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Figure 2. Viscosity as a function of reduced inverse temperature for
three liquids: S10z, glycerol, and o-terphenyl. Reorientation times are
shown for o-terphenyl only (O). A nearly Arrhenius temperature
dependence for relaxation times and the viscosity 1s charactenstic of
strong hquids, while fragile liquuds show quite non-Arrhenius behavior.
Data from refs 4—7.

Glass phenomenology




Mechanical yield in amorphous solids can
be catastrophic




any amorphous solids fail mechanically in th
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hat 1s the difference in material before and after yield?

1 same basic phenomenology appears irrespective of
microscopic interaction potential!

are seeking a universal la
describe the transiti




Plasticity in crystalline materials




Glasses are disordered like liquids
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what 1s plasticity in amorphouas solids’
Malandro and Lacks ‘99; Maloney and Lemaitre ‘06
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FIG. 4: (Color Online). Left panel: The nonaffine displace-
ment field associated with a plastic instability that results in
a shear band. Right panel: the displacement field associated
with 7 Eshelby inclusions on a line with equal orientation.
Note that in the left panel the quadrupoles are not precisely
on a line as a result of the finite boundary conditions and the
randomness. In the right panel the series of N” = 7 Eshelby
inclusions, each given by Eq. (18) and separated by a distance
of 13.158, using the best fit parameters of Fig. 2, have been
superimposed to generate the displacement field shown.




The energetic argument

u(X) = (18)
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FIG. 1: (Color Online). The total plastic energy Eq. (3)
for the creation of an array of quadrupoles with density p for
three values of 4: 7 =~y — 0.1 (upper curve), v = vy — 0.05
(middle curve), and 4y = 7, (lower curve). In the present
case 7y = 0.07. To generate this picture we use the measured
constants £ ~ 37.2, v ~ 031, € =~ 0.082 and a = 1.83.
Finally U, ~ 0.22.




to construct an order parameter that will do the jo

onsider two different configurations of a glassy material




ytart with a glass-former in the liquid state at some temperature ab
the glass transition.

Quench to T=0.

Heat up to a low temperature (in our case T=0.2) muc
below the glass transition.

> up one configuration, randomize the velociti
nann weight and quench again to T=
“patch” of configuratior




FIG. 6. Demonstrating the sharpening of the transition with
the system size.
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FIG. 7. Upper panel: A typical graph of (Q12) as a function
of v (here for N = 4000 (right scale) and the slope of the
same function (left scale). Lower panel: The maximal slope

of the function (Q12)(7) as a function of system size.
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Yield 1s a “stressed ergodization’
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FIG. 5: The number of configurations which pass below the
threshold value Q12 = 0.8 of the overlap order parameter as
a function of the strain v for N = 4000. In the onset we
show the same test for N = 500. The conclusion is that all
the configurations lose overlap with the initial configuration
in the vicinity of the yield point -,




we have enough initial configurations, we can conside
ility of the order parameter, averaged over the reali
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FIG. 4: The probability distribution function (P, (Qi2)) in
the vicinity of the critical point v, = 0.088
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FIG. 3: The probability distribution function P,(Qi2) at
7y = 0.088 averaged over 100 initial configurations each of
which has 500 different realizations to obtain (P, (Q12)). At
this value of the strain the pdf has two peaks of equal heights.
We identify this value of v as the point of the phase transition.
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N
Qus(r) = 30 — [r2 — v2)5(r — 1)
i=1

GrL(r) =2Gg(r) — T'a(r), (3)
with the definitions

Gr(r) = (Qav(r)Qas(0)) — 2(Qas(r)Qac(0)) (4)
+<_-Qab('r)) (ch(O)),
[a(r) = (Qan(7)Qan(0)) — (Qan(r)) (Qas(0)) . (5)

Xe, (V) = / d*z GL(z,y:7) .
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FIG. 2. The function Gr(z = 0,y:~) for various values of
v from 5 x 107% to 0.09405. Note the increase in the over
all amplitude of the correlator as well as the increase in the
correlation length. The lines through the data are the fit
function Eq. (10).
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FIG. 16. Upper panel: the correlation length £ read from an
exponential fit to the = and y projection of the correlation
function I'a2(z,y) for three values of the system size. Lower
panel: the dependence of the correlation length & on v — ..




G. 18. The dependence of P,(Q12,T") on 7 for three differ-
t temperatures 7' = 0,0.1,0.2.
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FIG. 2: (Color Online). Left panel: the localization of the
non-affine displacement onto a quadrupolar structure which
is modeled by an Eshelby inclusion, see right panel. Right
panel: the displacement field associated with a single Eshelby
circular inclusion of radius a, see text. The best fit parameters
are a =~ 2.5 and € =~ 0.1. To remove the effect of boundary
conditions, the best fit is generated on a smaller box of size

(z,y) € [25.30,75.92]




FIG. 1: (Color Online). The total plastic energy Eq. (3)
for the creation of an array of quadrupoles with density p for
three values of vy: v =~y — 0.1 (upper curve), v =~y — 0.05
(middle curve), and 7 = vy (lower curve). In the present

case 7y = 0.07. To generate this picture we use the measured
constants £ ~ 37.2, v =~ 0.31, € =~ 0.082 and a = 1.83.
Finally U, ~ 0.22.
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FIG. 1. The susceptibilities x ., (upper panel) and x , (lower
panel) as a function of 7 for the three systems sizes available.
Superimposed are the stress vs. strain curves for comparison.
The color code is violet for N = 1000, red for 4000 and green
for 10000.




Generalization to 3 dimensions

n Eshelby circle generalizes to an Eshelby sph
but in fact remains 2-dimensional!










hat is the difference between th
te of matter before and after yie
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We know that the energy drops in plastic events before yield are
“small”, scaling like N° .

also know that after the yield the energy drops in the pl:
ts are “large”, scaling like N1/ .




