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elasto-plasticity and the yielding transition

what happens when a glass is deformed?

σ

σ
glass
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� linear elastic response
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stress overshoot

?

steady-state flow



what do we want to find?

goal: theory for

dσ

dt
= f (σ, γ̇, T, . . .)

σ ≡ stress

γ̇ ≡ deformation rate

T ≡ Temperature



dependence on external parameters

experiments, metallic glass
J. Lu, G. Ravichandran, W. Johnson, Acta Materialia 51 (2003)
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dependence on external parameters

simulations of model glasses
F. Varnik, L. Bocquet, and J.-L. Barrat, J. Chem. Phys. 120, 2788 (2004)
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this talk: structural order parameters

dσ

dt
= f (σ, γ̇, T, ???)

�
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what should go here?
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�
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structural order parameters? aging effects

P. G. Debenedetti and F. H. Stillinger, Nature 2001



structural order parameters? aging effects
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dependence on aging

‘young’

‘old’



structural order parameters? aging effects
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structural order parameters? aging effects

many thanks to Misaki Ozawa!



structural order parameters? anisotropy
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T → 0
γ̇→ 0
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⇒ does structure evolve?
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structural order parameters? anisotropy

dσ

dt
= f (σ, γ̇, T, ???)

�
�
�
�

what encodes this anisotropy?

X X



structural order parameters? development of avalanches

dσ

dt
= f (σ, γ̇, T, ???)

�
�
�
�

C.E. Maloney and M. O. Robbins, J. Phys.: Cond. Mat. (2008)

T = 0, γ̇ = 0
simulations

X X

avalanches develop

in steady slow

�
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structural order parameters? development of avalanches

dσ

dt
= f (σ, γ̇, T, ???)

�
�
�
�

S. Karmakar, EL, and I. Procaccia, Phys. Rev. E 82, 055103(R) (2010).

T = 0, γ̇ = 0
simulations

X X
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what actually is p(x)
from elasto-plastic models?
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what actually is p(x)
from elasto-plastic models?
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micromechanics of plastic instabilities

how are plastic instabilities triggered?

‘energy landscape’ picture:

σ

σ



micromechanics of plastic instabilities

consider linear stability
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micromechanics of plastic instabilities
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micromechanics of plastic instabilities

λp ∼
√
γc − γ

(simulations)

λp ≡
curvature

?
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observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’
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predicting plastic instabilities – can we do better?

is there a way to define and detect

plastic modes far from instability strains,

deep in the hybridized regime?

yes probably
(TBD...)
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the barrier function – definition
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δUẑ(s) ' 1
2
κẑs
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ẑ

=
2

3

(M : ẑẑ)3(
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finding small b(ẑ)’s

setup:



finding small b(ẑ)’s

destabilizing linear mode Ψ̂p, γ→ γc
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we are
here



finding small b(ẑ)’s
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?

we are
here



finding small b(ẑ)’s
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finding small b(ẑ)’s

minimization converged, γc − γ ∼ 10−2

?

we are
here



finding small b(ẑ)’s

direction ẑ that minimizes b(ẑ)
γc− γ ∼ 10−2

destabilizing linear mode Ψ̂p

γc− γ ∼ 10−7



nonlinear plastic modes – definition

nonlinear plastic modes are collective displacement directions π̂

for which the barrier function b(ẑ) displays a local minimum
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nonlinear plastic modes – illustration

b(ẑ) ≡
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U ′′′

.
: ẑẑẑ
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nonlinear plastic modes – spatial structure

∼ r2−2d

nonlinear plastic modes decay like the
response to local perturbation |π̂| ∼ r1−d



nonlinear plastic modes – spatial structure

no internal stresses
glass under tension



nonlinear plastic modes – core size
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usefulness of nonlinear plastic modes

nonlinear plastic modes are collective displacement directions π̂

for which the barrier function b(ẑ) displays a local minimum

∂b

∂~z

∣∣∣∣
π̂

= 0,
∂2b

∂~z∂~z

∣∣∣∣
π̂

> 0

why are nonlinear plastic modes the

natural micromechanical objects

to consider in plasticity studies?



nonlinear plastic modes – deformation dynamics

we defined π̂ via ∂b
∂~z

∣∣
π̂

= 0

⇒ modes π̂ solve the nonlinear equation:

(?) M· π̂ =
κπ̂

τπ̂
U ′′′ : π̂π̂

how do the stiffnesses κπ̂ depend on deformation?

dκπ̂

dγ
'
dM
dγ

: π̂π̂ = −U ′′′ .
: π̂π̂

(
M−1 ·

∂2U

∂~x∂γ

)

following (?): = −
τπ̂π̂ · M ·M−1 · ∂2U

∂~x∂γ

κπ̂

= −
τπ̂νπ̂

κπ̂
,

τπ̂ ≡ ∂3U
∂~x∂~x∂~x

.
: π̂π̂π̂ asymmetry

νπ̂ ≡ π̂ · ∂
2U

∂~x∂γ
shear coupling
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nonlinear plastic modes – deformation dynamics

we found a simple form for
dκπ̂

dγ
' −

τπ̂νπ̂

κπ̂

trivially solved as κπ̂ '
√

2νπ̂τπ̂
√
γc − γ

10
−10

10
−8

10
−6

10
−4

10
−2

10
−5

10
−3

10
−1

10
1

2

1

γc −γ

κ
π̂

 

 

10
−10

10
−8

10
−6

10
−4

10
−2

0.8

1

1.2

1.4

1.6

γc −γ

κ
π̂

√

2
τ
π̂
ν
π̂

√

γ
c
−

γ

N = 40
2

N = 80
2

N = 160
2

N = 320
2

a)

b)



nonlinear plastic modes – deformation dynamics

we found a simple form for
dκπ̂

dγ
' −

τπ̂νπ̂

κπ̂

trivially solved as κπ̂ '
√

2νπ̂τπ̂
√
γc − γ

10
−10

10
−8

10
−6

10
−4

10
−2

10
−5

10
−3

10
−1

10
1

2

1

γc −γ

κ
π̂

 

 

10
−10

10
−8

10
−6

10
−4

10
−2

0.8

1

1.2

1.4

1.6

γc −γ

κ
π̂

√

2
τ
π̂
ν
π̂

√

γ
c
−

γ

N = 40
2

N = 80
2

N = 160
2

N = 320
2

a)

b)



nonlinear plastic modes – deformation dynamics

we found a simple form for
dκπ̂

dγ
' −

τπ̂νπ̂

κπ̂

trivially solved as κπ̂ '
√

2νπ̂τπ̂
√
γc − γ

10
−10

10
−8

10
−6

10
−4

10
−2

10
−5

10
−3

10
−1

10
1

2

1

γc −γ

κ
π̂

 

 

10
−10

10
−8

10
−6

10
−4

10
−2

0.8

1

1.2

1.4

1.6

γc −γ

κ
π̂

√

2
τ
π̂
ν
π̂

√

γ
c
−

γ

N = 40
2

N = 80
2

N = 160
2

N = 320
2

a)

b)



nonlinear plastic modes – deformation dynamics

we found a simple form for
dκπ̂

dγ
' −

τπ̂νπ̂

κπ̂

trivially solved as κπ̂ '
√

2νπ̂τπ̂
√
γc − γ

10
−10

10
−8

10
−6

10
−4

10
−2

10
−5

10
−3

10
−1

10
1

2

1

γc −γ

κ
π̂

 

 

10
−10

10
−8

10
−6

10
−4

10
−2

0.8

1

1.2

1.4

1.6

γc −γ

κ
π̂

√

2
τ
π̂
ν
π̂

√

γ
c
−

γ

N = 40
2

N = 80
2

N = 160
2

N = 320
2

a)

b)

important points:

1) deformation dynamics only weakly coupled to other modes

2) N -independent range of validity, in stark contrast with linear modes



nonlinear plastic modes – deformation dynamics

linear modes’ variations are singular, plastic modes’ are regular:

nonlinear plastic modes linear destabilizing mode∣∣∣∣dπ̂dγ
∣∣∣∣ ∼ const.
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linear modes’ variations are singular, plastic modes’ are regular:

nonlinear plastic modes linear destabilizing mode∣∣∣∣dπ̂dγ
∣∣∣∣ ∼ const.

∣∣∣∣dΨ̂p

dγ

∣∣∣∣ ∼ L2

√
γc − γ

this is odd since both stiffnesses follow same EOM
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)
EL, Micromechanics of nonlinear plastic modes, Phys. Rev. E 93, 053004 (2016)



predictiveness of nonlinear plastic modes
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TBD: detecting the field of nonlinear plastic modes

modes detected
in a single sample

in progress...



statistics of nonlinear plastic modes

what attributes of NPM’s should we care about?

recall: NPM’s are characterized by:

• their stiffnesses κ = ∂2U
∂~x∂~x

: π̂π̂

• their asymmetries τ = ∂3U
∂~x∂~x∂~x

.
: π̂π̂π̂

• their deformation coupling ν = ∂2U
∂γ∂~x

· π̂

we can construct a field of local destabilization strains δγc(π̂):

δγc(π̂) = γc(π̂)− γ =
κ

2dκ
dγ

=
κ2

2ντ(
recall that κ =

√
2τν
√
γc − γ, and dκ

dγ
= −τν

κ

)

assume τ and ν have
non-interesting distributions,
focus on stiffnesses κ
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how are NPM stiffnesses κ distributed?

it was recently observed that a universal distribution D(ω)∼ω4

of quasi-localized glassy modes appears at low frequencies
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EL, Düring, & Bouchbinder, PRL 2016



how are NPM stiffnesses κ distributed?

it was recently observed that a universal distribution D(ω)∼ω4

of quasi-localized glassy modes appears at low frequencies

harmonic glassy mode
in undeformed sample

plastic instability
upon imposing shear



how are NPM stiffnesses κ distributed?

recall we assume that strain couplings ν and asymmetries τ

have characteristic (κ independent) values, then we expect

p(κ) ∼ κ3/2 ⇒ p(δγc) ∼ δγ1/4
c

assume now different NPMs are independent, then we expect

γ1(N) ∼N−4
5

σ

σ
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extent of first elastic branch

recall we assume that strain couplings ν and asymmetries τ

have characteristic (κ independent) values, then we expect

p(κ) ∼ κ3/2 ⇒ p(δγc) ∼ δγ1/4
c

assume now different NPMs are independent, then we expect

γ1(N) ∼N−4
5

σ

σ

Hentschel, Karmakar, EL, & Procaccia, PRE 2011



finite-size scaling of nonlinear elasticity

a similar discrepancy appears for nonlinear elastic moduli
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B3 ≡
d3σ

dγ3

we find µ ≈ 0.57,

whereas D(ω) ∼ ω4

implies µ = 1/2

asymmetries should depend

on stiffnesses
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dependence of asymmetries on stiffnesses

data measured for low-energy NPMs in 3D with N = 2000

does this trend persist to κ→ 0?
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data measured for low-energy NPMs in 3D with N = 2000

does this trend persist to κ→ 0?



dependence of asymmetries on stiffnesses

data measured for low-energy harmonic modes in 3D with N = 2000

asymmetries appear to be stiffness independent for

harmonic modes, but not for plastic modes



summary: nonlinear plastic modes

• understanding elasto-plasticity and yielding requires the

proper identification of the relevant structural state variables

J. Lu, G. Ravichandran, W. Johnson, Acta Materialia 51 (2003)



summary: nonlinear plastic modes

• NPMs offer a robust micromechanical definition of

plasticity carriers, based solely on inherent state information
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summary: nonlinear plastic modes

• deformation dynamics of NPMs: N -independent,

no hybridizations
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summary: nonlinear plastic modes

• still something left to understand regarding

the statistics of NPMs, and the stiffness-dependence

of asymmetries & deformation coupling
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Ph.D. & postDoc positions available!

e.lerner@uva.nl



thanks for your attention! questions?

e.lerner@uva.nl


