

Rough fitness landscapes: from protein evolution to protein design

Francesco Zamponi

Gulliver, ESPCI, October 17, 2022

SIMONS FOUNDATION

Background

2016-2021: teaching with S.Cocco and R.Monasson

- Bayesian and high-dimensional inference
- Regularization
- Graphical models
- Supervised and unsupervised learning
- Time series analysis

With coding tutorials using real biological data

Oxford University Press, 2022 Promotion code: ASPROMP8

Since 2017: collaboration with Martin Weigt's group

Since 2021: collaboration with Nobuhiko Tokuriki's lab

THE UNIVERSITY OF BRITISH COLUMBIA

Sequence-to-function paradigm

DeepMind's AlphaFold2 Predicts Protein Structures with Atomic-Level Accuracy

In a new paper published in the prestigious scientific journal Nature, DeepMind presents AlphaFold2, a redesigned neural-network system based on last year's AlphaFold that can predict protein structures with atomic-level accuracy.

Inverse problem: protein design

Data #1: natural protein sequences

Data #2: deep mutational scan

sequence data

reference sequence

mutant sequences

sequence data

reference sequence

Data #4: path/phylogeny reconstruction

sequence landscape

sequence data

reference sequence

8

Massive amount of data!

Big data-driven questions:

- Generate artificial sequences
- Generate artificial sequences with desired properties (binding affinity, fluorescence, antibiotic resistance, catalytic activity...)
- Model in vitro evolution (controlled environment)
- Optimize evolution protocols (antibiotic concentration, vaccination protocols...)
- Understand natural evolution (phylogeny, fluctuating environment)
- Generate paths of artificial sequences connecting two natural ones

Generative modeling

(Generative model) P(image)


```
this-person-does-not-exist.com
```


REDLVNYNPITEK

QNDLKEYSPVDEK

AADLVANSPVTGK

 $P(a_1, a_2, \cdots, a_L)$

CYDLVGWEPATAK

This protein does not exist in nature, but is functional!

Russ et al. Science (2020) Repack et al. Nature Machine Intelligence (2021) Hawkins-Hooker et al. PLoS Comp. Bio. (2021)

Alignment of $10^2 - 10^5$ natural proteins

Typical protein with L = 100 $20^L \sim 10^{130}$ possible sequences $S[P] \sim 1.5 \sim \log(q)/2 \rightarrow 10^{65}$ functional sequences

Generative modeling

Statistical physics approach: maximum likelihood, disordered Potts models

Many other different models (GAN, VAE, deep or not)

Coevolution is at the basis of all structure prediction methods (DCA, AlphaFold, etc.)

Some contributions from our group:

- Increase alignment accuracy Muntoni et al. PRE (2020)
- Simple and computationally efficient architectures Trinquier et al. Nat.Comm. (2021)
- Information-based procedure for parameter reduction Barrat-Charlaix et al. PRE (2021)
- Two publicly available packages: arDCA and bmDCA Muntoni et al. BMC Bioinformatics (2021)

* a_i is drawn from the set of amino acids at distance 1 in terms of nucleotides (DNA sequence)

Global learning \neq Local sampling

Natural evolution \neq In-vitro evolution

Phylogenetic effects \neq Independent chains (star phylogeny)

Artificial temperature T can model selection strength

The model can quantitatively reproduce statistical features of experiments: e.g. high correlation (86%) of amino acid frequencies

Experimental	In silico								
library	library								
REDL <mark>K</mark> NY	REDL <mark>V</mark> NY								
EEDLVNY	AEDLKWY								
QNDLVWY	RNDLVWY								
$f_i^{exp}\left(\boldsymbol{a_i}\right)$	$f_i^{sil}(a_i)$								

In silico evolution: design new experiments

Artificial temperature T can model selection strength

Emergence of coevolution as a function of distance and number of sequences

Optimize and design new experiments

Bisardi, Rodriguez-Rivas, FZ, Weigt, Mol.Bio.Evo. (2022)

In silico evolution: emergence of coevolution

Emergence of coevolution (aka epistasis) along in silico evolutionary trajectories

Bisardi, Cotogno, Weigt, FZ + Tokuriki lab (in preparation)

Path sampling

Mauri, Cocco, Monasson, preprint (2022)

Starr et al. PNAS (2017)

- Navigability of the sequence landscape
- Evolutionary paths connecting two wild types
- Intermediate sequences between two wild types with desired properties
- Direct versus wandering paths
- Well defined computational framework: transition path sampling

Dellago et al. JCP (1998), Mora-Walczak-FZ PRE (2012)

$$P(\mathbf{a}_1, \cdots, \mathbf{a}_T) = P(\mathbf{a}_1)P(\mathbf{a}_1 \to \mathbf{a}_2)P(\mathbf{a}_2 \to \mathbf{a}_3)\cdots P(\mathbf{a}_{T-1} \to \mathbf{a}_T)$$

Path sampling

Metallo β -lactamases enzymes confer broad antibiotic resistance in bacteria

VIM-2 and NDM-1: well studied "superbugs" in this class ~64% sequence divergence

Tokuriki's lab characterized all single-mutants of both enzymes (Deep Mutational Scanning, DMS)

We constructed a model based on an alignment of natural sequences and the integration of the experimental DMS

Generate intermediate artificial sequences along a mutational path VIM-2 \rightarrow NDM-1 Express them in bacteria and measure their fitness

Path sampling

1	m <mark>f k</mark>		k I	1 1	v y	l t	a	s i	ma	i	a	<mark>p</mark>	l a	f	s۱	/ <mark>d</mark>	s s	g	e	y p	t'	v s	e	i p	v -	-	41
1	m <mark>e I</mark>	<mark>p n</mark> i	i m <mark>h</mark>	ו <mark>ף</mark> ו	va	<mark>k</mark> l	S	t a	l a	а	a	m	l s	g	<mark>c</mark> n	n <mark>p</mark>	g e	i	r	<mark>) t</mark>	i (g q	q r	m <mark>e</mark>	t g	d	43
42	(GE \	/ <mark>R</mark> L	. <mark>Y</mark> C	2 1	A D	G١	v <mark>w</mark>	S F	1	A	Q	S F	D	G -	A	V	/ P	S I	N <mark>G</mark>	L	١V	R	DG	DE	L	80
44	<mark>q</mark> r <mark>f (</mark>	<mark>g d</mark> l	. V <mark>F</mark>	R C	2 L	A <mark>P</mark>	N١	v <mark>w</mark>	<mark>∕Q</mark> ⊦	ΙT	S <mark>\</mark>	<mark>′</mark> L	DN	۱ <mark>Р</mark>	<mark>g</mark> F	G	A١	/ A	SI	N <mark>G</mark>	L	I V	R	D <mark>G</mark>	<mark>g</mark> R	V	86
81			we		(N	ТА	AI		AF	I	Fk	(0		I	<mark>₽</mark> ∖	/ <mark>T</mark>	R /	٩V	ς -	гн	F			RV	GG	v	123
87		DTA	A <mark>W T</mark>	D	D <mark>Q</mark>	T A	Q	IL	NW	/ i	K C		I N	L	P ∖	A V	L A	٩V	۷	гн	A	HQ	D	<mark>к</mark> м	G G	M	129
									~ ~						_											~	
124 130		R A A	AG V	Α Α Α	Y	A S A N	P : A I				A		E G	M		A A	1 F O F	4 S	L	G G		s S A N		S D NV	A V F P	R A	166 172
		_								-		~					~ .		-								., 2
167		- F C	i P V	' <mark>E</mark> L	. F	Y <mark>P</mark>	G /	A A	H S	Т	D	۱L	ΙV	' <mark>Y</mark>	V <mark>F</mark>	S	A S	V	Ľ	Y <mark>G</mark>	G	C A	. 1 '	Y E	L S	R	205
173	t a p	n F C	<mark>i P</mark> L	. <mark>K</mark> \	/ <mark>F</mark>	Y <mark>P</mark>	GI	P G	ΗT	S	D	1	τV	' <mark>G</mark>	I I	G	TC		A	F <mark>G</mark>	<mark>G</mark> (C L	Т	K <mark>D</mark>	<mark>S</mark> K	A	215
206	ΤςΔ						W	рт	S I		R I		<u>م</u> ۲			Δ		v			н		P	56		1	2/18
216	KSL	S N L			T	EH	Y	ΑA	S A	R	AF	G	A A	F	P k		S N	<i>N</i> I	VI	M <mark>S</mark>	H	S A	P	D <mark>S</mark>	R A	A	258
249	LKH	TTN	N V	K A	A H	ΤN	-	r s	νv	e																	266
259	ITH	TAF	MA	DK	< -		-	l r		-																	270

Bisardi, Cotogno, Chen, Lee Work in progress

Preliminary result: a functional path

					EC50			$-\Delta E$	-ΔE	
	Position	Position			µg/mL		Δ Fitness	integrated	non-integ.	Residue
Sequence	model	VIM	Old AA	New AA	AMP	$\log 2(\Delta EC50)$	DMS VIM	model	model	distance
VIM2-LE					406.7					
MeanE1 1	144	181	Т	S	37.86	-3.43	0.05	-1.39	0.59	
MeanE1 2	30	67	Y	V	101.18	1.42	1.27	1.14	-3.23	19.4
MeanE1 3	27	ins	I	F	36.01	-1.49	missing	0.49	1.22	
MeanE1 4	205	242	L	A	22.4	-0.68	0.83	1.13	0.79	
MeanE1 5	20	58	Α	S	123.52	2.46	1.14	2.57	3.73	10.4
MeanE1 6	220	257	К	D	1.56	-6.31	-1.08	-1.82	-1.01	25.2
MeanE1 7	108	145	V	Q	53.61	5.1	missing	-0.06	1.55	26.3
MeanE1 8	19	57	I	Т	22.79	-1.23	1.25	1.4	2.25	26
MeanE1 9	65	102	Q	E	43.59	0.94	0.55	1.15	1.11	9.1
MeanE1 10	101	138	S	L	157.57	1.85	0.24	-0.29	3	31.4
MeanE1 11	17	55	S	Q	163.89	0.06	0.95	0.59	-0.3	23.8
MeanE1 12	192	229	н	Α	315.52	0.95	0.57	1.03	1.61	20.3
MeanE1 13	53	90	K	D	125.61	-1.33	0.87	0.62	1.22	33
MeanE1 14	209	246	L	R	113.19	-0.15	0.62	1.27	1.37	30.9
MeanE1 15	143	180	S	Т	190.9	0.75	1.09	1.17	1.05	17.9
MeanE1 16	141	178	А	G	153.31	-0.32	-0.46	1.04	2.58	3
MeanE1 17	135	172	L	v	16.04	-3.26	-0.14	0.46	4.87	13.8
MeanE1 18	162	199	А	L	299.84	4.22	-0.6	-0.86	-2.89	12.3
MeanE1 19	148	185	I	Т	123.13	-1.28	-0.32	-1.8	0.19	5
MeanE1 20	164	201	Y	К	11.46	-3.43	-3.05	-0.96	6.57	9.7
MeanE1 21	158	195	Y	F	77.75	2.76	0.38	-0.47	1.74	9.4
MeanE1 22	23	61	S	D	1.74	-5.48	-0.54	-1.67	1.24	16.6
MeanE1 23	61	98	E	W	1.74	0	missing	-0.3	0.96	18.2
MeanE1 24	153	190	S	G	2.24	0.36	0.15	0.03	0.54	20.1
MeanE1 25	213	250	К	т	1.86	-0.27	0.19	0.39	1.9	21.9
MeanE1 26	124	161	S	G	1.83	-0.02	0.38	0.2	2.69	17.7
MeanE1 27	169	206	т	К	2.04	0.16	0.44	0.56	-0.53	24.9
MeanE1 28	168	205	R	А	17.17	3.07	0.68	1.41	-0.15	1.3

Summary

Generative modeling for protein families leads to disordered models with "rough" fitness landscapes Basins of attraction, transition paths, barriers, topology

Study of the dynamics (evolution) in these landscapes:

- Validate the model against *in vitro* evolution
- Study the emergence of coevolution (epistasis)
- Construct evolutionary paths in silico and in vitro
- Ultimate goal: design artificial proteins with desired properties

Thank you for your attention!

SIMONS FOUNDATION

