Yielding

Ludovic Berthier

Laboratoire Charles Coulomb Université Montpellier & CNRS

Yielding of amorphous solids - Paris, October 28, 2017

Coworkers

• On-going work with:

D. Coslovich,T. Kawasaki,A. Ninarello,M. Ozawa.

Yielding(s): Experimental review

[Bonn, Denn, Berthier, Divoux, and Manneville, Rev. Mod. Phys. '17]

A critical yielding transition?

• Ideas from irreversibility transition and absorbing states. [Nagamanasa *et al.* PRE '14, Regev *et al.* PRE '13, Fiocco *et al.* PRE '13]

Discontinuous transition observed in confocal microscopy.
[Knowlton *et al.*, Soft Matter '14]

Oscillatory shear: Setup

• T. Kawasaki and L. Berthier, *Macroscopic yielding in jammed solids is accompanied by a non-equilibrium first-order transition in particle trajectories*, PRE 94, 022615 (2016).

• Overdamped athermal simulations of soft harmonic spheres above jamming: Shearing a simple jammed solid / glass at T = 0.

- Periodic boundary conditions: spatially homogeneous flow.
- Apply periodic deformation: $\gamma(t) = \gamma_0(1 \cos(\omega t))$, with $\omega \ll \epsilon/(a^2\xi)$.
- Measure the steady state shear stress: $\sigma(t) = \sigma_0 \cos(\omega t + \delta)$. Extract (σ_0, δ) to measure 'linear' response even beyond linear regime.

• Equivalently: $G'(\omega) + iG''(\omega) = \sigma_0/\gamma_0 e^{i\delta}$ are the well-known experimental measurements of the linear response. Extract (G', G'').

• Access also microscopic structure (e.g. g(r), S(q)) and dynamics (e.g. mean-squared displacement).

Macroscopic rheology

• Crossing of G' and G'' defines $\gamma_{\times} \approx 0.15$. Standard location of 'yielding' transition under oscillatory shear.

• Maximum of σ_0 defines $\gamma_{\rm pl} \approx 0.1$ (γ_{\times} is invisible here).

• $\gamma_{\rm pl}$ also corresponds to onset of dissipation, when $\delta > 0$.

• We thus have at least 2 good definitions of 'the' yielding transition, which is ok if it's not a transition and just a crossover.

• Finite-size effects are small, which is ok.

Microscopic dynamics: Transition?

• Mean particle displacement after one cycle: $\Delta r(t, T = 2\pi/\omega)$.

• Starting from a random configuration at t = 0, $\Delta r(t,T)$ either vanishes when $\gamma_0 < \gamma_{\rm dyn}$ or fluctuates around well-defined average value otherwise.

• Timescale to reach (nearly) reversible state diverges as $\gamma_0 \rightarrow \gamma_{\rm dyn}^-$: power law with pronounced finite size effects. [Seen by Foffi, Sastry, Reichhardt...]

• Empirically, we find that $\gamma_{dyn} \approx 0.1$ when N gets larger: Critical point?

First-order dynamic transition

• Dynamics in steady-state regime for $\gamma_0 > \gamma_c$ is diffusive.

• Modest decrease of diffusion constant as $\gamma_0 \rightarrow \gamma_c^+$.

• Discontinuous jump to zero at γ_c .

• Transition in microscopic dynamics appears first-order.

• Consistent with 'metastable' dynamics seen in transient regime.

• Empirically, we find $\gamma_c \approx \gamma_{\rm dyn} \approx 0.1$ when N gets larger.

1 - Cipelletti's experiment

• Sharp (discontinuous?) increase of mean displacement per cycle at yielding unrelated to crossing of G' and G''. [Knowlton et al., Soft Matter '14]

2 - Schall's experiment

• $C(\beta)$ measures tiny (about 1 %) anisotropy in S(q) in diffraction plane. Sudden change from anisotropic (deformed elastic glass) to isotropic (plastic flow) right where G' and G'' cross. [Denisov *et al.*, Sci. Rep. '15]

• We see nothing at all in S(q), and our interpretation is totally different.

3 - Sastry's simulations

• Different scaling above and below the transition, which seems to confirm the discontinuous nature of the transition. See also [Regev *et al.*, Nature Comm. '15] for opposite conclusions!

4 - Periodic volume fluctuations

• Abrupt emergence of diffusive motion; dynamical first-order transition in actively-deforming particles. [Small versus large amplitude.]

• Qualitatively similar to periodic global deformation. Only difference is forcing at small rather than large scale–physics strikingly similar.

Summary

• Right set of variables should be used.

• Two phases are truly distinct: unyielded phase remembers initial conditions (e.g. very stable), steady state is automatically critical (i.e. threshold and marginal).

• Transition is bound to be discontinuous in character, with nothing interesting on the left side. Not really 'the' yielding transition...

A critical yielding transition?

• Percolation ideas: empirical description. [Horbach and Chaudhuri '17, Gosh *et al.* '17]

• Scale free spinodal: 'mean-field' description. First-order or/and critical? [Zamponi and Urbani '17, Procaccia *et al.* '16, Procaccia *et al.* '17]

Elastic branch?

• Elastic branch is critical everywhere. [Lin *et al.*, PRL '15]

• Elastic branch is not critical [everybody else?, Hentschel et al., PRE '15], only becomes critical when $\gamma \rightarrow \gamma_Y$ [Procaccia et al. '17]

• Elastic branch becomes critical at Gardner point. [Urbani & Zamponi '17, Jin & Yoshino]

'Well-known' facts

• Yielding transition is not seen directly through rheological observables (local dynamics, overlaps...).

• A lot of work for second order criticality and exponents in steady state, or equivalently for $\dot{\gamma} \rightarrow 0$.

• Shear bands are observed by accumulation of large number of discrete events, at large deformation.

• Behaviour is 'universal': foams, emulsions, glasses, chocolate, etc.

Computer simulations

Usually limited to short time scales and small systems.

• Athermal quasi-static simulations solve one of two timescales problem: deformation rate becomes effectively slow enough.

• Ordinary computer simulations still face the preparation timescale problem. Cooling rate is about 8 orders of magnitude too fast.

• Thus, computer simulations may not be relevant for real glasses. Only useful for colloidal and granular materials. (Experiments on colloids may not be relevant for real glasses either.)

• Glass stability is typically not seriously taken into account in coarse-grained models & theories. Exception: mean-field!

Swap Monte Carlo

• Simple method solves the second timescale problem: we thermalise glasses below T_g .

• Several models thermalised below T_g (13 decades): we gain more than 11 decades.

• Physics: Slow diffusion in diameter space facilitates particle diffusion in real space.

• We can now study the mechanical response of glass configurations that are experimentally relevant: 'Well-annealed' glasses...

Yielding transition exists

• For low 'enough' *T*, the transition becomes easily observable from macroscopic rheological observables.

• Becomes sharper as $N \to \infty$: A bona fide phase transition.

• No need for complicated microscopic observables. Glass stability changes the physics qualitatively.

Finite size scaling

• Convergence with system size appears under control.

- Yielding is not a phase transition if T is too large. Previous simulations?
- There is a "critical" temperature below which discontinuity appears. We need to study that transition in more detail... In progress.

Steady state does not exist

• The shear stress seems to converge.

• The energy never does. A steady state never exists in realistic glasses. Relevance of the heavily discussed 'marginal' critical point for real (hard) glasses?

Elastic branch

 Stress and energy drops along the elastic branch apparently disappear at low T.

• The nature of shear transformation zones / soft spots changes dramatically. Amplitude of energy drops divided by 100!

• Abrupt change of critical exponents at yielding, see [Hentschel et al., PRE '15]

No marginal stability

• Distributions of stress and energy drops show no sign of criticality upon approaching yielding. No spinodal criticality, no percolation.

• Apparence of criticality might be due to poor thermalisation (simulation) or incorrect modelling (elasto-plastic models).

• Real glasses are not marginally stable. [Scalliet, Berthier, Zamponi, PRL '17]

Shear bands

- Yielding at high temperature is gradual.
- Yielding at low T is brutal, one way or the other.
- No percolation.
- Multiple breakings can occur in the same sample. Looks like metallic glasses...

- The shear-band occurs within a single energy minimization, not through an accumulation of small events over large deformation.
- Anatomy of a single shear band.

Predictability?

• Non-affine displacement at t - 1 (left) and at t (right).

• Beuh.

Conclusion

• Discontinuous yielding under oscillatory shear, not sure it's useful after all.

• Sharp yielding transition exists for stable enough systems.

• Not critical, no diverging lengthscale, no percolation.

• Our simulations seem appropriate for realistic glasses.