Yielding

Ludovic Berthier

Laboratoire Charles Coulomb
Université Montpellier & CNRS

Yielding of amorphous solids — Paris, October 28, 2017

s 9 X it
N Ao oM 20\ Lee ..0.'.'.._-
ceovon: (LIS ) AR ETC
COULOMB \ VISR DAPARTICLES

SIMONS FOUNDATION



Coworkers

e On-going work with:

D. Coslovich,

T. Kawasaki,
A. Ninarello,
M. Ozawa.




Yielding(s): Experimental review
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[Bonn, Denn, Berthier, Divoux, and Manneville, Rev. Mod. Phys. "17]



A critical yielding transition?
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e |deas from irreversibility transition and absorbing states.
[Nagamanasa et al. PRE '14, Regev etal. PRE 13, Fiocco etal. PRE ’13]

e Discontinuous transition observed in confocal microscopy.
[Knowlton et al., Soft Matter ’14]



Oscillatory shear: Setup

e 1. Kawasaki and L. Berthier, Macroscopic yielding in jammed solids is
accompanied by a non-equilibrium first-order transition in particle trajectories, PRE 94,

022615 (2016).

e Overdamped athermal simulations of soft harmonic spheres above
jamming: Shearing a simple jammed solid / glass at 7" = 0.

e Periodic boundary conditions: spatially homogeneous flow.
e Apply periodic deformation: ~(t) = vo(1 — cos(wt)), with w < €/(a*¢).

e Measure the steady state shear stress: o(t) = o¢ cos(wt + 9). Extract
(00, 0) to measure ‘linear’ response - even beyond linear regime.

e Equivalently: G'(w) +iG" (w) = o /70€* are the well-known experimental
measurements of the linear response. Extract (G’,G").

e Access also microscopic structure (e.g. g(r), S(qg)) and dynamics (e.g.
mean-squared displacement).



Macroscopic rheology
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e Crossing of G’ and G” defines v« ~ 0.15.
Standard location of 'yielding’ transition un-
der oscillatory shear.

e Maximum of oy defines ~, ~ 0.1 (v« IS
invisible here).

e 7,1 also corresponds to onset of dissipa-
tion, when 6 > 0.

e We thus have at least 2 good definitions
of ‘the’ yielding transition, which is ok if it’s
not a transition and just a crossover.

e Finite-size effects are small, which is ok.



Microscopic dynamics: Transition?

a 0.5 - ! ' e Mean particle displacement after
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e Starting from a random configura-
tion at ¢t = 0, Ar(¢t,T) either van-
ishes when ~y < ~v4yn Or fluctuates
around well-defined average value
2000 otherwise.

A r(t

1 e Timescale to reach (nearly) re-
versible state diverges as yo — 74,

power law with pronounced finite size
effects. [Seen by Foffi, Sastry, Reichhardt...]
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e Empirically, we find that v4,, ~ 0.1
when N gets larger: Critical point?



First-order dynamic transition
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e Dynamics in steady-state regime
for vo > . is diffusive.

e Modest decrease of diffusion con-
stant as v — 7.

e Discontinuous jump to zero at ~...

e Transition in microscopic dynam-
iIcs appears first-order.

e Consistent with ‘metastable’ dy-
namics seen in transient regime.
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e Empirically, we find v. ~ vayn

0.1 when N gets larger.
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1 - Cipelletti’s experiment
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e Sharp (discontinuous?) increase of mean displacement per cycle at
yielding unrelated to crossing of G’ and G”. [Knowlton et al., Soft Matter *14]



2 - Schall’s experiment

G’ and G”, Pa

Strain Y,

e C'(8) measures tiny (about 1 %) anisotropy in S(q) in diffraction plane.
Sudden change from anisotropic (deformed elastic glass) to isotropic
(plastic flow) right where G’ and G” cross. [Denisov et al., Sci. Rep. '15]

e We see nothing at all in S(q), and our interpretation is totally different.



3 - Sastry’s simulations
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e Different scaling above and below the transition, which seems to confirm

the discontinuous nature of the transition. See also [Regev et a, Nature Comm.
'15] for opposite conclusions!



4 - Periodic volume fluctuations

e Abrupt emergence of diffusive motion; dynamical first-order transition in
actively-deforming particles. [Small versus large amplitude.]
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e Qualitatively similar to periodic global deformation. Only difference is
forcing at small rather than large scale—physics strikingly similar.



Summary
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e Right set of variables should be used.

e Two phases are truly distinct: unyielded phase remembers initial
conditions (e.g. very stable), steady state is automatically critical (i.e.
threshold and marginal).

e Transition is bound to be discontinuous in character, with nothing
interesting on the left side. Not really 'the’ yielding transition...



A critical yielding transition?

e Percolation ideas: empirical description.
[Horbach and Chaudhuri '17, Gosh et al. '17]

e Scale free spinodal: ‘mean-field’ description. First-order or/and critical?
[Zamponi and Urbani '17, Procaccia et al. ‘16, Procaccia etal. '17]



Elastic branch?

e Elastic branch is critical everywhere.
[Lin etal, PRL 15]

e Elastic branch is not critical [everybody else?, Hentschel et al, PRE '15], only
becomes critical when v — ~y [Procaccia et al. '17]

e Elastic branch becomes critical at Gardner point.
[Urbani & Zamponi 17, Jin & Yoshino]



‘Well-known’ facts

e Yielding transition is not seen directly through rheological observables
(local dynamics, overlaps...).

e A lot of work for second order criticality and exponents in steady state, or
equivalently for 4 — 0.

e Shear bands are observed by accumulation of large number of discrete
events, at large deformation.

e Behaviour is ‘universal’: foams, emulsions, glasses, chocolate, etc.



Computer simulations

e Usually limited to short time scales and small systems.

e Athermal quasi-static simulations solve one of two timescales problem:
deformation rate becomes effectively slow enough.

e Ordinary computer simulations still face the preparation timescale
problem. Cooling rate is about 8 orders of magnitude too fast.

e Thus, computer simulations may not be relevant for real glasses. Only
useful for colloidal and granular materials. (Experiments on colloids may
not be relevant for real glasses either.)

e Glass stability is typically not seriously taken into account in
coarse-grained models & theories. Exception: mean-field!



Swap Monte Carlo
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Reduced pressure, Z = PPpkgT
[Ninarello, Berthier, Coslovich, PRX '17]

e Physics: Slow diffusion in diameter space facilitates particle diffusion in
real space.

e We can now study the mechanical response of glass configurations that
are experimentally relevant: ‘Well-annealed’ glasses...



Yielding transition exists
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e For low ‘enough’ T, the transition becomes easily observable from
macroscopic rheological observables.

e Becomes sharper as N — oo: A bona fide phase transition.

e No need for complicated microscopic observables. Glass stability
changes the physics qualitatively.




Finite size scaling

e Convergence with system size appears under control.

T=0.062 ( Ultrastable comp. glass)
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e Yielding is not a phase transition if T' is too large. Previous simulations?

e There is a “critical” temperature below which discontinuity appears. We
need to study that transition in more detail... In progress.



Steady state does not exist
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e The shear stress seems to converge.

e The energy never does. A steady state never exists in realistic glasses.

Relevance of the heavily discussed ‘marginal’ critical point for real (hard)
glasses?



Elastic branch
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e Stress and energy drops along the elastic branch apparently disappear
at low T.

e The nature of shear transformation zones / soft spots changes
dramatically. Amplitude of energy drops divided by 100!

e Abrupt change of critical exponents at yielding, see [Hentschel et al., PRE *15]



No marginal stability
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e Distributions of stress and energy drops show no sign of criticality upon
approaching yielding. No spinodal criticality, no percolation.

e Apparence of criticality might be due to poor thermalisation (simulation)
or incorrect modelling (elasto-plastic models).

e Real glasses are not marginally stable.
[Scalliet, Berthier, Zamponi, PRL ’17]



Shear bands

e Yielding at high temperature is gradual.

e Yielding at low T is brutal, one way or
the other.

e No percolation.

JU

o Multiple breakings can occur in the same | 1 S——-
sample. Looks like metallic glasses... --

e The shear-band occurs within a single energy minimization, not through
an accumulation of small events over large deformation.

e Anatomy of a single shear band.


N48000_T0.062_gam_max0.3_run13.mp4
percolation_N48000_T0.062_run13.avi

Predictability?

e Non-affine displacement at ¢t — 1 (left) and at ¢ (right).
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Conclusion

e Discontinuous yielding under oscillatory shear, not sure it's useful after
all.

e Sharp yielding transition exists for
stable enough systems.

e Not critical, no diverging length-
scale, no percolation.

e Our simulations seem appropriate
for realistic glasses.
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