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H.G.E. Hentschel, S. Karmakar, E.Lerner, |. Procaccia,
Do Athermal Amorphous Solids Exist?  Phys. Rev. E 83, 061101 (2011).

Ao = u(y)Ay, for any value of andy, (3)

A. K. Dubey, |. Procaccia, C. A.B.Z. Shor, M. Singh,
Elasticity in Amorphous Solids: Nonlinear or Piece-Wise Linear?
Phys. Rev. Lett. 116, 085502 (2016).
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FIG. 2. Individual realizations of stress versus strain curves for
systems of 1000 particles at different temperatures. Note that 140
individual plots never attain a zero shear modulus between plastic 130
events. _
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FIG. 3. Comparison of the direct measurement of quenched
averages of the shear modulus from the local slope of the strain
versus stress curves and the theoretical expression Eq. (4).
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FIG. 4. An example of the comparison of annealed and
quenched averages of the local slope of the strain versus stress
curves and the theoretical expression Eq. (4). This example is at
T =0.01, but the conclusion is identical in all the tested
temperatures: Except at y = 0, the results of the annealed and
the quenched averages of the stress versus strain curves differ
greatly.
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FIG. 5. The annealed stress versus strained curve (continuous
black line) and the actual segments of linear response of the
various realizations that were annealed to get the continuous line.
Except at y = 0, the annealed procedure does not supply the right
information regarding the mechanical response.



Sp inodal transition with Precursor avalanches

l. Procaccia, C. Rainone and M. Singh, G. Parisi, I. Procaccia, C. Rainone, M.Singh,
Mechanical Failure in Amorphous Solids: Scale- Shear bands as manifestation of a criticality in
Free Spinodal Criticality, Phys. Rev. E. 96, yielding amorphous solids , PNAS 114, 5577
032907 (2017). (2017).
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Fig.5. (Upper) The order parameter Q. as a function of the strain ~ super-
imposed on the stress versus strain curve. (Lower) The probability distribu-
tion function P(Q_;) for different values of ~ in the vicinity of the mechanical
yield value 7,,.



GL(r) = 2Ggr(r) — I'2(r),
with the definitions

Gr(r) = (Qas(7) Qur(0)) — 2(Qus(r) Quc(0))
+(Qar (7)) (Qca(0)),

Fa(r) = (Qas(r) Qus (0)) — (Qus(r)) (Qas (0)).
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Fig. 2. The function Gg(x = 0, y;~) for various values of 4 from 5 x 10> to
0.09405. Note the increase in the overall amplitude of the correlator as well
as the increase in the correlation length. The lines through the data are the
fit function 10.
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Finite dimension cj s

E.Lerner, |. Procaccia, C. Rainone, M. Singh,
On the protocol dependence of plasticity in ultra-stable amorphous solids
Arxiv:1806.09134
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FIG. 1. System size dependence of the average Ay interval
before the first plastic event occurs. For each T, The expected
scaling N° is found, but the a exponent is now dependent on
the preparation temperature 7T}.



This is significant due to the connection
between the pseudo gap exponent and the
system size dependence

P(x) ~ 7

So does the pseudo gap exponent depend on protocol?

Toy model P(r) = c(Tg)z’
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FIG. 3. As ¢ decreases (and therefore the glass is better an-
nealed), the asymptotic scaling Tmim o< N~/ is pushed to
larger and larger system sizes, producing an apparent change
in the scaling exponent «, which is however only a finite-size
effect.
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FIG. 4. System size dependence of the average A7 interval
before the first plastic event occurs, with added results for
N = 40000. A T,-dependent crossover in the data such as
the one predicted by our toy model appears to be present.



The exponent 1) along the straining
curve

lim P(Ay,y=0)~(Ay)". (Ay)~NP, B<O.

A",’—>O

These scaling laws are obtained from statistically
independent realizations!

Then, and only then, the theory of extreme statistics implies

s 1 (4]
~ 1+77.’ 77_ 8 .



Another stable result exists for the
steady state regime

(AU) = eN“® ,(Ao) =5NP ,(Ay)=NP, (1)

with @ = 1/3 and g = —2/3 as exact universal results.

But here extreme statistics do not apply, and the scaling
relation does not exist.

So what happens in the “elastic regime”?



Isotropic State
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FIG. 2. A plot of —(1+ +) obtained from the direct measure-
ment of 3 as a function of 7. Results for the slow quench are
shown in circles and for the fast quench in squares. We argue
in this paper that these results suffer from severe finite size
effects and in reality this figure should be replaced by Fig. 6
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Result of theoretical model
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FIG. 6. Schematic presentation of the theoretical prediction
for the v dependence of —(1 + 1/3). We reiterate that the
value of this exponent at v = 0 is not universal, whereas in
the steady state it is universal



