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• Amorphous plasticity: 
✴ Tensorial elasto-plastic model (2D and 3D) 
✴ Also: Expts on colloids + atomistic simulations 

➡ Universal non-MF depinning avalanche properties, singular excitation spectra 
(marginal stability), yielding as a percolation transition. 

• Micron-scale plasticity of crystals: 
✴ Dislocation dynamics (2D and 3D) 

➡ Common behavior with amorphous plasticity: scale-free avalanches, 
yielding is not MF depinning, singular excitation spectra (marginal 
stability). 

• Brittle failure of bond-forming glasses: 
✴ Atomistic simulation of SiO2 glass pillars 
✴ 2D random fuse model 

➡ System-size dependent brittle-ductile transition, percolation versus crack 
nucleation.

Brief recap



• There are common features associated with yielding and 
plasticity in the 3 different classes under study: scale-free 
avalanches, marginal stability (maybe except for brittle bond-
forming glasses?), scaling is not mean-field depinning, etc. 

• Yet, the models and theoretical approaches are quite different! 

• What is universal? Is there a common framework for ductile, 
brittle, amorphous, crystalline, etc., systems? Or should one 
consider separate classes of systems? 

• Ductile to brittle transition… Is there a unique  
description? Work by Misaki Ozawa et al.  
vs. random fuse model??? 

Can one reconcile all of the results in 
one grand scheme?
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Fig. 2. (a): The yielding regimes in the simulation of a sheared glass for different
degrees of annealing. Stress σ as a function of the strain γ for several preparation
temperatures Tini. For each Tini, three independent samples are shown. (b, c):
Snapshots of non-affine displacements between γ = 0 and yielding at γ = 0.13
for Tini = 0.120 (b) and at γ = 0.119 for Tini = 0.062 (c). (d, e): Evidence of
a first-order yielding transition for well annealed glasses. System-size dependence
of the averaged stress-strain curve for Tini = 0.062, showing a sharper stress
drop for larger N (d). The associated susceptibility, χdis = N(⟨σ2⟩ − ⟨σ⟩2)
becomes sharper as N increases (e). Inset: The divergence of the maximum of
χdis is propotional to N shown with the straight line.

where we plot for increasing values of N the averaged stress
⟨σ⟩ (obtained by averaging over many independent samples)
for Tini = 0.062. The stress discontinuity at yielding is the
only one surviving after the average and it becomes sharper
and better resolved as N increases. These data strongly sug-
gest that, in the thermodynamic limit, the averaged stress-
strain curve has a sharp discontinuity at yielding and is
smooth everywhere else. This discontinuity is a signature of
a non-equilibrium first-order transition, as confirmed by the
growth of the associated susceptibilities, the so-called "con-
nected" susceptibility χcon = − d⟨σ⟩

dγ and "disconnected" sus-

ceptibility χdis = N(⟨σ2⟩ − ⟨σ⟩2). The peaks of the suscepti-
bilities become sharper and their amplitude, χpeak

con and χpeak
dis ,

increases with N with exponents expected for a first-order
transition in the presence of quenched disorder, as discussed
below. This is illustrated for χdis in Fig. 2(e), and we find
that χpeak

dis ∼ N (inset) and χpeak
con ∼

√
N (see the SI) at large

N .

The similarity between the mean-field theory in Fig. 1 and
the data in Fig. 2(a) is patent. In agreement with the mean-
field theory, we indeed find two distinct types of yielding; a
discontinuous one for well annealed glasses, which is associ-
ated with a first-order transition that becomes weaker as the
degree of annealing decreases, and a continuous one, corre-
sponding to a smooth crossover, for poorly annealed materi-
als. As discussed in the next section, we also find a critical
point at Tini,c ≈ 0.095 that marks the limit between the two
regimes.

In addition, the simulations give direct real-space insight
into the nature of yielding. We illustrate the prominent dif-
ference between the two yielding regimes in the snapshots of
non-affine displacements measured at yielding in Figs. 2(b,c)
(see the SI for corresponding movies). For a smooth yielding,

we find in Fig. 2(b) that the non-affine displacements gradu-
ally fill the box as γ increases, and concomitantly the stress
displays an overshoot, as recently explored (56, 57). For the
discontinuous case, the sharp stress drop corresponds to the
sudden emergence of a system spanning shear band. By con-
trast with earlier work on shear-banding materials (58, 59),
the shear band in Fig. 2(c) appears suddenly in a single in-
finitesimal strain increment and does not result from the ac-
cumulation of many stress drops at large deformation. For
an intermediate regime between the discontinuous and con-
tinuous yielding (Tini ≈ 0.1), strong sample-to-sample fluc-
tuations are observed. Some samples show a sharp discon-
tinuous yielding with a conspicuous shear band (similar to
Fig. 2(c)), whereas other samples show smooth yielding with
rather homogeneous deformation (similar to Fig. 2(b)). Such
large sample-to-sample fluctuations are typical for systems
with random critical points.

5. The random critical point

Having identified a regime where yielding takes place through
a first-order discontinuity and a regime where it is a smooth
crossover, we now provide quantitative support for the exis-
tence of a critical point separating them, as one would indeed
expect on general grounds. The mean-field theory presented
above supports this scenario and suggests that the critical
point is in the universality class of an Ising model in a ran-
dom field. This criticality should not be confused with the
marginality predicted to be present in sheared amorphous
solids irrespective of the degree of annealing and of the value
of the strain (29, 50). This issue is discussed separately below
and in the SI.

As shown in Fig. 1, the order parameter distinguishing
the two regimes of yielding is the macroscopic stress drop.
In the simulations, we measure its evolution by recording
for each sample the maximum stress drop ∆σmax observed
in the strain window γ ∈ [0, 0.3]. We have measured the
mean value ⟨∆σmax⟩ as a function of the preparation tem-
perature Tini for several system sizes N . At the largest tem-
perature, no macroscopic stress drop exists: ⟨∆σmax⟩ simply
reflects stress drops along the plastic branch and vanishes as
⟨∆σmax⟩|Tini=0.2 ∼ N−0.4, as shown in the inset of Fig. 3(a).
In the main panel of Fig. 3(a), we subtract this trivial behav-
ior from ⟨∆σmax⟩. We find that the maximum stress drop
is zero above Tini ≈ 0.1, and nonzero for lower temperatures.
The system-size dependence confirms that this temperature
evolution becomes crisp in the large-N limit, and we locate
the critical point at Tini,c ≈ 0.095. Complementary informa-
tion is provided by studying the fluctuations of the maximum
stress drop, which can be quantified through their variance
N(⟨∆σ2

max⟩ − ⟨∆σmax⟩2) (not to be confused with the dis-
connected susceptibility χdis = N(⟨σ2⟩ − ⟨σ⟩2)), shown in
Fig. 3(b). One finds that the variance goes through a maxi-
mum that increases with system size around Tini,c ≈ 0.095.

These results provide strong evidence of a critical point
separating ductile from brittle behavior, with the mean stress
drop ⟨∆σmax⟩ playing the role of an order parameter. Addi-
tional support comes from the study of the overlap function
q introduced in Ref. (24). We find that the finite-size anal-
ysis of q and of the overlap jump ∆qmax at yielding follows
the same pattern as σ and ∆σmax qualitatively. This points
toward a macroscopic discontinuity for well-annealed glasses
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• Yielding viewed as a continuous transition from the flowing 
phase (flow curve, scale-free avalanches). 

• Yielding transition (in quasi-static athermal strain-controlled 
protocol) as a critical spinodal [d=∞ hard spheres, Itamar 
Procaccia et al.]. 

• RFIM-like critical point in the yielding pattern as a function of 
glass preparation [Ozawa et al.]. 

• Marginal stability [Wyart et al., more] and extended criticality (in 
amorphous and crystalline materials!, see S.Z.). 

• Yielding of amorphous solids as a depinning or as a percolation 
transition [also for brittle disordered solids, see S. Z.]. 

That’s a lot of criticality… 

Plasticity and yielding… 
criticality left, right and center!



Criticality in plasticity
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• How to disentangle "extended criticality" due to singular excitation 
spectrum and other forms of criticality?  

For instance in F.Z.’s work on amorphous plasticity how can one 
disentangle the system-spanning avalanches due to the marginal 
stability from the spanning cluster associated with the percolation 
transition et yielding? 

• Minor question: In F. Z.’s study of amorphous plasticity (tensorial 
elasto-plastic model) the scaling of avalanche properties is non mean-
field. Yet it is independent of dimension?? 

• Percolation, depinning, RFIM critical point, critical spinodal, marginal 
stability…. Dependence on control parameters?? Different classes of 
materials??


