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While it is clear that there is a strong qualitative similarity between the phe-
nomenon described by (1.5.8) and the HF effect for neutral superfluids,the precise
correspondence is somewhat obscured by the presence of a quadratic term (in A(r))
in (1.5.6) which has no analog in (1.5.3). We can clarify the situation by viewing it
in the neutral case not from the laboratory frame but from the frame of reference
rotating with the container: as shown in Appendix 1A, the expressions both for the
effective Hamiltonian, apart from a relatively uninteresting “centrifugal” term, and
for the mass current then exactly coincide for the charged and neutral cases, with the
correspondence

eA(r) 2 mw xr (1.5.10)

Thus, the HF effect as viewed from the rotating frame corresponds exactly (apart
from the centrifugal effect) to the effect described by Eqn. (1.5.8) as viewed from
the laboratory frame. I will return in Chapter 5 to the details of the behavior of a
superconducting ring in an applied Aharonov—Bohm flux, and in footnote 22 of that
chapter will briefly address the question of whether there is a direct analog, in neutral
systems, of the Meissner effect as such.

Appendix
1A Statistical mechanics in a rotating container

In order to apply the standard prescriptions of equilibrium statistical mechanics, we
need to work in a frame of reference in which the Hamiltonian is time-independent. In
the case of a uniformly rotating container, the only such frame is that which rotates
with the container (hereafter called simply the “rotating frame”). The question then
arises, what is the appropriate form of the Hamiltonian to use in this frame??3

For pedagogical simplicity I shall attack this problem in three stages. First, consider
a single classical particle of mass m in a container which for convenience I take to be
approximately but not exactly cylindrically symmetric. If the container is stationary
in the laboratory frame of reference,?* then the (classical) Hamiltonian is

H=p?/2m+V(r) = Hy (L.A.1)

where V(r) is the potential due to the container. Suppose now that the container
rotates with angular velocity w about some axis which we take as the z-axis of an
appropriately chosen cylindrical polar coordinate system, and define w = wZz. Then
the form of the kinetic-energy term in (1.A.1) is unchanged, but the potential term be-
comes V(7/(t)), where r'(t), the coordinate viewed from the rotating frame, is specified
in terms of its cylindrical polar components by

r=r, 2=z 0=0-uwt (1.A.2)

23In the following, it is important to distinguish between the statement that the probability distri-
bution is “stationary,” that is, time-independent, as viewed from a given frame, and the statement
that the system is at rest in that frame; the latter statement implies the former but not vice versa.

24Which for the purposes of this discussion I take to be an inertial frame, although strictly speaking,
owing to the Earth’s rotation, etc., it is not.
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Note that the time derivatives of » and r’ are related by
P(t) = r/(t) + w x 7/ (1.A.3)

How to find the form of Hamiltonian appropriate for use in the rotating frame?
It is tempting but incorrect to simply take the lab-frame Hamiltonian [i.e. (1.A.1)
with V(r) — V(#'(t))] and express it in terms of the rotating-frame variables. Rather,
we should follow the canonical prescription for doing Hamiltonian mechanics in an
arbitrary coordinate system: see e.g. Goldstein (1980), Chapter 8. That is, we start
by writing down the Lagrangian and expressing it in rotating-frame coordinates us-
ing (1.A.3):

L(r,r,t) = %mi’2 —V(r'r,t)

=im@ +wxr)?-V(') =L 7) (1.A.4)

Next, we obtain the canonical momentum in the rotating frame by the standard
prescription:

o= OL(r',71)
o
Note that p’ is not the kinematic momentum ms’ as viewed from the rotating frame.

The final step is to define the rotating-frame Hamiltonian H'(r’,p’) in the standard
way, by

=m( +wx7r) (1.A.5)

H(r'p) =7 p -L (1.A.6)

Expressing £ in terms of ' and p’, and rearranging the terms in the triple product,
we find

H@,pYy=p'/2m—w v xp' + V() (1.A.7)

If now the particle is in equilibrium with a thermal bath which is itself stationary in
the rotating frame (e.g. the phonons in the container walls) then we can go ahead and
apply all the usual rules of equilibrium statistical mechanics: e.g. the probability of
finding the particle with coordinate v’ and p’ will be proportional to the Gibbs factor
exp[—GBH'(r',p’)], and will be (trivially) stationary in the rotating frame and thus in
general not stationary in the lab frame. However, we are free to choose a “special”
time ¢ = 2nm/w at which the rotating and lab frames coincide, and express H' as
a function of the lab-frame coordinate r and momentum p(=m#): using (1.A.5) and
(1.A.3) we find that at such times

2
H'(r',p) = 5—m —w-rXxp+V(r)=Hy—w: L= Heg(r,p) (1.A.8)
Thus we know that at such special times the distribution is determined in the lab frame
by Heg (and in general, if V(r) lacks cylindrical symmetry, will itself not be cylindri-
cally symmetric). At general times, since we know that the distribution is stationary
in the rotating frame, its anisotropy will simply rotate, as viewed from the lab frame,
with angular velocity w.
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Actually it is often the case that we wish to take the limit of a cylindrically
symmetric V(r).2° In that case it is clear that we can simply use the effective
Hamiltonian (1.A.8) at all times, and the distribution is then stationary (i.e. time-
independent) also as viewed from the lab frame (but may of course correspond to a
finite angular velocity as viewed from that frame).

Before proceeding to the many-body case, let’s make the analogy with electromag-
netism explicit. To do so we go back to (1.A.7) and rewrite it in the equivalent form

H'(r,p) = (p/ — mw x 1/)2/2m + V(1)

V(r')=V(r) - im(w x ')

(1.A.9)

This is the Hamiltonian appropriate to the rotating frame. As viewed from this frame
the mass current (kinematic momentum) is

j =mr' =p —mwxr’ (1.A.10)

Let’s now consider a charged system and write down the standard expressions, in the
lab frame but in the presence of an electromagnetic vector potential A(r), for the
Hamiltonian and for the particle current:

H=(p—eA(r)?/2m +V(r) (1.A.11)
Jj=mi=p-—eA(r) (1.A.12)

From a comparison of (1.A.9) and (1.A.10) with (1.A.11) and (1.A.12) we see that
the problem of the neutral system viewed from the rotating frame (with a potential
which includes the “centrifugal” contribution —%m(w x r')?) is formally identical to
the problem of the charged system viewed from the rest frame, with the correspondence
eA(r) = m(w x r). In the case of a constant magnetic field B the vector potential
A(r) can be written, by a suitable choice of gauge, in the form 3 (B x r), so we have
the correspondence w = eB/2m.

It is now straightforward to generalize the above results to the many-body case
of interest, provided the two-body interatomic-potential U(r; —7;) is a function only
of the distance |r; — r;| =| r — 7}| and hence invariant under the rotation. (If this
condition is not fulfilled, as is likely to be the case (e.g.) in the case of appreciable
spin—orbit interaction, then there exists in general no frame of reference in which the
Hamiltonian is time-independent, so we cannot do equilibrium statistical mechanics
and the problem becomes similar to that of Couette flow (see e.g. Chossat and Iooss
1994).) With this premise the argument is an obvious generalization of the above one
for the single case: in the rotating frame the Hamiltonian is

- 1
H'{r},pi} = (b — m(w x 7))*/2m + > _V(r;) + 5 S Ui =7l (1.A13)
(where V contains the centrifugal term), and in the lab frame we have

Hl{r'li'p/i}:HO{rhpi}_w'L? LEZTi Xpi (1A14)

25For consistency we must take this limit only after taking the limit of infinite time, in order to
establish thermal equilibrium with the rotating container.



