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Coworkers

• On-going work with:

D. Coslovich,
T. Kawasaki,
A. Ninarello,
M. Ozawa.
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Yielding(s): Experimental review

[Bonn, Denn, Berthier, Divoux, and Manneville, Rev. Mod. Phys. ’17]
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A critical yielding transition?

• Ideas from irreversibility transition and absorbing states.
[Nagamanasa et al. PRE ’14, Regev et al. PRE ’13, Fiocco et al. PRE ’13]

• Discontinuous transition observed in confocal microscopy.
[Knowlton et al., Soft Matter ’14]

title – p.4



Oscillatory shear: Setup

• T. Kawasaki and L. Berthier, Macroscopic yielding in jammed solids is

accompanied by a non-equilibrium first-order transition in particle trajectories, PRE 94,
022615 (2016).

• Overdamped athermal simulations of soft harmonic spheres above
jamming: Shearing a simple jammed solid / glass at T = 0.

• Periodic boundary conditions: spatially homogeneous flow.

• Apply periodic deformation: γ(t) = γ0(1− cos(ωt)), with ω ≪ ǫ/(a2ξ).

• Measure the steady state shear stress: σ(t) = σ0 cos(ωt+ δ). Extract

(σ0, δ) to measure ‘linear’ response - even beyond linear regime.

• Equivalently: G′(ω) + iG′′(ω) = σ0/γ0e
iδ are the well-known experimental

measurements of the linear response. Extract (G′, G′′).

• Access also microscopic structure (e.g. g(r), S(q)) and dynamics (e.g.

mean-squared displacement).
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Macroscopic rheology
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• Crossing of G′ and G′′ defines γ× ≈ 0.15.
Standard location of ’yielding’ transition un-
der oscillatory shear.

• Maximum of σ0 defines γpl ≈ 0.1 (γ× is

invisible here).

• γpl also corresponds to onset of dissipa-

tion, when δ > 0.

• We thus have at least 2 good definitions
of ‘the’ yielding transition, which is ok if it’s
not a transition and just a crossover.

• Finite-size effects are small, which is ok.
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Microscopic dynamics: Transition?
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• Mean particle displacement after
one cycle: ∆r(t, T = 2π/ω).

• Starting from a random configura-
tion at t = 0, ∆r(t, T ) either van-

ishes when γ0 < γdyn or fluctuates

around well-defined average value
otherwise.

• Timescale to reach (nearly) re-

versible state diverges as γ0 → γ−

dyn:

power law with pronounced finite size
effects. [Seen by Foffi, Sastry, Reichhardt...]

• Empirically, we find that γdyn ≈ 0.1

when N gets larger: Critical point?
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First-order dynamic transition
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• Dynamics in steady-state regime
for γ0 > γc is diffusive.

• Modest decrease of diffusion con-
stant as γ0 → γ+

c .

• Discontinuous jump to zero at γc.

• Transition in microscopic dynam-
ics appears first-order.

• Consistent with ‘metastable’ dy-
namics seen in transient regime.

• Empirically, we find γc ≈ γdyn ≈

0.1 when N gets larger.
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1 - Cipelletti’s experiment

• Sharp (discontinuous?) increase of mean displacement per cycle at
yielding unrelated to crossing of G′ and G′′. [Knowlton et al., Soft Matter ’14]
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2 - Schall’s experiment

• C(β) measures tiny (about 1 %) anisotropy in S(q) in diffraction plane.

Sudden change from anisotropic (deformed elastic glass) to isotropic
(plastic flow) right where G′ and G′′ cross. [Denisov et al., Sci. Rep. ’15]

• We see nothing at all in S(q), and our interpretation is totally different.
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3 - Sastry’s simulations

[Leishangthem et al., Nature Comm. ’15]

• Different scaling above and below the transition, which seems to confirm
the discontinuous nature of the transition. See also [Regev et al., Nature Comm.

’15] for opposite conclusions!
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4 - Periodic volume fluctuations

• Abrupt emergence of diffusive motion; dynamical first-order transition in
actively-deforming particles. [Small versus large amplitude.]
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[Tjhung & Berthier, arXiv:1607.01734]

• Qualitatively similar to periodic global deformation. Only difference is
forcing at small rather than large scale–physics strikingly similar.
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Summary

• Right set of variables should be used.

• Two phases are truly distinct: unyielded phase remembers initial
conditions (e.g. very stable), steady state is automatically critical (i.e.
threshold and marginal).

• Transition is bound to be discontinuous in character, with nothing
interesting on the left side. Not really ’the’ yielding transition...
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A critical yielding transition?

• Percolation ideas: empirical description.
[Horbach and Chaudhuri ’17, Gosh et al. ’17]

• Scale free spinodal: ‘mean-field’ description. First-order or/and critical?
[Zamponi and Urbani ’17, Procaccia et al. ’16, Procaccia et al. ’17]
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Elastic branch?

• Elastic branch is critical everywhere.
[Lin et al., PRL ’15]

• Elastic branch is not critical [everybody else?, Hentschel et al., PRE ’15], only
becomes critical when γ → γY [Procaccia et al. ’17]

• Elastic branch becomes critical at Gardner point.
[Urbani & Zamponi ’17, Jin & Yoshino]
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‘Well-known’ facts

• Yielding transition is not seen directly through rheological observables
(local dynamics, overlaps...).

• A lot of work for second order criticality and exponents in steady state, or
equivalently for γ̇ → 0.

• Shear bands are observed by accumulation of large number of discrete
events, at large deformation.

• Behaviour is ‘universal’: foams, emulsions, glasses, chocolate, etc.

title – p.16



Computer simulations

• Usually limited to short time scales and small systems.

• Athermal quasi-static simulations solve one of two timescales problem:
deformation rate becomes effectively slow enough.

• Ordinary computer simulations still face the preparation timescale
problem. Cooling rate is about 8 orders of magnitude too fast.

• Thus, computer simulations may not be relevant for real glasses. Only
useful for colloidal and granular materials. (Experiments on colloids may
not be relevant for real glasses either.)

• Glass stability is typically not seriously taken into account in
coarse-grained models & theories. Exception: mean-field!
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Swap Monte Carlo
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Reduced pressure, Z = P/ρkBT

[Ninarello, Berthier, Coslovich, PRX ’17]

• Simple method solves the sec-
ond timescale problem: we ther-
malise glasses below Tg.

• Several models thermalised be-
low Tg (13 decades): we gain

more than 11 decades.

• Physics: Slow diffusion in diameter space facilitates particle diffusion in
real space.

• We can now study the mechanical response of glass configurations that
are experimentally relevant: ‘Well-annealed’ glasses...
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Yielding transition exists

• For low ‘enough’ T , the transition becomes easily observable from
macroscopic rheological observables.

• Becomes sharper as N → ∞: A bona fide phase transition.

• No need for complicated microscopic observables. Glass stability
changes the physics qualitatively.
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Finite size scaling

• Convergence with system size appears under control.
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• Yielding is not a phase transition if T is too large. Previous simulations?

• There is a “critical” temperature below which discontinuity appears. We
need to study that transition in more detail... In progress.
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Steady state does not exist

• The shear stress seems to converge.

• The energy never does. A steady state never exists in realistic glasses.
Relevance of the heavily discussed ‘marginal’ critical point for real (hard)
glasses?
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Elastic branch

• Stress and energy drops along the elastic branch apparently disappear
at low T .

• The nature of shear transformation zones / soft spots changes
dramatically. Amplitude of energy drops divided by 100!

• Abrupt change of critical exponents at yielding, see [Hentschel et al., PRE ’15]
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No marginal stability

• Distributions of stress and energy drops show no sign of criticality upon
approaching yielding. No spinodal criticality, no percolation.

• Apparence of criticality might be due to poor thermalisation (simulation)
or incorrect modelling (elasto-plastic models).

• Real glasses are not marginally stable.
[Scalliet, Berthier, Zamponi, PRL ’17]
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Shear bands

• Yielding at high temperature is gradual.

• Yielding at low T is brutal, one way or
the other.

• No percolation.

• Multiple breakings can occur in the same
sample. Looks like metallic glasses...

• The shear-band occurs within a single energy minimization, not through
an accumulation of small events over large deformation.

• Anatomy of a single shear band.
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N48000_T0.062_gam_max0.3_run13.mp4
percolation_N48000_T0.062_run13.avi


Predictability?

• Non-affine displacement at t− 1 (left) and at t (right).

• Beuh.
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Conclusion

• Discontinuous yielding under oscillatory shear, not sure it’s useful after
all.

• Sharp yielding transition exists for
stable enough systems.

• Not critical, no diverging length-
scale, no percolation.

• Our simulations seem appropriate
for realistic glasses.
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