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elasto-plasticity and the yielding transition

what happens when a glass is deformed?




elasto-plasticity — macroscopic response & yielding
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elasto-plasticity — macroscopic response & yielding
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elasto-plasticity — macroscopic response & yielding
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what do we want to find?

goal: theory for
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dependence on external parameters

experiments, metallic glass

J. Lu, G. Ravichandran, W. Johnson, Acta Materialia 51 (2003)
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dependence on external parameters

simulations of model glasses

F. Varnik, L. Bocquet, and J.-L. Barrat, J. Chem. Phys. 120, 2788 (2004)
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this talk: structural order parameters
do
dt

what should go here?
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structural

order parameters? aging effects
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structural order parameters? aging effects
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structural order parameters? aging effects
do (0,4, T,079)
— 0-7 /)/7 7
dt

F. Varnik, L. Bocquet, and J.-L. Barrat, J. Chem. Phys. 120, 2788 (2004).
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structural order parameters? aging effects
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structural order parameters? anisotropy
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structural order parameters? anisotropy

do

0 0.2 04 7y 06 0.8

no stress overshoot

=> does structure evolve?
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structural order parameters? anisotropy
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structural order parameters? development of avalanches
do ,
o f(aa Xa T? )
dt

T=0,=0
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structural order parameters? development of avalanches
do ,
'gg'::f<07%;2$€ii»

S. Karmakar, EL, and I. Procaccia, Phys. Rev. E 82, 055103(R) (2010).
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structural order parameters
= 177)
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what should go here?
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do ,
E — (07 Vs T7 )

what actually is p(CE)
VVhat ShOL”d g0 here? from elasto-plastic models?
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micromechanics of plastic instabilities

what is plasticity on the micro-scale?



micromechanics of plastic instabilities

what is plasticity on the micro-scale?

‘shear-
transformation’

or
‘shear-

transformation-
zone’




micromechanics of plastic instabilities

how are plastic instabilities triggered?
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‘energy landscape’ picture:

AN 4

increase imposed deformation ———



micromechanics of plastic instabilities
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micromechanics of plastic instabilities
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micromechanics of plastic instabilities
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micromechanics of plastic instabilities
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micromechanics of plastic instabilities
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predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.
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predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’
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predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’

problems:



predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’

problems: 1) no quantitative information
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predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’

problems: 2) hybridizations with plane waves




predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’

problems:  2) hybridizations with plane waves

compare lowest energy
plane wave freq. w? ~ 1/L?

with Ap ~ v/ve — v

= Ye—A L~
dehybridization strain scale



predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’

problems:  2) hybridizations with plane waves

compare lowest energy
plane wave freq. w? ~ 1/L?

with Ap ~ v/ve — v
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predicting plastic instabilities using normal modes

observation: ‘linear’ (normal) modes are indicative of plastic instabilities.

proposition: use normal modes to detect ‘soft spots’

problems: 2) hybridizations with plane waves
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predicting plastic instabilities — can we do better?

is there a way to define and detect
plastic modes far from instability strains,
deep in the hybridized regime?



predicting plastic instabilities — can we do better?

yes probably

(TBD...)

is there a way to define and detect
plastic modes far from instability strains,
deep in the hybridized regime?



the barrier function — definition

consider the energy variation upon displacing
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particles’ coordinates & according to O0r = 82
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the barrier function — definition

consider the energy variation upon displacing Z not necessarily

A l
particles’ coordinates T according to or =sz" ¢ normal modet
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the barrier function — definition

consider the energy variation upon displacing 2 not necessarily

A l
particles’ coordinates T according to or =sz" ° normal modet

0U;(s) ~ Lkss? + %7'233
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the barrier function — definition

consider the energy variation upon displacing 2 not necessarily

. y . — - — A
particles’ coordinates & according to O0r = 82

barrier
function

b(2)

a normal mode!

0U;(s) ~ Lkss? + %7'233

W= == === -



the barrier function — definition

consider the energy variation upon displacing 2 not necessarily

A l
particles’ coordinates T according to or =sz" ° normal modet

1 2 1 3
barrier 0U:(s) ~ sKkzs® + 5728

function , \
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the barrier function — definition

consider the energy variation upon displacing 2 not necessarily

A l
particles’ coordinates & according to 0 = sz * normal mode!

1 2 1 3
barrier 0U:(s) ~ sKkzs® + 5728

function , \
2k; 2 (M :zz
b(2) = 6Us(s,) = 2z = 2 M :22)
312 3(Umizzz)

shorthand notations: b(i’) _
_ o’U . ., w :
= dynamical matrix N '
OLOT et :
83U = '
U"” = ————— ‘cubic tensor’ :
azozoz ' 0 ;
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the barrier function — definition

consider the energy variation upon displacing

. y . — - — A
particles’ coordinates & according to O0r = 82

barrier
function 5
2K
b(Z) 5U (S*) = gﬁ
only a function of

inherent state information,
and the direction 2

0U;(s) ~ Lkss? + Tz

3

2 not necessarily
a normal mode!
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the barrier function — definition
(M : 22)°
3 (U 222)”

(V]

barrier o~ 2,{2
function b(2) =dUx(sy) = s =

directions 2 which take the system over
low saddle points will have small b(2)’s




N>

the barrier function — definition
2K 2 (M:22)°

barrier AN . 2 _“
function b(2) = 0U:(s.) = 372 -3 (U”’ : 222)2

directions Z which take the system over
low saddle points will have small b(2)’s

=> find directions with
small b(2) by minimizing
b(Z) over directions 2
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finding small b(2)'s

linear response to shear, 7. — v ~ 1072, use as initial guess 2i,;

we are
here




finding small b(2)'s

minimize b(Z2), after 12 iterations, v, — vy ~ 1072

we are
here




finding small b(2)'s

minimize b(Z2), after 24 iterations, v, — vy ~ 1072

we are
here




finding small b(2)'s

minimization converged, Y. — 7y ~ 1072

we are
here




finding small b(2)'s

direction 2 that minimizes b(2) destabilizing linear mode ¥,
Ye—7y~1072 Ye = ~ 1077




nonlinear plastic modes — definition
nonlinear plastic modes are collective displacement directions 7

for which the barrier function b(2) displays a local minimum

o o 9|
9z|. =~ 020z,
b(A):g (M : 22)°
YT B U s22)




nonlinear plastic modes — illustration




nonlinear plastic modes — spatial structure

nonlinear plastic modes decay like the
response to local perturbation |#| ~ 7!~
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nlinear plastic modes — spatial structure

. glass under tension
no internal stresses




nonlinear plastic modes — core size

packings of harmonic discs

‘unjamming’




nonlinear plastic modes — core size

packings of harmonic discs
1
—F— D
Z - ZC

‘unjamming’

—1/45

le ~




usefulness of nonlinear plastic modes

nonlinear plastic modes are collective displacement directions 7
for which the barrier function b(2) displays a local minimum
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why are nonlinear plastic modes the
natural micromechanical objects

to consider in plasticity studies?



nonlinear plastic modes — deformation dynamics

we defined 7t via . =0
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nonlinear plastic modes — deformation dynamics

we defined 7t via 8# . =0

= modes 7 solve the nonlinear equation:
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nonlinear plastic modes — deformation dynamics

we defined 7t via a* . =0

= modes 7 solve the nonlinear equation:

’{A
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how do the stiffnesses x; depend on deformation?



nonlinear plastic modes — deformation dynamics

we defined 7t via a* . =0

= modes 7 solve the nonlinear equation:

’{/A
(%) M7 =—=U": &%

T

how do the stiffnesses x; depend on deformation?
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. . _ ro~y
following (*): = —
K#
T#lVs Th = 22U G aad as
#Va * = pzozoz ymmetry
- 9
K# v =Tt g;gy shear coupling



nonlinear plastic modes — deformation dynamics

dK',ﬁ- T#Vx
~Y

d’)/ o K#

we found a simple form for



nonlinear plastic modes — deformation dynamics

dK',ﬁ- T#Vx
~Y

d~y - K#

trivially solved as Kz =~ \/21/73-7'73-\/’78 — Y

we found a simple form for




nonlinear plastic modes — deformation dynamics

dK',ﬁ- T#Vx
~Y

d’)/ - K#

trivially solved as Kz =~ \/21/73-7'73-\/’78 — Y

we found a simple form for
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nonlinear plastic modes — deformation dynamics

dK',ﬁ- T#Vx
Y

dvy K#

trivially solved as K;i =~ \/21/73-7'73-\/’78 — Y

we found a simple form for

important points:
1) deformation dynamics only weakly coupled to other modes
2) N-independent range of validity, in stark contrast with linear modes
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nonlinear plastic modes — deformation dynamics

linear modes’ variations are singular, plastic modes' are regular:

nonlinear plastic modes linear destabilizing mode

d# di, L?
~ const. ~
d~y d~y Ye —
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EL, Micromechanics of nonlinear plastic modes, Phys. Rev. E 93, 053004 (2016)



nonlinear plastic modes — deformation dynamics

linear modes’ variations are singular, plastic modes' are regular:

nonlinear plastic modes linear destabilizing mode

d#t ‘d\i:p L?
—— | ~ const. ~

dry dry Ye —

this is odd since both stiffnesses follow same EOM

dk 1 dAp 1

— N —_— —_—

d~y K d~y Ap
(k= M : 7tit) (Ap=M:8,9,)

EL, Micromechanics of nonlinear plastic modes, Phys. Rev. E 93, 053004 (2016)



predictiveness of nonlinear plastic modes

10



predictiveness of nonlinear plastic modes

as soon as detected,
overlap with instability
up to more than 99%!

10



TBD: detecting the field of nonlinear plastic modes

modes detected
in a single sample

in progress...




statistics of nonlinear plastic modes

what attributes of NPM's should we care about?



statistics of nonlinear plastic modes

what attributes of NPM's should we care about?

recall: NPM'’s are characterized by:
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o their stiffnesses k = -2 : 77
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. . _ 63U PN
o their asymmetries T = 5250 AT
. . . 82U 4
e their deformation coupling v = 07



statistics of nonlinear plastic modes

what attributes of NPM's should we care about?

recall: NPM'’s are characterized by:
U | 4.
ozoz ' T

83U PPN
dzozoz - T
82U

e their stiffnesses kK =
e their asymmetries 7 =

~

e their deformation coupling v = 07

we can construct a field of local destabilization strains dv.(#):

. . K K
67C(7T) = '70(77) — 7= o dr =

(recall that k = V/27v/7. — 7, and 3% = -

d~y K



statistics of nonlinear plastic modes

what attributes of NPM's should we care about?

recall: NPM'’s are characterized by:

o 2 .
e their stiffnesses k = gf—gi PR assume 7 and v have
5 non-interesting distributions,
e their asymmetries 7 = _9U_:#x# focus on stiffnesses
OLOTXOT
. . . 82U N
e their deformation coupling v = oo

we can construct a field of local destabilization strains dv.(#):

A ) K K
0Ve(7) = Ye(T) — v = e
28
Y

(recall that k = V/27v/7. — 7, and 3% = -

d~y K



how are NPM stiffnesses x distributed?

it was recently observed that a universal distribution D(w) ~w

4

of quasi-localized glassy modes appears at low frequencies

[

KABLJ
N = 4000

1

EL, Diiring, & Bouchbinder, PRL 2016



how are NPM stiffnesses x distributed?

it was recently observed that a universal distribution D (w) ~w?
of quasi-localized glassy modes appears at low frequencies

harmonic glassy mode plastic instability
in undeformed sample upon imposing shear




how are NPM stiffnesses x distributed?

recall we assume that strain couplings v and asymmetries 7
have characteristic (k independent) values, then we expect

p(k) ~ kY2 = p(8v.) ~ dve*



how are NPM stiffnesses x distributed?

recall we assume that strain couplings v and asymmetries 7
have characteristic (k independent) values, then we expect

p(k) ~ kY2 = p(8v.) ~ dve*

assume now different NPMs are independent, then we expect

71 (N) ~ N~5 '




extent of first elastic branch

recall we assume that strain couplings v and asymmetries 7

have characteristic (k independent) values, then we expect

p(k) ~ K2

= p((s’yc) ~ 5'7c1/4

assume now different NPMs are independent, then we expect

71 (N) ~ N~5

1~ N—0.62

(2D)

10°

71

1~ N0-62

(3D)
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10 10

N

Hentschel, Karmakar, EL, & Procaccia, PRE 2011



finite-size scaling of nonlinear elasticity

a similar discrepancy appears for nonlinear elastic moduli

3
d’o
d~y3

we find p = 0.57,

B3E

whereas D(w) ~ w?*

implies p =1/2
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Hentschel, Karmakar, EL, & Procaccia, PRE 2011



finite-size scaling of nonlinear elasticity

a similar discrepancy appears for nonlinear elastic moduli

3
d’o
d~y3

we find p = 0.57,

B3E

whereas D(w) ~ w?*

implies p =1/2

asymmetries should depend
on stiffnesses

10*

10°

10° 1=u
-B3/(GN™")

Hentschel, Karmakar, EL, & Procaccia, PRE 2011



dependence of asymmetries on stiffnesses

data measured for low-energy NPMs in 3D with N = 2000




dependence of asymmetries on stiffnesses

data measured for low-energy NPMs in 3D with N = 2000

does this trend persist to kK — 07



dependence of asymmetries on stiffnesses

data measured for low-energy harmonic modes in 3D with N = 2000

asymmetries appear to be stiffness independent for
harmonic modes, but not for plastic modes



summary: nonlinear plastic modes

e understanding elasto-plasticity and yielding requires the
proper identification of the relevant structural state variables

J. Lu, G. Ravichandran, W. Johnson, Acta Materialia 51 (2003)
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summary: nonlinear plastic modes

e NPMs offer a robust micromechanical definition of
plasticity carriers, based solely on inherent state information

ob
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summary: nonlinear plastic modes

e deformation dynamics of NPMs: N-independent,
no hybridizations
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summary: nonlinear plastic modes

e deformation dynamics of NPMs: N-independent,
no hybridizations

asymmetry deformation coupling
a) 10' : :
—+— N = 40?
—— N = 80?2
|| —A— N = 1602
dk TV ol V=0
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summary: nonlinear plastic modes

o still something left to understand regarding
the statistics of NPMs, and the stiffness-dependence
of asymmetries & deformation coupling

(2D) (3D)

~1 ~ IN70:62 i ~ N—0-62

10 10* 10 10
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thanks for your attention! questions?
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