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Motivations: supersolidity of He*

Non-classical rotational inertia observed in
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@ Supersolidity excluded in perfect He* crystals (BONINSF}G]\'I. CEPERLEY ET AL.)
@ Supersolidity strongly enhanced by fast quenches (RitTNER AND REPPY)
@ History dependent response and some evidence for aging (Davis Er ar.)

Are BEC and superfluidity possible in disordered solids?
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Helium 4: Monte Carlo results

Quantum Monte Carlo simulation of He* at high pressure P > 32 bar Quench from
the liquid phase down in the solid phase
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BONINSEGNI ET AL., PRL 96, 105301 (2006)
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Helium 4: Monte Carlo results

Amorphous condensate wavefunction: n(r — r’) ~ nge(r)op(r’)

Plot of ¢(x,y, z) on slices at fixed z
BONINSEGNI ET AL., PRL 96, 105301 (2006)
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Many open problems

Difficulties of QMC

@ Strong ergodicity problems in the glass phase
@ No access to real time dynamics: is this phase really metastable?
@ Difficulty in determining the phase boundary: what is the phase diagram?

Open questions

@ What are the physical ingredients (disorder, frustration)?

@ What is the nature of the transition?

@ Is it accompanied by slow dynamics in the liquid phase?

@ Where does superfluidity come from?

@ Strong interaction and disorder: need for a nonperturbative analysis

Our result — G.CarLEO, M.TARzIA, FZ, PRL 103, :

@ A solvable model displaying a thermodynamic superglass phase
@ Disorder is self-induced by frustration in absence of external potentials
@ Realistic mechanism for He*
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Regular lattices, Bethe lattices and random graphs

Bethe approximation

Discard the small loops of the lattice, graph becomes a tree:

The tree allows for a simple recursive solution but the frustration is lost
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Regular lattices, Bethe lattices and random graphs

Cavity approximation

Replace the lattice by a random graph of the same connectivity:

The exact solution on the random graph can still be obtained (cavity method)
Key property: loops have size log L, locally tree-like
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Regular lattices, Bethe lattices and random graphs

Cavity approximation

Replace the lattice by a random graph of the same connectivity:

The exact solution on the random graph can still be obtained (cavity method)

Key property: loops have size log L, locally tree-like
i

Unfrustrated phase (RS cavity method)

@ Correlations decay fast enough
@ Long loops can be neglected — back to a tree
@ Cavity approximation is equivalent to Bethe approximation
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Regular lattices, Bethe lattices and random graphs

Cavity approximation

Replace the lattice by a random graph of the same connectivity:

The exact solution on the random graph can still be obtained (cavity method)
Key property: loops have size log L, locally tree-like

Frustrated phase (1RSB cavity method)

Correlations do not decay fast enough

The recursion relation on a tree is initiated from a given boundary condition
For each boundary condition, a different fixed point is obtained

One has to sum over boundary conditions in a consistent way

Cavity approximation describes the glassy phase
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Classical ferromagnet on the Bethe lattice

H=-J Z("J) 0i0;

Zg(o)= X Zg(o1)...Zg(oz1) ePolorttoa)
Olye0z1

Zg(a) ePhe

+)+Zg(—) ~ 2cosh(Bhg)

Normalized probability : 7g(0) = 7

Recursion on the effective magnetic field :

hg+1 = Z5*atanh (tanh(8J) tanh(B8hg))

Fixed point when g — oo : (infinitesimal field to break the symmetry)

@ h =0 at high temperature
@ h# 0 at low temperature

True magnetic field can be recovered with z instead of z — 1 neighbors on the root
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Quantum lattice models

H=-J%(alaj+alai) + V(n) = K+ V(n)

Z="Tre AH n) = |ny,...,nn) L= 3 [n)al
n

Quantum model < Classical model with one additional dimension (imaginary time)

5 M M 8 i
Z=lim ¥ exp |- 3 V(n)| IT (n*le”#|n>+t)
M—oo 1 " oM a=1 a=1

becomes a path integral :
N
Z = [ [10n(r)exp [ Ji drv(n(n)] Win(r)]

where the n;(7) are piecewise constant integer functions (periodic)
ni(7)
@ For a hopping h at time 7, 21

n; — n; + 1, and one of the
neighbors j has n; — n; — 1 1L
o Wh:J\/n,'(Th)-i-l\/nj(Th). .
0

@ Win(7)] = [T, Wh i
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Quantum lattice model on the Bethe lattice

@ Path integral construction valid for any graph
@ Classical degree of freedom = trajectories n;(T)

@ Recursive computation on trees, formally similar,
but n(7) (function) instead of o € {+1,—1}

Zg11(0) = > Zg(on).. Zg(oz-1) oot Fozm)
becomes
Zgi1[n(7)] = [ Dm(7)Zg[n1(7)]. .. Dn,—1(7)Zg[nz—1(7)] wln, ny, ..., nz—1]

The quantum cavity method

@ Functional recurrence equations for the local action Zg[n(7)] = exp{—S[n(7)]}

@ A quadratic action gives back DMFT (correct for z — o0)
LAUMANN, SCARDICCHIO, SONDHI (2008), BYczZUK, VOLLHARDT (2008)

Numerical resolution for bosons and spins — KrzakaLa, Rosso, SEMERJIAN, FZ (2008)

@ Represent Z[n(7)] by a weighted sample of trajectories

@ Use the iteration equation to construct a new sample

@ Works only if Z[n(7)] is a probability

@ Numerical method similar to QMC or GFMC, but here L = co (no FSS)
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Bose-Hubbard models on the Bethe lattice

Test: study of the Mott transition in the Bose-Hubbard model
G. SEMERJIAN, M. TARzIA, FZ, PRB 80, 014524 (2009)

H=—J%(alai+ala) + 4 mi(ni — 1) = X, pn;

\ \ \
251 — Mean Field | 251 = Monte Carlo| |
s +— Monte Carlo| S — Mean Field
o Cavity
2 - 2 4
wu 7=4 wu Z=6
150 i 151
1 i 1 i
os- g os- E
\ \ \ : \
% 001 002 003 004 005 006 % 0.01 0.0 0.03 0.04
Ju Ju

We can compute many observables

@ Local density (n;) and condensate wavefunction (a;)
@ Local green function <aI.T(7')a,-(0)> and correlation (n;j(7)n;(0))

@ Spatial correlations <a;faj>
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A lattice model for the superglass

Extended Hubbard model on a regular random graph at half-filling and U = oo:

_ i T
H=—J3 a8+ ajai) + V3 ninj — 3 pni
G. CARLEO, M. TarzIA, FZ, PRL 103, 215302 (2009)

We study the model on a regular random graph of L sites and connectivity z = 3

@ No disorder in the interactions

@ Frustration: loops of even and odd size

@ Large loops, locally tree-like graph: Bethe lattice
without boundary

@ Solution for L — oo possible via the cavity method

@ Classical model (J = 0): spin glass transition (like
Sherrington-Kirkpatrick model)

@ Glass phase is thermodynamically stable

@ RSB, many degenerate glassy states, slow dynamics

v

Methods

@ Quantum cavity method: solution for L — oo
@ Canonical Worm Monte Carlo: limited to L < 240 by ergodicity problems
@ Variational calculation + Green Function Monte Carlo (for illustration)
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Results at half-filling and J =1
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Phase diagram

Phase diagram at half-filling and J =1
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A variational argument

Many spin glass states

@ Each spin glass state breaks translation invariance

@ Simplest variational wavefunction: (n|W) = exp(}_; ain;)

@ A different set of parameters for each spin glass state

@ Optimization of the parameters «; depends on the initial condition
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Stability of the glass state

@ Green Function Monte Carlo: |W(7)) = e~ 7H|V)
@ The time 7 needed to escape from the initial state |W) increases with system size

oni/p
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@ Disordered Bose-Hubbard model: the Bose glass
@ 3D spin glass model with quenched disorder
@ Quantum Biroli-Mézard model: a lattice glass model
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Disordered Bose-Hubbard model: the Bose glass

H=—J% ;5 a+ala) + 45 m(n—1) = Xi(u+e)n;

ej € [-A, A] quenched external disorder

Hr/V

| (a)
@ Mott insulator: one particle/site
| / Strong localization = no BEC, p. =0
Bo Zero compressibility
1-asv @ Bose glass: additional defects
SF Anderson localization, pc =0
MI : Finite compressibility
anv BG/ No frustration, no RSB
o No slow dynamics
//%? v
-A/V Lo —
<N>=0

FISHER, WEICHMAN, GRINSTEIN, FISHER, PRB 40, 546 (1989)

Open question

Does the Bose Glass phase exist on the Bethe lattice? Torre aND MEzARD, ARXIV:0909.2263
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3D spin glass model with quenched disorder

H=—J% (alaj+ala) + X Vi(ni —1/2)(n; — 1/2)

TAM, GERAEDTS, INGLIS, GINGRAS, MELKO, ARX1v:0909.1845

1 12 14 @ Same phase diagram
v/t @ But frustration is induced by
quenched disorder
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Quantum Biroli-Mézard model: a lattice glass model

Towards a more realistic model of structural glasses: the Biroli-Mézard model

H=—J% (e +afa) + V5, nigif(ar) — 5, i
9 =2 jcoi N — 4

Classical model (J = 0): glass transition similarly to Hard Spheres

Random First Order Transition: discontinuous gga, 2nd order phase transition
Glassy phase both on 3D cubic and Bethe lattices (quantitatively similar)
Self-generated disorder and RSB

Very slow dynamics (divergence stronger than power-law)

Believed (by some) to be in the same universality class of particle systems (e.g.
Lennard-Jones, Hard Spheres): RFOT theory of the glass transition

Add quantum fluctuations (J # 0)

A quantum glass transition? Slow dynamics? Aging?

Nature of the transition (first or second order)?

Preliminary indications of a quite complex phase diagram

Work in progress — L. Foni, G. SEMERJIAN, FZ

Many body interaction could be realized in experiment with cold molecules
BUCHLER, MICHELI, ZOLLER, NATURE PHYSICS 3, 726 (2007)
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Conclusions

Our results

@ Quantum cavity method: a general method to deal with frustrated boson and
spin systems

@ Exact solution for Bethe lattice models for L — oo

@ Semi-realistic model for interacting bosons displays a frustration-induced
superglass phase

@ Second order spin glass like transition

@ Thermodynamically stable glass phase

Related works

| \

@ Quantum Mode Coupling Theory — ReicumaNN, MivazAKI

@ B-DMFT — VoLLHARDT, HOFSTETTER, ET AL.

@ Monte Carlo simulations — BoNINSEGNI, PROKOF’EV, SVISTUNOV, ET AL.
@ Variational calculations — BiroLi, Cuamon, FZ

v
Perspectives

@ Experiments: He* and cold molecules
@ Lattice glass models for structural glasses — Fom, SemeriiaN, FZ
@ Simulations of binary mixtures — BiroL1, CARLEO, TARZIA, FZ

A\
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