Σ
j
 = 1.5

Ideal glass
Liquid
Numerical 2
Numerical 1

Biazzo, Caltagirone, Parisi, Zamponi (binary d = 3)

+ O’Hern, Liu et al. + Pica Ciamarra et al.: All packings have similar structural properties (e.g. isostaticity)
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Numerical results: compression rate dependence

Focus on d = 4 where crystallization is very unlikely (Charbonneau et al. 2009)
Data from Skoge et al. (2006); J-point from Schreck and O’Hern, unpublished

-10 -9 -8 -7 -6 -5 -4 -3
log10γ

0.4

0.45

0.5

0.55

0.6

ϕ

ϕj
ϕg

ϕK

ϕGCP

ϕD4crystal

ϕJ

Note: extrapolation might be non-sense.
But we are interested in the behavior on intermediate time scales, γ & 10−7.

More precise results on ϕK obtained by Berthier and Witten (2009)
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Theory vs numerics: transition densities

5 10 15
d

0

20

40

60

80

2d
!

!MRJ
!GCP
!K

3 4 5 6
5

10

15

d ϕK ϕGCP ϕJ ϕMRJ ϕK ϕGCP

(theory) (theory) (num.)† (num.)∗ (extr.) (extr.)
2 0.8165 0.8745 — 0.84 — —
3 0.6175 0.6836 0.640 0.64 — —
4 0.4319 0.4869 0.452 0.46 0.409 0.473
5 0.2894 0.3307 — 0.31 — —
6 0.1883 0.2182 — 0.20 — —
7 0.1194 0.1402 — — — —
8 0.0739 0.0877 — — — —

∞ 2−d d ln d 2−d d ln d — 2−d d ? — —

† O’Hern et al. obtained using energy minimization for soft spheres
∗ Skoge et al. obtained using the inflating algorithm with high compression rate
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Theory vs numerics: scaling functions of g(r)

0.1 1 10!
10-4

10-3

10-2

10-1

100

g(!)/g(D)

Donev et al.
Theory

Scaling at infinite pressure: p ∼ g(D) ∼ (ϕj − ϕ)−1

g(r)
g(D) = ∆

(
r−D

D p
)

= ∆(λ) z = 2d : isostatic packings

∆(λ) =
∫∞

0
df f P(f )e−λf ⇒ P(f ) = 2

π e−f 2/π (where f = F/ 〈F 〉)

Obtained via the first-order small cage expansion
(g(r) far from contact cannot be computed)
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Theory vs numerics: packing geometry

Focus on binary mixture: jamming density and interparticle contacts
(Biazzo, Caltagirone, Parisi, Zamponi, PRL 2009)
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All packings are predicted to be globally isostatic.
Partial contact numbers are almost independent of ϕj .



Introduction Glassy states The replica method Results: theory and numerics Conclusions Details

Outline
1 Introduction

The sphere packing problem
The random close packing density
Entropy and surface tension

2 Glassy states
A simple example: 25 particles
1000 particles are interesting: mean field theory
Phase transitions in Random CSP

3 The replica method
General strategy
Replicated liquid theory
Baxter resummation

4 Results: theory and numerics
Many glasses
Compression rate dependence
Small cage expansion
Packing geometry

5 Conclusions



Introduction Glassy states The replica method Results: theory and numerics Conclusions Details

Our main assumption

Amorphous packing created by complicated nonequilibrium dynamical processes
(tapping, shaking, inflating, ...) are metastable glassy states at infinite pressure

Then using replica theory and numerics one can show that:

Mean field really holds at moderate length/time scales N ∼ 1000, τ/τ0 ∼ 107; these
scales are explored in numerical simulations, in granulars, and in colloids:

ϕK “exists” (in the sense that the relaxation time behaves as if it existed)
There are amorphous packings in a finite range of densities around “random
close packing”: ϕj ∈ [ϕth, ϕGCP ] with common structural properties

ϕj = ϕ∞j + O(1/
√

N) for a given protocol
the equation of state of the glass is similar to what is obtained during slow
compressions
structural quantities [S(q), non-ergodic factor, coordination, etc.] can be
measured and compared with analytic [replica] computations, with good
agreement
Theory predicts that amorphous packings are isostatic, z = 2d
We find a consistent solution in d →∞ that gives non-trivial predictions for the
scaling of the random close packing density, ϕ ∼ 2−d d log d
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...with some big open problems:

Better understanding of metastability:

Number of states N ∼ exp(NΣ), and Σ vanishes at ϕK : to be confirmed

[preliminary results by Speedy 1998, Angelani and Foffi 2005]

A complete theory of the surface tension in glassy systems is still missing

A theory of the glass transition should explain why mean field holds on

such scales (Ginzburg criterion)

What happens at larger length/time scales? Nucleation arguments,

RFOT, point-to-set correlations

Nonlinear susceptibilities, soft modes, J-point criticality

How friction modifies all this picture?

...and some technical open problems:

Better investigation of the Baxter resummation in d = 3: hope to describe all
the phase diagram consistently within the same approximation

Study the equilibrium dynamics (Mode-Coupling theory) in d →∞: same value
for ϕd ? (nice work in d = 4 by Charbonneau et al. 2009)

Generalize to potentials for colloids: hard spheres + attractive tail. Reentrance
of the glass transition line?
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On the definition of complexity

The definition and numerical computation of the complexity (number of
metastable states) is the biggest problem of the mean field scenario.
Many amorphous states; to select one, we must impose an external potential
but we do not know it

Solution 1: couple the system to a reference equilibrium configuration.
[Parisi, Coluzzi, Verrocchio; Angelani, Foffi]

Self-consistent external potential: V (r1, · · · , rN ) = α
P

i (ri − xi )
2.

However, in finite dimension, an infinitesimal potential is enough only above ϕK ;
below ϕK the system escapes from the metastable state at low enough α [via a

first order transition]

Extrapolate to α = 0; it is difficult, need for more precise simulations.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

α

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

<
(r

 -
 r

0)
>

2

ϕ = 0.580
ϕ = 0.575
ϕ = 0.565
ϕ = 0.560
ϕ = 0.555
ϕ = 0.525
ϕ = 0.500
ϕ =0. 475
ϕ = 0.450
ϕ = 0.425

α0
(1) α0

(2)

0.45 0.50 0.55 0.60

ϕ

0.0

0.5

1.0

1.5

2.0

2.5

S c
on

f /
 N

α0= α0
(1)

α0= α0
(2)

Speedy bin.
Speedy mon.
Parisi and Zamponi
Extrapolation
Extrapolation 



Introduction Glassy states The replica method Results: theory and numerics Conclusions Details

On the definition of complexity

The definition and numerical computation of the complexity (number of
metastable states) is the biggest problem of the mean field scenario.

Many amorphous states; to select one, we must impose an external potential
but we do not know it

Solution 2: thermodynamics of a bubble.
[Biroli, Bouchaud; Franz; Cavagna, Grigera, Verrocchio

Consider a bubble of radius R whose boundary is obtained by freezing a larger
equilibrium configuration.

Compute the entropy sint (R, ϕ) of the bubble (via thermodynamic integration)

Define the complexity as Σ(R, ϕ) = S(ϕ)− sint (R, ϕ)

Study the behavior of Σ(R, ϕ) as a function of R. It should vanish for R > ξ
where ξ is the point-to-set correlation length

Advantage: no need for extrapolation, well defined quantities, direct access to
the behavior as a function of the length scale

Disadvantage: numerically heavy, and in finite dimension, no single state inside
the bubble [BBCGV], is this a problem?
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Nonlinear susceptibilities and soft modes

A set of jammed states (= P →∞ limit of metastable states) in a range [ϕth, ϕrcp ].

Do these states have similar
structural properties
(isostaticity, soft-modes,
square-root singularity,
hyperuniformity, . . .)?

Is there anything special in
the J point (soft both in the
“isostatic” and in the
“MCT-like” sense) or it just
corresponds to a particular
procedure?

Numerical simulations

MCT in a metastable state

Soft modes in the replica approach?
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Friction complicates the picture

Recent proposals for a schematic phase diagram of jammed matter [Makse et al., van
Hecke et al.]
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What happens at finite
pressure?


	Introduction
	The sphere packing problem
	The random close packing density
	Entropy and surface tension

	Glassy states
	A simple example: 25 particles
	1000 particles are interesting: mean field theory
	Phase transitions in Random CSP

	The replica method
	General strategy
	Replicated liquid theory
	Baxter resummation

	Results: theory and numerics
	Many glasses
	Compression rate dependence
	Small cage expansion
	Packing geometry

	Conclusions
	
	

	Details
	
	
	


