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Motivations: supersolidity of He4

Non-classical rotational inertia observed in
solid He4 (Kim and Chan)

Experimental Results

• Discovery by Kim & Chan in He4 (Nature & Science 2004). 

• Reproduced after by many other groups.

P=51 bars

Possible interpretation: supersolidity

Experimental Results

• Discovery by Kim & Chan in He4 (Nature & Science 2004). 

• Reproduced after by many other groups.

P=51 bars

Supersolidity excluded in perfect He4 crystals (Boninsegni, Ceperley et al.)
Supersolidity strongly enhanced by fast quenches (Rittner and Reppy)
History dependent response and some evidence for aging (Davis et al.)

Are BEC and superfluidity possible in disordered solids?
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Helium 4: Monte Carlo results

Quantum Monte Carlo simulation of He4 at high pressure P > 32 bar Quench from
the liquid phase down in the solid phase
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ODLRO observed in the one-particle
density matrix → BEC, superfluidity
At P = 32 bar, n0 = 0.5% and ρs/ρ = 0.6

Boninsegni et al., PRL 96, 105301 (2006)



Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions

Helium 4: Monte Carlo results

Amorphous condensate wavefunction: n(r − r ′) ∼ n0φ(r)φ(r ′)

Plot of φ(x , y , z) on slices at fixed z
Boninsegni et al., PRL 96, 105301 (2006)
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Many open problems

Difficulties of QMC

Strong ergodicity problems in the glass phase
No access to real time dynamics: is this phase really metastable?
Difficulty in determining the phase boundary: what is the phase diagram?

Open questions

What are the physical ingredients (disorder, frustration)?
What is the nature of the transition?
Is it accompanied by slow dynamics in the liquid phase?
Where does superfluidity come from?
Strong interaction and disorder: need for a nonperturbative analysis

Our result – G.Carleo, M.Tarzia, FZ, PRL 103, 215302 (2009)

A solvable model displaying a thermodynamic superglass phase
Disorder is self-induced by frustration in absence of external potentials
Realistic mechanism for He4
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Regular lattices, Bethe lattices and random graphs

Bethe approximation

Discard the small loops of the lattice, graph becomes a tree:

The tree allows for a simple recursive solution but the frustration is lost
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Regular lattices, Bethe lattices and random graphs

Cavity approximation

Replace the lattice by a random graph of the same connectivity:

The exact solution on the random graph can still be obtained (cavity method)
Key property: loops have size log L, locally tree-like
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Regular lattices, Bethe lattices and random graphs

Cavity approximation

Replace the lattice by a random graph of the same connectivity:

The exact solution on the random graph can still be obtained (cavity method)
Key property: loops have size log L, locally tree-like

Unfrustrated phase (RS cavity method)

Correlations decay fast enough
Long loops can be neglected → back to a tree
Cavity approximation is equivalent to Bethe approximation
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Regular lattices, Bethe lattices and random graphs

Cavity approximation

Replace the lattice by a random graph of the same connectivity:

The exact solution on the random graph can still be obtained (cavity method)
Key property: loops have size log L, locally tree-like

Frustrated phase (1RSB cavity method)

Correlations do not decay fast enough
The recursion relation on a tree is initiated from a given boundary condition
For each boundary condition, a different fixed point is obtained
One has to sum over boundary conditions in a consistent way
Cavity approximation describes the glassy phase
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Classical ferromagnet on the Bethe lattice

H = −J
P
〈i,j〉 σiσj

Zg+1(σ) =
P

σ1,...,σz−1

Zg (σ1) . . .Zg (σz−1) eβJσ(σ1+···+σz−1)

Normalized probability : ηg (σ) =
Zg (σ)

Zg (+)+Zg (−)
= eβhg σ

2 cosh(βhg )

Recursion on the effective magnetic field :
hg+1 = z−1

β
atanh (tanh(βJ) tanh(βhg ))

Fixed point when g →∞ : (infinitesimal field to break the symmetry)

h = 0 at high temperature

h 6= 0 at low temperature

True magnetic field can be recovered with z instead of z − 1 neighbors on the root
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Quantum lattice models

H = −J
P
〈i,j〉(a

†
i aj + a†j ai ) + V (n) = K + V (n)

Z = Tr e−βH |n〉 = |n1, . . . , nN〉 11 =
P
n
|n〉〈n|

Quantum model ⇔ Classical model with one additional dimension (imaginary time)

Z = lim
M→∞

P
n1,...,nM

exp

"
− β

M

MP
α=1

V (nα)

#
MQ
α=1

D
nα|e−

β
M

K |nα+1
E

becomes a path integral :

Z =
R NQ

i=1
Dni (τ) exp

h
−

R β
0 dτV (n(τ)

i
W[n(τ)]

where the ni (τ) are piecewise constant integer functions (periodic)

For a hopping h at time τh,
ni → ni + 1, and one of the
neighbors j has nj → nj − 1

Wh = J
p

ni (τh) + 1
p

nj (τh).

W[n(τ)] =
Q

hWh
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Quantum lattice model on the Bethe lattice

Path integral construction valid for any graph

Classical degree of freedom = trajectories ni (τ)

Recursive computation on trees, formally similar,
but n(τ) (function) instead of σ ∈ {+1,−1}

Zg+1(σ) =
P

σ1,...,σz−1

Zg (σ1) . . .Zg (σz−1) eβJσ(σ1+···+σz−1)

becomes

Zg+1[n(τ)] =
R

Dn1(τ)Zg [n1(τ)] . . .Dnz−1(τ)Zg [nz−1(τ)] w [n, n1, . . . , nz−1]

The quantum cavity method

Functional recurrence equations for the local action Zg [n(τ)] = exp{−S[n(τ)]}
A quadratic action gives back DMFT (correct for z →∞)
Laumann, Scardicchio, Sondhi (2008), Byczuk, Vollhardt (2008)

Numerical resolution for bosons and spins – Krzakala, Rosso, Semerjian, FZ (2008)

Represent Z [n(τ)] by a weighted sample of trajectories

Use the iteration equation to construct a new sample

Works only if Z [n(τ)] is a probability

Numerical method similar to QMC or GFMC, but here L =∞ (no FSS)
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Bose-Hubbard models on the Bethe lattice

Test: study of the Mott transition in the Bose-Hubbard model
G. Semerjian, M. Tarzia, FZ, PRB 80, 014524 (2009)

H = −J
P
〈i,j〉(a

†
i aj + a†j ai ) + U

2

P
i ni (ni − 1)−

P
i µni

0 0.01 0.02 0.03 0.04 0.05 0.06
J/U

0

0.5

1

1.5

2

2.5

3

µ/U

Cavity
Mean Field
Monte Carlo

Z=4

0 0.01 0.02 0.03 0.04
J/U

0

0.5

1

1.5

2

2.5

3

µ/U

B-DMFT
Monte Carlo
Mean Field
Cavity

Z=6

We can compute many observables

Local density 〈ni 〉 and condensate wavefunction 〈ai 〉
Local green function

D
a†i (τ)ai (0)

E
and correlation 〈ni (τ)ni (0)〉

Spatial correlations
D
a†i aj

E
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A lattice model for the superglass

Extended Hubbard model on a regular random graph at half-filling and U =∞:

H = −J
P
〈i,j〉(a

†
i aj + a†j ai ) + V

P
〈i,j〉 ninj −

P
i µni

G. Carleo, M. Tarzia, FZ, PRL 103, 215302 (2009)

We study the model on a regular random graph of L sites and connectivity z = 3

No disorder in the interactions
Frustration: loops of even and odd size
Large loops, locally tree-like graph: Bethe lattice
without boundary
Solution for L→∞ possible via the cavity method
Classical model (J = 0): spin glass transition (like
Sherrington-Kirkpatrick model)
Glass phase is thermodynamically stable
RSB, many degenerate glassy states, slow dynamics

Methods

Quantum cavity method: solution for L→∞
Canonical Worm Monte Carlo: limited to L < 240 by ergodicity problems
Variational calculation + Green Function Monte Carlo (for illustration)
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Results at half-filling and J = 1
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Phase diagram

Phase diagram at half-filling and J = 1
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A variational argument

Many spin glass states

Each spin glass state breaks translation invariance
Simplest variational wavefunction: 〈n|Ψ〉 = exp(

P
i αini )

A different set of parameters for each spin glass state
Optimization of the parameters αi depends on the initial condition
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0
0.2
0.4
0.6
0.8
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δn
i/

ρ

i

Stability of the glass state

Green Function Monte Carlo: |Ψ(τ)〉 = e−τH |Ψ〉
The time τ needed to escape from the initial state |Ψ〉 increases with system size
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Disordered Bose-Hubbard model: the Bose glass

H = −J
P
〈i,j〉(a

†
i aj + a†j ai ) + U

2

P
i ni (ni − 1)−

P
i (µ+ εi )ni

εi ∈ [−∆,∆] quenched external disorder

Mott insulator: one particle/site
Strong localization ⇒ no BEC, ρc = 0
Zero compressibility
Bose glass: additional defects
Anderson localization, ρc = 0
Finite compressibility

No frustration, no RSB
No slow dynamics

Fisher, Weichman, Grinstein, Fisher, PRB 40, 546 (1989)

Open question

Does the Bose Glass phase exist on the Bethe lattice? Ioffe and Mézard, arXiv:0909.2263
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3D spin glass model with quenched disorder

H = −J
P
〈i,j〉(a

†
i aj + a†j ai ) +

P
〈i,j〉 Vij (ni − 1/2)(nj − 1/2)

Tam, Geraedts, Inglis, Gingras, Melko, arXiv:0909.1845

QMC for the 3D cubic lattice with couplings Vij = ±V
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Quantum Biroli-Mézard model: a lattice glass model

Towards a more realistic model of structural glasses: the Biroli-Mézard model

H = −J
P
〈i,j〉(a

†
i aj + a†j ai ) + V

P
i niqiθ(qi )−

P
i µni

qi =
P

j∈∂i nj − `

Classical model (J = 0): glass transition similarly to Hard Spheres

Random First Order Transition: discontinuous qEA, 2nd order phase transition
Glassy phase both on 3D cubic and Bethe lattices (quantitatively similar)
Self-generated disorder and RSB
Very slow dynamics (divergence stronger than power-law)
Believed (by some) to be in the same universality class of particle systems (e.g.
Lennard-Jones, Hard Spheres): RFOT theory of the glass transition

Add quantum fluctuations (J 6= 0)

A quantum glass transition? Slow dynamics? Aging?
Nature of the transition (first or second order)?
Preliminary indications of a quite complex phase diagram
Work in progress – L. Foini, G. Semerjian, FZ

Many body interaction could be realized in experiment with cold molecules
Buchler, Micheli, Zoller, Nature Physics 3, 726 (2007)
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Conclusions

Our results

Quantum cavity method: a general method to deal with frustrated boson and
spin systems
Exact solution for Bethe lattice models for L→∞
Semi-realistic model for interacting bosons displays a frustration-induced
superglass phase
Second order spin glass like transition
Thermodynamically stable glass phase

Related works

Quantum Mode Coupling Theory – Reichmann, Miyazaki

B-DMFT – Vollhardt, Hofstetter, et al.

Monte Carlo simulations – Boninsegni, Prokof’ev, Svistunov, et al.

Variational calculations – Biroli, Chamon, FZ

Perspectives

Experiments: He4 and cold molecules
Lattice glass models for structural glasses – Foini, Semerjian, FZ

Simulations of binary mixtures – Biroli, Carleo, Tarzia, FZ
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