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Linear response of glasses under shear :theory 

   First attempt - 3dim soft sphere (1RSB) 
HY and M. Mézard, Phys. Rev. Lett. 105, 015504 (2010).
HY, J. Chem. Phys.136, 214108 (2012).

   Large-d hard sphere (1RSB/full RSB)
HY and F. Zamponi,  Phys. Rev. E 90, 022302 (2014).

3D hard sphere under shear (+ (de)compression) : simulation 

  Linear responses in stable/marginal glasses
Y. Jin and HY, Nature Communications 8, 14935 (2017).

  Non linear responses (shear jamming/yielding/plasticity)
Y. Jin, HY, P. Urbani and F. Zamponi, in preparation 
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Linear response of glasses under shear: theory

Replicated liquid theory= 
1st principle computation 

to extract effective 
“Einstein model” for glasses

“cells” in the elasto-plastic model

G

Let’s try to obtain effective  
“Debye model” by computing  

shearmoulous

By “state following” 
even non-linear responses 

can be analyzed 
P. Urbani’s talk



Shear modulus: a paradox and a lesson
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「水は方円の器にしたがう」水髄方円　筍子
Water conforms to the shape of its container.



Linear response of replicated liquid & physical interpretation
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Expansion of replicated liquid free-energy 
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C.F..  step-wise magnetic response in spin-glasses : H. Y.  and Tommaso Rizzo,  Phys. Rev. B 77, 104429 (2008).



A model computation of the shear modulus
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Emulsions, colloids,...

Supercooled
Liquid

温度効果のあるジャミング転移 �
エマルション (emlusion;�乳濁液，�乳剤) �

水と油など， 混ざり合わない液体が �
ミセルを形成して �

 一方が液滴となって他方に分散している系�

エマルションの圧力と剛性率の測定（室温）�
(大きい○=圧力, 黒シンボル=剛性率) �

(s: 表面張力, R:�粒径) �
T. G. Mason et al. (1997) �

エントロピー弾性�
温度効果なしや液体では0�

接触力�

液滴(粒子)間の相互作用の大きさで �
換算して温度T ~ 10 -5 �
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3. Other soft materials 
 
Now that I’ve introduced colloids, let’s discuss other soft systems which resemble colloids to 
varying degrees. 
 
3.1 Emulsions 
 
Emulsions are similar to colloids, but rather than solid particles in a liquid, they consist of liquid 
droplets of one liquid, mixed into a second immiscible liquid; for example, oil droplets mixed in 
water.  Surfactant molecules are necessary to stabilize the droplets against coalescence which is 
when two droplets come together and form a single droplet.  A cross-section of an emulsion is 
shown in Fig. 3.1, and a sketch showing a droplet with the surfactants is shown in Fig. 3.2.  
Mayonnaise is a common example of an emulsion, made with oil droplets in water, stabilized by 
egg yolks as the surfactant, with extra ingredients added for taste. 
 

 

 
 
 
Fig. 3.1.  Confocal microscope image of an 
emulsion.  The droplets (dark) are dodecane, 
a transparent oil.  The space between the 
droplets is filled with a mixture of water and 
glycerol, designed to match the index of 
refraction of the dodecane droplets.  The 
droplets are outlined with a fluorescent 
surfactant.  The hazy green patches are free 
surfactant in solution, or else the tops or 
bottoms of other droplets.  (Picture taken by 
ER Weeks and C Hollinger.) 

 

 

 
 
 
 
 
Fig. 3.2.  Sketch of an emulsion droplet.  Not 
to scale:  typically the surfactants are tiny 
molecules, whereas the droplet is micron-
sized.  (Sketch by C Hollinger.) 

 
 

10 µm 

身近では.) マヨネーズ，�木工用ボンド，�など�

ドデカン液滴�
(in 水+グルコース) �

E. R. Weeks and �
C. Holinger(2007) �

unjam� jam�

�	�

圧力と剛性率の振る舞いがほぼ同じ�
→ 温度効果のない数値計算�

では出てこない �
cf. C. S. O’Hern et al. (2003) 等�

 E. R. Weeks, 
in "Statistical Physics of Complex Fluids", 
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tightly as possible; nearly every particle touches its neighboring particles.  Random packings with 
φ  > 0.64, or any packing with φ  > 0.74, require deforming the particles. 
 

 

 
 
 
 

 
 
 
 
 
Fig. 2.6.  A single layer within a colloidal 
crystal formed with 2.3 µm diameter 
PMMA colloids.  The scale bar is 5 µm.  
This sample is at a volume fraction φ ≈ 0.6. 

   Colloidal crystallization 
Interestingly, hard sphere colloids will spontaneously organize into the crystalline phase at a 
volume fraction φ ≈ 0.5.  Counter-intuitively, this transition to an ordered state is due to entropy.  
Consider two systems at equal volume fractions of 0.64, one random (and thus rcp) and the other 
in a crystalline hcp state.  The rcp system has no room for the particles to move.  It has high 
configurational entropy but low vibrational entropy.  The hcp system is the opposite; it is in an 
ordered, low entropy configuration, but the particles have plenty of room to move locally around 
their lattice sites.  After all, they could be packed in as tightly as φ  = 0.74, but the system is only 
at φ  = 0.64.  Thus, the vibrational entropy is higher.  In practice, the total entropy of the 
crystalline system becomes higher than the random system at φ ≈ 0.5.  More precisely, the system 
starts to form crystals at φ ≈ 0.494, and entirely crystallizes at φ ≈ 0.545.  In between the system 
is in coexistence between the liquid-like state at 0.494 and the crystal at 0.545; see Fig. 2.7 for the 
phase diagram. 

 

Fig. 2.7.  Phase diagram for hard spheres.  Note that the metastable glass phase is only 
present if the system is polydisperse, at least ~5%. 
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I. J. Jorjadze, L-L. Pontani and J. Brujic,  PRL 111, 048302(2013).



Shear on hardspheres in large dimensional limit

��F (�̂, {�a})/N = 1� log � + d log m + d
2 (m� 1) log(2�eD2/d2) + d

2 log det(�̂m,m)

� d
2 ��

�
d��
2�
F

�
�ab + �2

2 (�a � �b)2
�

Replicated Mayer function (under shear)

f{�a}(x, y) = �1 +
m�

a=1

e��v(|S(�a)(xa�ya)|) S(�)µ� = �µ� + ���,1�µ,2

��F ({�a}) =
�

dx�(x)[1� log �(x)] +
1
2

�
dxdy�(x)�(y)f{�a}(x, y)

HY and F. Zamponi,  Phys. Rev. E 90, 022302 (2014).

ua

�1 �2
...

d ! 1



1 step RSB

��EA � ��d � C(��� ��d)1/2

��µab = ��µEA

�
�ab �

1
m

�

�µ̂EA = ���1
EA

1/��d
1/��

µ̂EA

in agreement with MCT

G. Szamel and E. Flenner, PRL 107, 105505 (2011).

W. Gotze, Complex dynamics of glass-forming liquids: A 
mode-coupling theory, 
vol. 143 (Oxford University Press, USA,2009).

0

��d < �� < ��Gardner

HY and F. Zamponi,  Phys. Rev. E 90, 022302 (2014).



1+continuous RSB ��Gardner < �� < ��GCP
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consistent with scaling argument + effective medium computation

HY and F. Zamponi,  Phys. Rev. E 90, 022302 (2014).
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Experiment:  rigidity of emulsions
T. G. Mason, Martin-D Lacasse, Gary Grest, Dov Levine, J Bibette, D Weitz, Physical Review E 56, 3150 (1997)
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“mechanical”

“entropic”

fined. However, they are well defined at larger w, and we plot
Gp8(w) for different radii in Fig. 6. The plateau modulus for
each emulsion rises many orders of magnitude around
w'0.60. Emulsions comprised of smaller droplets have dis-
tinctly smaller w at which the onset of the rise occurs. At
high w, where the droplets are strongly compressed, Gp8 is
larger for smaller droplets. By contrast with P, the plateau
modulus does not diverge as w approaches unity.
To investigate the role of the interfacial deformation of

the droplets on the emulsion elasticity, we scale Gp8(w) by
(s/R), and plot the results in Fig. 7. At high w, this scaling
collapses the data for different droplet sizes. However, at low
w there are large systematic deviations from this scaling. To
reconcile these apparently different onset volume fractions,
we must account for the electrostatic repulsion between the
interfaces of droplets stabilized by ionic surfactants; this al-
ters the w dependences of G and P. By using weff @cf. Eq.
~1!# instead of w, we account for the thin water films stabi-
lizing the charges between the droplets. These thin films will
make the apparent packing size of each droplet larger. How-
ever, the thickness of the film will be determined by a bal-
ance between the screened electrostatic forces between drop-
lets and the deformation of their interfaces. Thus the actual
film thickness will be only weakly dependent on droplet size,
but will make a relatively larger contribution for the packing
of small droplets than for large droplets.
The film thickness itself depends on w, but in some un-

known fashion. Thus we linearly interpolate between a maxi-
mum film thickness, hmax , at low w, below rcp, where the
droplets are not deformed, and a minimum film thickness
hmin , between the facets of the nearly polyhedral droplets at
wmax near w'1. Stable Newton black films of water at a
similar electrolyte concentration have been observed with
hmin'50 Å @48#. This is comparable to the calculated Debye
length lD'30 Å, for 10-mM SDS solution. Thus we as-
sume that hmin550 Å; this makes a larger correction for the
smaller droplets. To determine the maximum film thickness,
we vary hmax until the scaled Gp8(weff) for all droplet sizes
collapse onto one universal curve. We find that the film
thickness for weak compression which gives the best col-
lapse is hmax5175 Å, and is the same for all droplet sizes, as
shown in Fig. 8. This film thickness agrees with the mea-

sured separation between the surfaces of monodisperse fer-
rofluid emulsion droplets at the same SDS concentration
@49#, lending credence to its value. Near rcp, the film in-
creases the volume fraction more for smaller droplets, about
5% for R50.25 mm, and only 1% for R50.74 mm.
The onset of a large elastic modulus now occurs near rcp,

at weff'wc
rcp , as expected. We note that this value is not a

FIG. 7. The volume fraction dependence of the plateau storage
modulus Gp8(w), scaled by (s/R), for four monodisperse emul-
sions having radii R50.25 mm ~d!, 0.37 mm ~n!, 0.53 mm ~j!,
and 0.74 mm ~L!.

FIG. 8. The scaled plateau storage modulus Gp8/(s/R) ~small
solid symbols!, and the scaled minimum of the loss modulus
Gm8 /(s/R) ~small open symbols!, as a function of weff for monodis-
perse emulsions having radii R50.25 mm ~s!, 0.37 mm ~n!, 0.53
mm ~h!, and 0.74 mm ~L!. The ~s! symbols are the measured
values of the scaled osmotic pressure P/(s/R). The maximum film
thickness has been adjusted to hmax5175 Å to give the best col-
lapse of Gp8/(s/R).

FIG. 9. The frequency dependence of ~a! the storage modulus,
G8(v), and ~b! the loss modulus, G9(v), for a series of effective
volume fractions below the critical packing volume fraction wc for
R'0.53 mm. The lines merely guide the eye.
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“mechanical elasticity”

“entropic elasticity”
pressure p

rigidity µ

measurements at room temperature  

kBT/� � 10�5

By using well-controlled emulsions consisting of droplets of
a single size @6,7#, our approach offers several advantages
over previous rheological experiments @8,9,19# which were
made using emulsions having a broad distribution of droplet
sizes. Indeed, polydisperse emulsions are difficult to study
because they contain droplets with many different Laplace
pressures so that, at a fixed osmotic pressure, the large drop-
lets may deform significantly while the small droplets remain
essentially undeformed. Moreover, the droplet packing and
deformation cannot be easily connected to w because small
droplets can fit into the interstices of larger packed droplets.
By contrast, using monodisperse emulsions eliminates these
inherent difficulties: all the droplets have the same Laplace
pressure. Moreover, the volume fraction can be simply re-
lated to the packing of identical spheres, thus allowing for
meaningful comparisons with theoretical predictions which
have usually assumed that the emulsion is monodisperse and
ordered.
The earliest calculations of P~w! and G(w) for emulsions

and foams @11–17# are based on perfectly ordered crystals of
droplets. In such systems at a given volume fraction and
applied shear strain, all droplets are compressed equally and
deform affinely under the shear; thus all droplets have ex-
actly the same shape. Describing the dependence of P and
G on w then reduces to the ‘‘simpler’’ problem of solving for
the interfacial shape of a single droplet within a unit cell.
Nevertheless, calculating the exact shape and area of such a
single droplet at all w.wc is a very difficult free-boundary
problem that can only be solved analytically for simple cases
@16#, or numerically @16,17#. Real emulsions, however, ex-
hibit a disordered droplet structure, and a comparison of ex-
perimental results to these theoretical predictions is inappro-
priate. In particular, the comparison of the w dependence of
the low-frequency plateau value of the storage modulus of
disordered, monodisperse emulsions to the static shear
modulus predicted by these studies has demonstrated the ex-
istence of significant discrepancies @18#.
The origin of the elasticity of an emulsion arises from the

packing of the droplets; forces act upon each droplet due to
its neighboring droplets pushing on it to withstand the os-
motic pressure. However, all these forces must balance to
maintain mechanical equilibrium. Calculations of the elastic
properties of such disordered packings are complicated by
the many different droplet shapes and the necessity of main-
taining mechanical equilibrium as the droplets press against
one another in differing amounts. While a general theory of
the elasticity of disordered packings may ultimately lead to a
precise analytical description of emulsion elasticity, com-
puter simulations including adequate interdroplet interactions
and accounting for the complexity associated with disorder
can provide insight into the origins of the w-dependent shear
modulus. In order to understand the effects introduced by
disorder, we developed a model for compressed emulsions
which includes a disordered structure as well as realistic
droplet deformations @10#. In this model, we formulate an
anharmonic potential for the repulsion between the packed
droplets, based on numerical results obtained for individual
droplets when confined within regular cells @16#. Numerical
results for the osmotic pressure P and the static shear modu-
lus G obtained from this model are in excellent agreement
with our experimental values of P and the elasticity, as can

be shown from Fig. 1. We measure the frequency dependent
storage modulus G8(w ,w), and take the low-frequency pla-
teau values Gp8(w) as the static shear modulus G(w). Our
model of emulsions as disordered packings of repulsive ele-
ments is very general, and may also be applicable to other
materials which become elastic under an applied osmotic
compression, provided the potential between the elements is
appropriately modified.
The structure of this paper is as follows. In Sec. II, we

review the theoretical predictions for the osmotic pressure
and shear rheology of emulsions. In Sec. III, the experimen-
tal aspects of this study are described; Sec. III A describes
the emulsion preparation and the rheological measurement
techniques; Sec. III B presents the results of our measure-
ments; and Sec. III C compares our experimental observa-
tions to existing predictions and previous measurements. In
order to understand the difference found between our results
and the predictions existing for ordered arrays of droplets, in
Sec. IV we present the results of numerical studies based on
a model that can account for disorder. In Sec. IV A, we de-
scribe the details and the motivation of the model, while, in
Sect. IV B we present and discuss the simulation results. A
brief conclusion closes the paper.

II. THEORY

In order to understand the properties of packings of de-
formable spheres, it is useful first to review the packing of
static, solid spheres. Their packing determines the critical
volume fraction wc at which the onset of droplet deformation
occurs and the coordination number zc of nearest neighbors
touching a given droplet. The highest volume fraction of
monodisperse hard spheres is attained for ordered crystalline
structures, including face-centered-cubic ~fcc! and hexagonal
close packing ~hcp!. These have wc

cp5p&/6'0.74 and
zc
cp512. By randomly varying the stacking order of the
planes, a random hexagonally close-packed ~rhcp! structure
can be made, but this does not alter either wc or zc . Other
ordered packings are less dense. For example, the body-
centered-cubic ~bcc! packing has wc

bcc5p)/8'0.68 and
zc
bcc58, while the simple cubic ~sc! packing has

FIG. 1. The scaled shear modulus and osmotic pressure as a
function of w. The computed scaled static shear modulus
G/(s/R) ~1! and osmotic pressure P/(s/R) ~line!, as obtained
from the model presented in Sec. IV B 2, are compared with the
experimental values of Gp8(weff) ~j! and P(weff) ~s!.
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1RSB also gives this scaling : H. Yoshino, AIP Conference Proceedings 1518, 244 (2013)

But “harmonic” response should give different scaling:
O’hern, Corey S., et al. Physical Review E 68.1 (2003): 011306.
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(a)

(b)

Fig. 4: Shear modulus µ vs. (a) volume fraction φ, and (b) dis-
tance from jamming, φm − φ.

Fig. 5: The plateau value of the mean-squared displacement,
plotted vs. the distance from jamming.

for respectively 0.1 and 1 s−1 strain rates. The results are
shown in fig. 4 where the shear modulus is plotted vs. the
volume fraction (left) and vs. the distance from the max-
imum volume fraction, φm − φ, where φm = 0.64 (right).
We find that the shear modulus shows a power-law de-
pendence on φm − φ with a power around ≃ −1.33 ± 0.14
(fig. 4(b)). This value is in very good agreement with the
theoretical results [14,15,19] that predict µ ∼ (φm − φ)−κ

with κ = 1.41.
Next, we measure the long-time limit of the mean-

squared displacement (MSD), also known as the Debye-
Waller factor, for different volume fractions. Figure 5
shows the plateau values of the MSD plotted vs. φm − φ.
Similarly to the shear modulus, the mean-squared dis-
placement also shows a power-law behavior with respect
to φm − φ. We find that the exponent is ≃ 1.48 ±
0.14, consistent with the theoretical result that predicts
⟨δR2⟩plateau ∼ (φm − φ)κ with κ = 1.41. Note that the
MSD is theoretically predicted to be dominated by the
low-frequency modes [14], and is therefore robust to exper-
imental noise in the high-frequency part of the spectrum.

In extracting the scaling of µ and ⟨δR2⟩ with respect to
jamming, we have assumed above that the maximum vol-
ume fraction is φm = 0.64; while φrcp ≃ 0.64 is commonly
reported for random close packing of monodisperse hard
spheres, other values, in the range 0.63 < φm < 0.65, have
been reported. It was previously found that size poly-
dispersity increases φm linearly in polydispersity; in the
colloidal system of [30] φm increased from 0.643 to 0.65
by increasing polydispersity from 0 to 12% [30]. There-
fore, for our system with 7% polydispersity, we can expect
variation in φm on the order of 0.005. In fig. 6, we check
how φm affects the the exponents obtained for the shear
modulus and the mean-squared displacement. We find

(a) (b)

Fig. 6: (Colour online) (a) Shear modulus is plotted vs. the
distance from the maximum volume fraction for different max-
imum volume fractions φm = 0.635, φm = 0.64, and φm =
0.645. (b) The plateau values of the mean-squared displace-
ment is plotted vs. the distance from the maximum volume
fraction for different maximum volume fractions φm = 0.635,
φm = 0.64, and φm = 0.645.

that for φm = 0.635 and φm = 0.645, the shear modulus
exponent changes to −1.24 and −1.41, respectively; thus
the error ±0.09 is within the confidence interval ±0.14 re-
ported above. Similarly, for the Debye-Waller factor, for
φm = 0.635 and φm = 0.645, the exponent changes to 1.41
and 1.55, respectively. Again, the implied error ±0.07 is
within the confidence interval ±0.14 obtained from mea-
surement error. We conclude that errors arising from vari-
ation in φm are within the current bounds.

Finally, we note that simulations of a 2D hard-sphere
system indicate that the critical regime is relatively large:
the density of states has a prominent peak, and vibrational
properties show scaling, down to p/(ρkBT ) ≈ 5 [9]. This
corresponds to (φm − φ)/φm ≈ 1/5, or φ ≈ 0.50 for the
present system. Thus the experiments are expected to be
in the critical region.

Summary. – We experimentally measure scaling re-
lations for the density of states, the shear modulus, and
the mean-squared displacement in a colloidal system near
jamming. We apply the covariance matrix analysis to de-
termine the vibrational density of states from the particle
displacements for a supercooled liquid and glass at dif-
ferent volume fractions. Scaling the frequency with the
frequency of the peak in the density of states, we find the
DOS of supercooled liquids and glasses for different vol-
ume fractions all collapse on a single master curve. For
low frequency, the master curve has approximately power-
law behavior with an exponent close to the theoretical re-
sults. We find that both the shear modulus and the MSD
show power-law dependence on the distance from jamming
with almost the same exponent: while the shear modulus
increases with increasing the distance from the maximum
volume fraction, the MSD decreases. Within the experi-
mental limitations, our results are in very good agreement
with the theoretical predictions.
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PACS 82.70.Dd – Colloids

Abstract – Hard-sphere colloids are model systems in which to study the glass transition and
universal properties of amorphous solids. Using covariance matrix analysis to determine the
vibrational modes, we experimentally measure here the scaling behavior of the density of states,
shear modulus, and mean-squared displacement (MSD) in a hard-sphere colloidal glass. Scaling
the frequency with the boson-peak frequency, we find that the density of states at different volume
fractions all collapse on a single master curve, which obeys a power law in terms of the scaled
frequency. Below the boson peak, the exponent is consistent with theoretical results obtained
by real-space and phase-space approaches to understanding amorphous solids. We find that the
shear modulus and the MSD are nearly inversely proportional, and show a singular power-law
dependence on the distance from random close packing. Our results are in very good agreement
with the theoretical predictions.

Copyright c⃝ EPLA, 2016

Many amorphous materials including granular media,
foams, molecular glasses and colloids exhibit a rigidity
transition as density is increased or temperature is low-
ered. In the solid phase, these materials universally dis-
play an excess of vibrational modes over the Debye model,
in which only plane wave modes are considered; this sur-
plus is known as the “boson peak” [1]. The disordered
soft modes affect elasticity and heat transport in the
solid [2–4], and are expected to be related to the glass
transition itself, a highly debated phenomenon [5].

To study the boson peak, hard-sphere colloids have
emerged as a model system [6,7], presenting a similar phe-
nomenology as conventional glasses despite the fact that
rigidity in such systems is purely entropic. A framework
for understanding this remarkable universality was pro-
posed in [8,9]. The key idea is that on a time scale that
contains many collisions, particles will have an effective
interaction that depends smoothly on their mean sepa-
ration. This interaction, in general multi-body, becomes
two-body in very dense systems, where it can be explicitly
computed [8,9]. One finds that V (h) ≈ −kBT lnh where
h is the time-averaged distance between two adjacent par-
ticles, a result that has recently been derived rigorously
in the mean-field limit [10]. This effective potential di-
rectly leads to an effective force law f(h) ≈ kBT/h and
allows one to map a hard-sphere system near random close
packing φm to a zero-temperature elastic network. In this

framework, the boson peak is a consequence of proximate
elastic instability in the effective interaction.

In elastic networks, mechanical stability is controlled
by coordination number, i.e., the mean number of con-
tacts per particle [11,12]; as one may intuitively expect,
increasing coordination is stabilizing, whereas increas-
ing pressure at fixed coordination is destabilizing. Solids
with only repulsive interactions are expected to be
marginally stable, leading to a balance between the ef-
fects of pressure and coordination, and a very large boson
peak [4,13].

Harmonic vibrational properties are determined by the
quadratic expansion of the elastic energy; for an imposed
displacement field |δR⟩, this defines the stiffness matrix
M through δE = 1

2
⟨δR|M |δR⟩. For particles with unit

mass, the eigenvalues of M are λ = ω2, where the ω’s
are the frequencies of vibrational modes, of density D(ω).
Recently, it was predicted that hard-sphere glasses have
a very large density of weak effective contacts, and that
the latter soften vibrational properties [14,15]. In par-
ticular, it was predicted that below a peak frequency
ωc (see footnote 1) the density of states has a universal
scaling

D(ω) ∼ ω2 (1)

1Note that the prediction below the peak frequency was erro-
neously stated in ref. [14], and corrected in [15].

68004-p1



Summary

 1st principle computation of shear-modulus via 
replicated liquid theory in 3D is possible. It should 
be tested in various systems.

 Shearmodulus of inherent structure/metabasin is 
different show different scaling approaching jamming.



3D hard sphere under shear (+ (de)compression) : 
simulation

Linear response

Non-linear response

“Infinitesimal” shear strain

Finite shear strain



Preparation of equilibrium configurations
System: polydisperse hard spheres P (D) ⇠ D�3, Dmin < D < Dmin/0.45

dense equilibrium configurations

compression using conventional event-driven MD

compression using the 
swap algorithm 

'd

max 'g ⇠ 1.1'd

(i) Frozen !-relaxation.  
(ii) (ii) No crystallization. 

Grigera & Parisi, PRE (2001);   Berthier, et al., PRL (2016)

(polydispersity ~ 23%)

Swap algorithm: MC swap moves + conventional MC/MD 

MCT

Carnahan-Stirling liquid EOS 

Ultra-stable glasses in experiments: (1) very old nature glasses; (2) vapour deposition. 
Zhao, et al., Nat. Commun. (2016). Yu, et al., PRL (2015).

L. Berthier’s talk
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A more complete phase diagram under compression and decompression — Gardner transition

Gardner line

(I) normal (stable) phase simple basin 

(II) Gardner (marginally stable) phase

complex basin 

Consequence of Gardner transition on vibrational dynamics

Berthier, Charbonneau, Jin, Parisi, Seoane, Zamponi, PNAS (2016)

caging in normal glass phase

caging in Gardner phase

� = �AB

�

�AB

Experiment: 
Experimental evidence of the Gardner phase in a granular glass, Seguin & Dauchot, PRL (2016). 

Consequence of Gardner transition on vibrational dynamics

Berthier, Charbonneau, Jin, Parisi, Seoane, Zamponi, PNAS (2016)

caging in normal glass phase

caging in Gardner phase

� = �AB

�

�AB

Experiment: 
Experimental evidence of the Gardner phase in a granular glass, Seguin & Dauchot, PRL (2016). 

Consequence of Gardner transition on vibrational dynamics

Berthier, Charbonneau, Jin, Parisi, Seoane, Zamponi, PNAS (2016)

caging in normal glass phase

caging in Gardner phase

� = �AB

�

�AB

Experiment: 
Experimental evidence of the Gardner phase in a granular glass, Seguin & Dauchot, PRL (2016). 



Consequence of Gardner transition on shear modulus — protocol dependence  

Spin glass experiment:
ZFC: zero field cooling 
FC: field cooling

Tg

Nagata and Keeson, PRB (1978)

Hard sphere simulations: Gardner phase:

� ⇠ dF
d� µ ⇠ d�

d� ⇠ d2F
d�2

µZFC µFC
ZFC: zero field compression
FC: field compression

The Gardner transition is akin to the 
spin glass transition.

metabasin

basins

relaxation



negligible in the regime jojG (see Supplementary Fig. 6 for
a discussion on the _g dependence), and the shear stress S is
measured at different g. The shear stress S and the pressure
P are both calculated from interparticle interactions due to
collisions between hard sphere particles. For convenience,
we introduce reduced pressure p¼ bP/r and reduced stress
s¼bS/r, where r is the number density of the particles
(see Supplementary Note 1). Note that as the pressure, the
shear stress is entirely due to momentum exchanges between
the particles so that the rigidity is purely entropic in hard
sphere systems. Furthermore, because shear stress and pressure
have the same physical dimension, it is convenient to introduce
a rescaled stress ~s¼s=p.

Breakdown of elasticity. Figure 1 shows the phase diagram for
our polydisperse hard sphere model, and typical stress–strain
curves of individual realizations in different density regimes.
In the stable glass phase jgojojG (Fig. 1b), the stress–strain
curve shows a smooth linear (harmonic) response regime at small
g, followed by a sharp drop of the stress s, signalling the yielding
of the system. At yielding, a system-wide shear band emerges
(see Fig. 1c), and the system is driven out of a free-energy
metastable glass basin. After yielding, the system enters a steady
flow state, similar to those observed in athermal amorphous
solids under quasistatic shear6,42. In the Gardner phase

jGojojJ, where jJ is the jamming density, the harmonic
response is punctuated by mesoscopic plastic events (MPEs) that
can happen at very small g (see Fig. 1d). These MPEs correspond
to sudden avalanche-like heterogeneous rearrangements
of particle positions without formation of band-like patterns
(see Fig. 1e). Similar MPEs have been observed in quasistatic
shear simulations at zero temperatures2,6, but our simulations
are performed at finite temperatures. Note that the details
of the plastic events, including the locations of yielding, jamming
and MPEs, depend on the samples (see Supplementary Fig. 8)
and realizations (see Supplementary Fig. 7). For the behaviour
of the stress–strain curves averaged over many realizations
and samples, see Supplementary Figs 2–4, as well as Suppleme-
ntary Notes 2 and 3.

For large j, the stress s grows dramatically at large g, and
appears to diverge (see Fig. 1d). This shear jamming phenomenon
is due to the dilatancy effect of hard sphere glasses under shear:
the pressure p increases with g when the system volume is fixed.
Note that if p is kept as a constant when g is increased, then
the volume expands due to the dilatancy effect. In that case,
shear jamming does not appear and shear yielding is recovered
(see Supplementary Fig. 5). While the switching from shear
yielding to shear jamming with increasing j is not a consequence
of the Gardner transition, it implies that the system is trapped
more deeply in the metastable basin, and that the activated barrier
crossing between metastable basins becomes forbidden. However,
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Figure 1 | Typical stress responses under quasistatic shear. (a) Illustration of the protocol on the polydisperse hard sphere glass phase diagram
(adapted from ref. 34), where kBT/P¼ 1/(rp). The MCT dynamical crossover (yellow star) is located at jd¼0.594(1) along the equilibrium liquid EOS
(green line). Using the swap algorithm we first prepare equilibrium samples at various densities jg (green squares) whose pressure obeys the
Carnahan–Stirling empirical liquid EOS34. Next we switch off the swap algorithm, and perform compression annealing from jg to jamming (blue triangles),
producing realizations of compressed glasses at various densities j. The system is now out of equilibrium and the pressure follows the glass EOSs
pp1/(jJ"j) (black dotted lines)34. The Gardner transition jG (red circles and line) separates the stable (light yellow regime) and the marginally
stable (light blue regime) glass phases. The insets show schematic depictions of free-energy landscapes in these two different phases. As an example, an
equilibrium configuration is prepared at jg¼0.643, and compressed (solid black line) up to jJ¼0.690(1). We show typical stress–strain curves
under quasistatic shear with increasing g, using a single realization of the compressed glass of N¼ 1,000 particles, at (b) j¼0.670 (pink cross) and
(d) j¼0.688 (pink plus) that are below and above jG¼0.684(1) respectively. Curves in (b,d) are zoomed in (insets) for gr0.025, to show the
different small-g behaviours in the two cases. The real-space vector fields of particle displacements are visualized in (c) for a yielding event (between
the two red circles in (b)), and (e) for a MPE (between the two red circles in (d)), where each sphere is located at the equilibrium position before
yielding/ MPE, and each vector represents the displacement during yielding/MPE. We have subtracted the affine part caused by shear from the
displacements, and only show top 20% particles with large displacements. A shear band around the middle of the z-axis is observed in (c). The sizes
of particles are reduced by a factor of 0.4, and the vectors are amplified in length by a factor of 2 in (c) and a factor of 15 in (e). The colour represents the
magnitude of displacement.
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the emergence of subbasins in the Gardner phase28,34 implies
that even though the usual relaxation (a-relaxation) is frozen, an
additional slow dynamics may appear. This aspect is explored
below.

Ageing and slow dynamics. We next show that in the Gardner
phase, the relaxation of shear stress becomes complicated,
accompanied by ageing and a slow dynamics. Due to the
similarity between the Gardner transition and the spin glass
transition, here it is very useful to first recall what happens in
spin glasses that are essentially disordered and highly frustrated
magnets43,44. The mean-field spin glass theory has suggested
complex free-energy landscapes of spin glasses manifested as
continuous replica symmetry breaking45, much as what happens
in the Gardner phase of hard sphere glasses27,28. Remarkably, this
feature is predicted to have a reflection in the dynamics, resulting
in nontrivial dynamical responses to external magnetic field,
and ageing effects in the relaxation of magnetization46–48.
In experiments, the simplest approach to examine the
intriguing features of the dynamics is a combination of the
so-called zero-field cooling (zfc) and field cooling (fc) protocols.
In the zfc protocol, one cools a spin glass sample from a high

temperature in the paramagnetic phase down to a target
temperature T, where a magnetic field h is switched on and
one measures the increase of the magnetization. In the
fc protocol, one first switches on the magnetic field h, and
then subsequently cools the system down to the target
temperature T and measures the remanent magnetization. The
key point is that, in the two protocols, the order of cooling and
switching on of the magnetic field is reversed. In such
experiments49,50, the magnetizations observed in the zfc/fc
protocols are the same if the working temperature T is higher
than the spin glass transition temperature, while the
fc magnetization becomes larger than the zfc magnetization
if T is lower than the spin glass transition temperature.
The anomaly, that is, the difference between the zfc and
fc magnetizations, is naturally explained by the mean-field
theory45. Furthermore, examinations of the ageing effects
by these protocols give detailed information about the complex
free-energy landscape32,33,46–48.

It has been pointed out theoretically that the shear on
structural glasses plays a very similar role as the magnetic field
on spin glasses9,51, and that the relaxation of the shear stress
should also reflect the complex free-energy landscape encoded by
the continuous replica symmetry breaking solution in the
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Figure 2 | Relaxation of shear stress. Relaxations of the rescaled ZFC shear stress ~sZFC¼sZFC=p (filled symbols) and the rescaled FC shear stress
~sFC¼sFC=p (open symbols) show different behaviours at (a) j¼0.670 and (b) j¼0.688, corresponding to the pink plus and cross in Fig. 1, respectively
(the Gardner transition density jG¼0.684(1) (ref. 34)). We show results for several different waiting time tw, under an instantaneous increment of
shear strain g¼ 10" 3. Data are averaged over many realizations of compressed glasses obtained from a single equilibrated sample at jg¼0.643 with
N¼ 1,000 particles. Here the rescaled remanent stress ~s0 is measured in the ZFC protocol at j, after the longest waiting time tw¼ 1,000 and before the
shear strain is applied. The difference ~sZFC t; twð Þ" ~sFC t; twð Þ quickly vanishes and does not show significant tw dependence at (c) j¼0.670, while it
decays much slower and shows a strong tw-dependent ageing effect at (d) j¼0.688. Note that by definition, ~sFCðtÞ is a one variable function, but we plot
it here as ~sFC t; twð Þ to compare it with ~sZFC t; twð Þ. The pressure p is independent of time and protocol, in both cases (see Supplementary Fig. 11). The error
bars denote the s.e.m.
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the emergence of subbasins in the Gardner phase28,34 implies
that even though the usual relaxation (a-relaxation) is frozen, an
additional slow dynamics may appear. This aspect is explored
below.

Ageing and slow dynamics. We next show that in the Gardner
phase, the relaxation of shear stress becomes complicated,
accompanied by ageing and a slow dynamics. Due to the
similarity between the Gardner transition and the spin glass
transition, here it is very useful to first recall what happens in
spin glasses that are essentially disordered and highly frustrated
magnets43,44. The mean-field spin glass theory has suggested
complex free-energy landscapes of spin glasses manifested as
continuous replica symmetry breaking45, much as what happens
in the Gardner phase of hard sphere glasses27,28. Remarkably, this
feature is predicted to have a reflection in the dynamics, resulting
in nontrivial dynamical responses to external magnetic field,
and ageing effects in the relaxation of magnetization46–48.
In experiments, the simplest approach to examine the
intriguing features of the dynamics is a combination of the
so-called zero-field cooling (zfc) and field cooling (fc) protocols.
In the zfc protocol, one cools a spin glass sample from a high

temperature in the paramagnetic phase down to a target
temperature T, where a magnetic field h is switched on and
one measures the increase of the magnetization. In the
fc protocol, one first switches on the magnetic field h, and
then subsequently cools the system down to the target
temperature T and measures the remanent magnetization. The
key point is that, in the two protocols, the order of cooling and
switching on of the magnetic field is reversed. In such
experiments49,50, the magnetizations observed in the zfc/fc
protocols are the same if the working temperature T is higher
than the spin glass transition temperature, while the
fc magnetization becomes larger than the zfc magnetization
if T is lower than the spin glass transition temperature.
The anomaly, that is, the difference between the zfc and
fc magnetizations, is naturally explained by the mean-field
theory45. Furthermore, examinations of the ageing effects
by these protocols give detailed information about the complex
free-energy landscape32,33,46–48.

It has been pointed out theoretically that the shear on
structural glasses plays a very similar role as the magnetic field
on spin glasses9,51, and that the relaxation of the shear stress
should also reflect the complex free-energy landscape encoded by
the continuous replica symmetry breaking solution in the
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Figure 2 | Relaxation of shear stress. Relaxations of the rescaled ZFC shear stress ~sZFC¼sZFC=p (filled symbols) and the rescaled FC shear stress
~sFC¼sFC=p (open symbols) show different behaviours at (a) j¼0.670 and (b) j¼0.688, corresponding to the pink plus and cross in Fig. 1, respectively
(the Gardner transition density jG¼0.684(1) (ref. 34)). We show results for several different waiting time tw, under an instantaneous increment of
shear strain g¼ 10" 3. Data are averaged over many realizations of compressed glasses obtained from a single equilibrated sample at jg¼0.643 with
N¼ 1,000 particles. Here the rescaled remanent stress ~s0 is measured in the ZFC protocol at j, after the longest waiting time tw¼ 1,000 and before the
shear strain is applied. The difference ~sZFC t; twð Þ" ~sFC t; twð Þ quickly vanishes and does not show significant tw dependence at (c) j¼0.670, while it
decays much slower and shows a strong tw-dependent ageing effect at (d) j¼0.688. Note that by definition, ~sFCðtÞ is a one variable function, but we plot
it here as ~sFC t; twð Þ to compare it with ~sZFC t; twð Þ. The pressure p is independent of time and protocol, in both cases (see Supplementary Fig. 11). The error
bars denote the s.e.m.
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Gardner 
transition

Protocol-dependent shear modulus

mean-field theory: µ̃ZFC ⇠ p0.41574

µ̃FC ⇠ constant

Yoshino and Zamponi, PRE (2014)

=
µ
/p

decreasing N

decreasing �

Agreement to the mean-field theory: smaller system size and smaller strain. 

(a) system-size dependence (b) strain dependence 

(1) Avalanches are easier in larger systems.

stress-strain

��1Karmakar, Lerner, and Procaccia, PRE (2010)��1 ! 0, whenN ! 1.



3D hard sphere under shear (+ (de)compression) : 
simulation

Linear response

Non-linear response

“Infinitesimal” shear strain

Finite shear strain



Reversibility to HOME (the reference liquid state) 
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See also oscillatory  shear simulations:  Kawasaki, Takeshi, and Ludovic Berthier. Physical Review E 94.2 (2016): 022615. 
Leishangthem, Premkumar, Anshul DS Parmar, and Srikanth Sastry. Nature Communications 8 (2017): 14653.
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Critical point between jamming/yielding
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Larger shear strains — yielding and jamming under constant volume shear 
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IV. SHEAR YIELDING VERSUS SHEAR JAMMING

We start from an equilibrium configuration at 'g, compress it to a target density ' with a slow compression rate
�g = 10�3, and then apply constant-V shear with a slow shear rate �̇ = 10�4. We call a realization as shear jamming if
the pressure exceeds 1000, or as shear yielding if the strain can be increased to a target value � = 0.2, and during this
process, the pressure never increases ten times higher than the initial pressure before any shear strain is applied. We
run simulations for Ns = 100 samples, and Nr = 5� 20 realizations for each sample. The fraction of shear jamming,
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The data are obtained from Ns = 100 samples, and Nr = 1000 realizations for each sample (i.e., 100,000 realizations in total).
For this system, the first-order transition point �Y ⇡ 0.117, and the spinodal point �S ⇡ 0.132. (c) Finite-size scaling of the
susceptibility, where the exponents a = 1.08 and b = 0.5. The solid line is the best fitting according to the scaling form of
susceptibility in a first-order phase transition [1] �

�

/N

a = d1(e
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see also Jaiswal, P. K., Procaccia, I., Rainone, C., & Singh, M. (2016). Mechanical yield in amorphous solids: A first-order phase 
transition. Physical review letters, 116(8), 085501;  Parisi, G., Procaccia, I., Rainone, C., & Singh, M. (2017). Shear bands as 
manifestation of a criticality in yielding amorphous solids. Proceedings of the National Academy of Sciences, 114(22), 5577-5582.
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II. SHEAR YIELDING

In order to understand the nature of yielding, we assume the stress distribution has a simple form
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In the vicinity of �Y, we can assume that �Y is nearly a constant. This form is consistent with numerical data (see

Fig. 4e). From Eq. (1), we can also derive the scaling of the susceptibility ��/N ⇠ F�[
p
N(�Y � �)]) (see Fig. 3c).

A. Shear under constant volume

We present here data (Figs. 3-6) obtained in simple shear simulations, under fixed volume, with a slow shear rate
�̇ = 10�4. We generate Ns independent samples, and Nr independent realizations. Di↵erent samples have di↵erent
initial configurations of particle positions at ' = 'g. For the same sample, di↵erent realizations correspond to di↵erent
initial particle velocities before any compression, decompression or shear.
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Spinodal like behavior of the glass peak

Closer look at the glass peak reveals  some indication of a mean-field like behavior

�Y as determined as the peak position of ��

�S as the spinodal point
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Stress at the glass peak 
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Melting effect

See also Fullerton, Christopher J., and Ludovic Berthier. “Density controls the kinetic stability  
of ultrastable glasses." EPL (Europhysics Letters) 119.3 (2017): 36003.
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Gardner transition under shear
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Reversibility to HOME (the reference liquid state) 
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See also oscillatory  shear simulations:  Kawasaki, Takeshi, and Ludovic Berthier. Physical Review E 94.2 (2016): 022615. 
Leishangthem, Premkumar, Anshul DS Parmar, and Srikanth Sastry. Nature Communications 8 (2017): 14653.
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Shearmodulus of inherent structure/metabasin emerge entering the 
marginal glass (Gardner) phase.  We detected them via FC/ZFC protocols. 
The scaling of the shear modulus’s  agree well with large-d theory.  
Experiments should be interesting.

Shear jamming line: the isostaticity holds and the criticality is universal.

Yielding : is a discontinuous irreversible transition with Gaussian 
fluctuation of the yield strain. Glass peak disappear reaching a spinodal as 
in the large-d theory.
Shear jamming vs yielding : a critical point exist as in the large-d 
theory.

Melting effect : matters for the decompressed glasses.

Marginal glass appears to be stronger than stable glass… full RSB 
computation should be interesting.

Summary
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MD simulation :3D softsphere 

�
shear strain

t0 tw

� �(t) = ⇤(t� tw)⇥�

Aging

quench t = 0

C�(t, tw) = ��(t)�(tw)�µ(t, tw) =
���(t; tw)�

��

autocorrelation functionresponse function
T/� = 10�3

Initial configuration

Equilibrium state (liquid)

shear strain

# of samples : 4096

N = 800, 1600
� = 0.65� 0.67volume 

fraction

# of particles

# of sample (initial condition/ Langevin noise)

Langevin simulation

 Lee-Edwards boundary condition� = 2.5� 10�3shear-strain

temperature kBT/� = 10�5

O(t/t0) = 105time scale

S. Okamura and HY, arXiv:1306.2777 (not yet published)



τ

σ(τ ; tw)/γ

Pressure

µhamonic
tw

tw = 3� 102, 103, 3� 103, 5� 103, 104, 3� 104, 105

t� = 2�/�� = (� = 0.67)

� = 0.67 kBT/� = 10�5

Stress does not 
decay fully down 
to zero…
Metabasin?


