Discussion:

Noise and temperature effects on avalanches in strained amorphous solids

Anaël Lemaître

Oct 22, 2018

Can we extend insights from AQS to explain features of finite strain rates and temperatures?

Questions:

- Many elasto-plastic models treat eshelby inclusions as elementary events with a known interaction kernel and propagation speed/delay time. This is clearly(?) right in AQS. But is this a misleading limit?
 - at finite strain rates, we expect fluctuations from one event to get cut off by another event at a scale proportional to $\gamma^{-1/2}$
 - delay times are also affected by finite strain rates
 - strong correlations between individual events persist at fairly high temperatures
 - stress fields (and elastic moduli?/propagation speeds) are highly temperature dependent
- Do the assumptions in elasto-plastic models break down at finite strain rates/ at finite temperatures?
 - If so, why do they seem to work well for matching simulations (c.f Zapperi/Vandembroucq)?
- Are there issues with extracting stability exponents due to the assumption of uncorrelated elementary events?
- What are implications for mean-field models for plasticity (SGR, STZ, etc?), which often assume elementary excitations are localized or at least meso-scopic?