Yielding of amorphous solids (Simons workshop) @ENS,Paris 2017/10/27

Exploring complex free-energy landscape of the simplest glasses by rheology

Hajime Yoshino Cybermedia Center & Dept. of Phys., Osaka Univ.

Synergy of Fluctuation and Structure : Quest for Universal Laws in Non-Equilibrium Systems 2013-2017 Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan

10sec/0min

Collaborators

Yuliang Jin (Osaka Univ.)

Francesco Zamponi (ENS Paris) Pierfrancesco Urbani(CEA Saclay) Corrado Raione (Weizmann Inst.)

Daijyu Nakayama (Osaka Univ.) Satoshi Okamura (Osaka Univ.)

Marc Mézard (ENS Paris)

Outline

3D hard sphere under shear (+ (de)compression) : simulation

Linear responses in stable/marginal glasses

Y. Jin and HY, Nature Communications 8, 14935 (2017).

Non linear responses (shear jamming/yielding/plasticity)

Y. Jin, HY, P. Urbani and F. Zamponi, in preparation

P. Urbani's talk

Linear response of glasses under shear: theory

"cells" in the elasto-plastic model

Replicated liquid theory= 1st principle computation to extract effective "Einstein model" for glasses

Let's try to obtain effective "Debye model" by computing shearmoulous

By "state following" even non-linear responses can be analyzed P. Urbani's talk

Shear modulus: a paradox and a lesson

elasticity must emerge together with plasticity

Linear response of replicated liquid & physical interpretation

HY and M. Mézard, Phys. Rev. Lett. 105, 015504 (2010). HY, J. Chem. Phys. 136, 214108 (2012).

Expansion of replicated liquid free-energy

C.F.. step-wise magnetic response in spin-glasses : H. Y. and Tommaso Rizzo, Phys. Rev. B 77, 104429 (2008).

A model computation of the shear modulus

HY and M. Mézard, Phys. Rev. Lett. 105, 015504 (2010). HY, J. Chem. Phys. 136, 214108 (2012).

Binary mixture of soft-shere $\sigma_i = \sigma_A \quad \text{or} \quad \sigma_B$ $v(r_{ij}) = \left(\frac{\sigma_i + \sigma_j}{r_{ij}}\right)^{12}$

Comparison with MD simulation J. L. Barrat, J. -N. Roux, J.-P. Hansen and M. L. Klein, Europhys. Lett., 7 (1988) 707

Emulsions, colloids,...

hexage	onal lattice		hexagonal close packing	
	Supercooled Liquid	Glass	"Jammed" Glass	fraction Q
$arphi_{ m m}$	φ_{5} ~ 0.58	g 8	$ \varphi_{\mathrm{RGP}} 0.74 \\ \sim 0.64 $,
		"rand	dom" close packing	

E. R. Weeks, in "Statistical Physics of Complex Fluids", Eds. S Maruyama & M Tokuyama (Tohoku University Press, Sendai, Japan, 2007).

 $k_{\rm B}T_{\rm room}/\epsilon \sim 10^{-5}$

Shear on hardspheres in large dimensional limit $d ightarrow \infty$

HY and F. Zamponi, Phys. Rev. E 90, 022302 (2014).

$$u^{a}$$

$$\gamma_{1}$$

$$\gamma_{2}$$

$$-\beta F(\{\gamma_{a}\}) = \int d\overline{x}\rho(\overline{x})[1 - \log \rho(\overline{x})] + \frac{1}{2}\int d\overline{x}d\overline{y}\rho(\overline{x})\rho(\overline{y})f_{\{\gamma_{a}\}}(\overline{x},\overline{y})$$
Replicated Mayer function (under shear)
$$f_{\{\gamma_{a}\}}(\overline{x},\overline{y}) = -1 + \prod_{a=1}^{m} e^{-\beta v(|S(\gamma_{a})(x_{a}-y_{a})|)} \qquad S(\gamma)_{\mu\nu} = \delta_{\mu\nu} + \gamma \delta_{\nu,1}\delta_{\mu,2}$$

 $-\beta F(\hat{\alpha}, \{\gamma_a\})/N = 1 - \log \rho + d\log m + \frac{d}{2}(m-1)\log(2\pi eD^2/d^2) + \frac{d}{2}\log\det(\hat{\alpha}^{m,m}) \\ -\frac{d}{2}\widehat{\varphi}\int\frac{d\lambda}{\sqrt{2\pi}}\mathcal{F}\left(\Delta_{ab} + \frac{\lambda^2}{2}(\gamma_a - \gamma_b)^2\right)$

 $\widehat{\varphi}_{\rm d} < \widehat{\varphi} < \widehat{\varphi}_{\rm Gardner}$

$$\beta \widehat{\mu}_{ab} = \beta \widehat{\mu}_{\rm EA} \left(\delta_{ab} - \frac{1}{m} \right)$$

$$\beta \hat{\mu}_{\rm EA} = \widehat{\Delta}_{\rm EA}^{-1} \qquad \widehat{\Delta}_{\rm EA} \sim \widehat{\Delta}_d - C(\widehat{\varphi} - \widehat{\varphi}_d)^{1/2}$$

in agreement with MCT

W. Gotze, *Complex dynamics of glass-forming liquids: A mode-coupling theory*, vol. 143 (Oxford University Press, USA, *2009*).

G. Szamel and E. Flenner, PRL 107, 105505 (2011).

HY and F. Zamponi, Phys. Rev. E 90, 022302 (2014).

 $|+\text{continuous RSB} \qquad \qquad \widehat{\varphi}_{\text{Gardner}} < \widehat{\varphi} < \widehat{\varphi}_{\text{GCP}}$

 $\widehat{\varphi} \to \widehat{\varphi}_{\mathrm{GCP}}^-$

$$p \propto 1/m \to \infty$$

 $\gamma(y) \propto \gamma_{\infty} y^{-(\kappa-1)} \qquad \kappa = 1.41575$

$$\beta \mu_{\rm EA} = 1/\Delta_{\rm EA} \propto m^{-\kappa} \propto p^{\kappa}$$

consistent with scaling argument + effective medium computation E DeGiuli; E Lerner; C Brito; M Wyart, PNAS 111.48 (2014) 17054.

"rigidity of inherent structures"

$$\beta \widehat{\mu}(1) = \frac{1}{m\gamma(1)} \propto p$$

"rigidity of metabasins"

HY and F. Zamponi, Phys. Rev. E 90, 022302 (2014).

Experiment: rigidity of emulsions

T. G. Mason, Martin-D Lacasse, Gary Grest, Dov Levine, J Bibette, D Weitz, Physical Review E 56, 3150 (1997)

FIG. 1. The scaled shear modulus and osmotic pressure as a function of φ . The computed scaled static shear modulus $G/(\sigma/R)$ (+) and osmotic pressure $\Pi/(\sigma/R)$ (line), as obtained from the model presented in Sec. IV B 2, are compared with the experimental values of $G'_p(\varphi_{\text{eff}})$ (\blacksquare) and $\Pi(\varphi_{\text{eff}})$ (\bigcirc).

1RSB also gives this scaling : H. Yoshino, AIP Conference Proceedings 1518, 244 (2013)

But "harmonic" response should give different scaling:

O'hern, Corey S., et al. Physical Review E 68.1 (2003): 011306.

E DeGiuli; E Lerner; C Brito; M Wyart, PNAS 111.48 (2014) 17054.

Scaling for hard-sphere colloidal glasses near jamming

ROJMAN ZARGAR¹, ERIC DEGIULI² and DANIEL BONN¹

¹ Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam

1098 XH Amsterdam, The Netherlands

² Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) - CH-1015 Lausanne, Switzerland

10³

Shear Modulus ($k_BT / \mu m^3$)

10

Fig. 4: Shear modulus μ vs. (a) volume fraction ϕ , and (b) distance from jamming, $\phi_m - \phi$.

Summary

Ist principle computation of shear-modulus via replicated liquid theory in 3D is possible. It should be tested in various systems.

Shearmodulus of inherent structure/metabasin is different show different scaling approaching jamming.

3D hard sphere under shear (+ (de)compression) : simulation

Linear response

''Infinitesimal'' shear strain

Non-linear response

Finite shear strain

Preparation of equilibrium configurations

Experiment:

Experimental evidence of the Gardner phase in a granular glass, Seguin & Dauchot, PRIA (2016).

Consequence of Gardner transition on shear modulus — protocol dependence

Protocol-dependent shear modulus

(a) system-size dependence

(b) strain dependence

3D hard sphere under shear (+ (de)compression) : simulation

Linear response

"Infinitesimal" shear strain

Non-linear response

Finite shear strain

See also oscillatory shear simulations: Kawasaki, Takeshi, and Ludovic Berthier. Physical Review E 94.2 (2016): 022615. Leishangthem, Premkumar, Anshul DS Parmar, and Srikanth Sastry. Nature Communications 8 (2017): 14653.

Glass equation of state with shear-strain axis

Large-d theory (IRSB)

Urbani, Zamponi, Phys. Rev. Let 118(3),038001 (2017)+ A. Altieri

Critical point between jamming/yielding φ_{c}

pair correlation function

Yielding under shear

 $\varphi_{\rm g} = 0.644$ $\varphi = 0.644$

see also Jaiswal, P. K., Procaccia, I., Rainone, C., & Singh, M. (2016). Mechanical yield in amorphous solids: A first-order phase transition. Physical review letters, 116(8), 085501; Parisi, G., Procaccia, I., Rainone, C., & Singh, M. (2017). Shear bands as manifestation of a criticality in yielding amorphous solids. Proceedings of the National Academy of Sciences, 114(22), 5577-5582.

N = 10000

 $\sqrt{N}(\gamma_{\rm Y} - \gamma)$

 $\begin{array}{rrrr} -0.8 & -0.6 & -0.4 & -0.2 & 0 & 0.2 & 0.4 \\ \end{array}$ Spinodal like behavior of the glass peak $\sqrt{N}(\gamma_{\rm Y} - \gamma)$

Closer look at the glass peak reveals some indication of a mean-field like behavior

$$\tilde{\chi}_{\sigma}^{\rm g} = N\left(\langle \sigma^2 \rangle_{\rm g} - \langle \sigma \rangle_{\rm g}^2\right) / \langle \sigma \rangle_{\rm g}^2 = N^2 \delta_{\rm g} / \sigma_{\rm g}^2$$

See also Fullerton, Christopher J., and Ludovic Berthier. "Density controls the kinetic stability of ultrastable glasses." EPL (Europhysics Letters) 119.3 (2017): 36003.

Gardner transition under shear

See also oscillatory shear simulations: Kawasaki, Takeshi, and Ludovic Berthier. Physical Review E 94.2 (2016): 022615. Leishangthem, Premkumar, Anshul DS Parmar, and Srikanth Sastry. Nature Communications 8 (2017): 14653.

Extended glass equation of state with shear-strain axis

Summary

Shearmodulus of inherent structure/metabasin emerge entering the marginal glass (*Gardner*) phase. We detected them via FC/ZFC protocols. The scaling of the shear modulus's agree well with large-d theory. Experiments should be interesting.

Shear jamming line: the isostaticity holds and the criticality is universal.

Yielding : is a discontinuous irreversible transition with Gaussian fluctuation of the yield strain. Glass peak disappear reaching a spinodal as in the large-d theory.

Shear jamming vs yielding : a critical point exist as in the large-d theory.

Melting effect : matters for the decompressed glasses.

Marginal glass appears to be stronger than stable glass... full RSB computation should be interesting.

FCC Crystal under shear with constant volume

MD simulation :3D softsphere

S. Okamura and HY, arXiv:1306.2777 (not yet published)

$$\varphi = 0.67 \quad k_{\rm B}T/\epsilon = 10^{-5}$$

Metabasin?

 $t_{\rm w} = 3 \times 10^2, 10^3, 3 \times 10^3, 5 \times 10^3, 10^4, 3 \times 10^4, 10^5$