Yielding and shear banding in amorphous solids

Srikanth Sastry

Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru, India

Yielding versus depinning in disordered systems ENS, Oct 22 – 24, 2018

Outline

Introduction

- Mechanical response of amorphous solids
- Oscillatory shear deformation of a model glass
- The Yielding transition
- Avalanches
- Shear banding
- Summary

P. Leishangthem (JNCASR)

Anshul D. S. Parmar (JNCASR/TIFR)

Saurabh Kumar (JNCASR/Koln)

Earlier work: In Collaboration with: Giuseppe Foffi (EPFL/Orsay) Davide Fiocco (EPFL/Google/Frontiers)

Fiocco, Foffi, Sastry, Phys Rev E 88, 020301(*R*) (2013), *Phys Rev Lett* 112 025702 (2014), *JPCM* 27, 194130 (2015)

- Leishangthem, Parmar, Sastry "The yielding transition in amorphous solids under oscillatory shear deformation" Nature Comm. (2017)

- Parmar, Kumar, Sastry. Strain localisation above the yielding point in cyclically deformed glasses. arXiv:1806.02464

Characterizing mechanical behavior of solids

Michael Falk

Yielding and Mechanical Failure

External stresses can cause (amorphous) solids to fail when deformed beyond a point of "**mechanical failure**".

Important for materials performance, and characterization.

Gorilla glass, metallic glasses, some recent important examples.

What is the microscopic description?

Amorphous Solids: Example - Metallic Glasses

Strain

Metallic glasses exhibit large yield strengths, and large yield strains.

Thanks: U Ramamurty

But exhibit brittle failure accompanied by shear localization (slip steps)..

Parameters governing failure, and potentially their control, is critical for their applications.

From: Schuh, Hafnagel, Ramamurty (2007)

Yielding and Failure in disordered matter: Other examples

Related physics of intermittent, plastic, response in many disordered systems:

- Barkhausen noise in magnets
- Front propagation in disordered media
- Granular matter
- Landslides and avalanches
- Earth quakes

Mechanical behavior of solids

Response to mechanical stress is a fundamental characteristic of a solid.

Elastic and plastic responses – Elastic moduli, yield stress, strength of materials..

The process by which a crystalline solid responds to stress is understood in terms of the movement of dislocations – defects that are well defined and observable.

Thanks: Surajit Sengupta

The movies have been provided for teaching purposes by Professor Hideharu Nakashima (ageigz@mbox.nc.kyushu-u.ac.jp) of Kyushu University, Japan.

Mechanical behavior of amorphous solids

From: Peter Sollich

- Deformation mechanism involves localized rearrangements, and avalanches of correlated (or triggered) deformation events.
- What is the description of the transition to the state of plastic flow?
- Wide range of materials, and responses.

From Schuh et al 2007 [from Argon, Spaepen]

[Lemaitre, Caroli 2009]

A local transformation embedded in an elastic medium leads to long range strain/stresses (Eshelby 1957), interactions:

Redistributed stresses trigger other events.

Avalanches, yielding..

Crackling Noise: RFIM

Many systems crackle; when pushed slowly, they respond with discrete events of a wide range of sizes.

Examples: Earthquakes [motion of tectonic plates], candy wrapper [on crumpling] or a magnatic material under changing field.

Field on magnatic domin under an external field (H(t)): H(t) + $\Sigma_j S_j + h_i$

 h_i : a random field for each domain with variance "R".

Flipping of spins can initiate avalanches.

If "R" is large (or h>>J) most domains flip independently: all the avalanches are small (small popping noise).

For sufficiently large H(t): large scale avalanches.

A R – H phase diagram with a critical point. Sethna et al Nat Rev. 2001

Cross-sections of the avalanches during the magnetization, various color: avalanches

Depinning

Depining of an interface moving in an interface (fluid, etc) a problem of broad interest.

Pinning arises from disorder. Depinning as a result of external drive.

Depinning model

$$\partial_t h(x,t) = \nu \partial_x^2 h - \partial_h V(x,h(x,t)) + f$$

- Pinning is induced by quenched disorder (V).
- Stops the motion of driven elastic manifolds for applied forces f below a critical value f_c.
- The avalanche size defined as the area swept by the interface in a burst.
- Avalanche size diverges at depinning.

What we do: Approach and Questions

- Mechanical response to affine, shear deformations studied by analyzing the modification of the landscape, and transitions between minima, through the AQS (Athermal Quasi Static) protocol.
- Cyclic shear deformation of model glasses.
- Amplitude of shear deformation the only control parameter.
- Limitation: No information on the interplay between relaxation processes and instabilities triggered by deformation. But useful insights obtained.
- Simulations done also at finite shear rate and temperatures for comparison.

Questions/Issues

- The character of avalanches before yielding and after yielding.
- The nature of the yielding transition. Is it a sharply defined transition?
- Strain localization above yielding.
- Relaxation/annealing effects under cyclic loading.

Computer simulations of deformation of model glasses in search of some answers

Athermal Quasi Static Deformation

- 1. Subject energy minimum structures to shear deformation.
- Minimize the resulting deformed structure subject to suitable (Lees-Edwards) boundary conditions.
- 3. Deformation strain increased quasi-statically.
- 4. The procedure produces a sequence of configurations that are always energy minima.
- 5. Continuous change of energies interrupted by discontinuous change.
- 6. Discontinuous changes correspond to rearrangements.

Mechanical deformation of model glasses

Discontinuous changes in stress from destabilization of minima.

Malandro and Lacks 1999

Mechanical deformation leading to yielding..

Early studies:

1.Deeper energy minima are sampled at lower temperatures.

2.Upon shearing, the energy of the minima rises to those at very high temperatures.3.Deformation induced 'rejuvenation'

Utz, Debenedetti and Stillinger and Utz, 2000

Strain Localization

Related: Transient shear bands in flow (Srivastav et al 2016, Vasisht et al 2017)

Somewhat more complicated picture when a forward and back cycle of strain is applied:

The nature of change (aging or rejuvenation) depends on amplitude of strain and the initial state..

What happens if this cycle is repeated?

Cyclic Deformation: Schematic

Shear deformation modifies the potential energy landscape and destabilizes the system, eventually leading to irreversible rearrangements.

How does such deformation modify the properties of the glasses?

Simulations of oscillatory strained binary Lennard-Jones (LJ) solids

Different system sizes: 2000, 4000, 8000, 16000, 32000, 64000, $\gamma_{max} \rightarrow 0 \rightarrow -\gamma_{max} \rightarrow 0$ 128000 and 256000.

Two starting temperatures: 1 (poorly) & 0.466 (well annealed glass)

Cyclic shear for range of γ_{max} values with strain step $d\gamma = 2x10^{-4}$.

Each $\gamma = 0$ configuration labeled with the *accumulated* strain $\gamma_{acc} = \sum d\gamma$

 $\int_{-1}^{1} \frac{1 \text{ Cycle} = 4 \gamma_{max}}{0}$

These **stroboscopic** configurations were used to compute various quantities, i.e. energy, MSD etc ...

Potential Energy vs. Cycle Number

The potential energy per particle reaches a plateau that (a) Depends on γ_{max} only at large values of γ_{max} . (b) Depends on γ_{max} and initial state for small γ_{max} .

- Aging/rejuvenation depends on strain amplitude and initial annealing on the glasses.
- Relaxation to the steady state **becomes more sluggish as** γ_v is approached.

Change in behavior across a critical strain amplitude γ_c

Mean Squared Displacement vs. Cycle #: Diffusion Coefficient

Depending on γ_{max} systems are either diffusive or non-diffusive.

In the diffusive regime, asymptotic slopes depend only on $\gamma_{max.}$

Critical γ_{max} a function of system size... but approach finite value asymptotically.

Non-equilibrium transition from localized to diffusive regimes!

Yielding Uniform Shear

There is **no sharp point** to identify from uniform shearing. Significant **sample** (annealing) **dependence**.

Yielding: Oscillatory shear

Oscillatory shear provides a better characterization of the transition.

We focus on maximum stress during cyclic shear..

Yielding: Oscillatory shear

Oscillatory shear provides a better characterization of the transition.

We focus on maximum stress during cyclic shear..

In **uniform shearing** (US), there is a clear difference in the stress-strain curves depending on the prior annealing of the glasses.

For **cyclic shear** (CS) qualitatively the same behavior regardless of initial sample conditions.

A sharply defined, discontinuous yielding transition.

•For $\gamma_{max} = 0.06$ (i.e. $\gamma_{max} < \gamma_y$) the energy approaches to a single minimum at $\gamma = 0$, but •Energy bifurcates into two minima (for $\gamma_{max} = 0.12$ (i.e. $\gamma_{max} > \gamma_y$)) at finite strain.

Evolution of energy with cycles

- Energy vs. strain in the steady states, displaying a bifurcation in the strain corresponding to minima in energy at the yielding transition between $\gamma_{max} = 0.07$ and 0.08.
- Evolution of strain values for energy minimum and zero-stress states indicate transition.

Asymptotic energy vs. strain amplitude

Energies of stroboscopic configurations decrease with γ_{max} till the yield strain is reached, after which they increase with γ_{max} .

Avalanches

Definitions:

Active particles: Particle is active if moved beyond $0.1\sigma_{AA}$ cutoff in the event. Clusters: Active particles with connectivity of $1.4\sigma_{AA}$ (the first coordination shell)

How do events (avalanches) evolve with amplitude of strain? Do they capture the approach to the yielding transition?

Distributions of Avalanche Sizes

•For N = 2000 displaying a power law with a cutoff that grows with γ_{max} but **does not indicate sharp changes** at yielding.

•For N = 64000 displaying a **sharp increase** in the cutoff size across the yielding transition. Power law regime with power 3/2.

System size effects are important!!

Avalanche size vs. Strain Amplitude System Size Effects

Above the yield point mean avalanche size shows clear size dependence $\sim N^{1/3}$

Consistent with uniform shear results for the case of plastic flow states. [Lerner and Procaccia 2009]

Below the yield point, avalanche sizes show **weak system dependence** that saturate.

Mean Cluster Sizes Vs. N

 Scaled cluster size (= s/<s>) distributions exhibit data collapse separately for γ_{max}< γ_y and γ_{max}> γ_y.

• Distributions for $\gamma_{max} < \gamma_y$ do not display a power law regime, whereas $\gamma_{max} > \gamma_y$ do.

Qualitatively different avalanche distributions!

Fractal dimension

Fractal dimension of the clusters of the "active particles" estimated from box counting.

A log-log plot of the number of occupied boxes ($N_{\rm box}$) is shown vs. the magnification r.

The slope results in an estimated fractal dimension $d_f \sim 2$.

Not consistent with size scaling exponent of 1.

Anisotropies? [Maloney & Robbins PRL 2009]

Avalanche: Energy drops

Energy drops distribution shows power law distribution with cutoff and the cutoff increases with γ_{max}

10

10-2

 10^{4}

 10^{5}

Ν

 Mean energy drop (plastic component) vs. system size N shows no significant size dependence for γ_{max}
< γ_v but a clear N^{1/3} dependence above.

Avalanches during the transient

Although the avalanche sizes are small below yield in the steady state. Large organizations occur during the transient.

Larger and longer lived for larger strain amplitudes.

Yielding is accompanied by the formation of shear bands.

Displacements per cycle, energy etc indicate presence of shear bands ~ 20 particle diameter!

Probed by different initializations (from liquid/poorly annealed glass, strain amplitude below (.07), above (.08) yield value).

Across the yielding transition

N=64000

From poorly annealed glass

Shear bands are present in the steady states for strain amplitudes above yielding value ~ 0.07

Evolution towards steady states

- Shear bands are present in the steady states.
- The energy and MSD profile changes in the presence of the shear band.

γ_{max}=0.09

Evolution towards steady states

- Energies show monotonic change with cycles below yielding.
- Logarithmic relaxation!
- Abrupt change when yielding (and shear banding) happens.

Evolution towards steady states

- The energy and mobility of the particles in the shear band are higher than particles outside the shear band.
- The shear band is "fluid like", and density of the band is less than the bulk of the system.
- Shear bands are mobile but the width is stationary.

Annealing above Yielding

- Particle in the shear band access energies at the "top of the landscape"
- The rest of the system continues to be annealed beyond yield point.
- Location of yielding point exhibits some initial condition dependence.

Vanishing shear band From $\gamma_{max} = 0.08$, @ $\gamma_{max} = 0.07$

The shear band vanishes after a large number of strain cycles at smaller amplitude.

Characteristics of the shear band

The **fraction** of the particles, **width** of the shear band changes in **discontinues manner** at the critical amplitude.

How does diffusivity change?

Microscopic dynamics associated with shear banding

Across the yielding transition, the averaged particle displacement changes in a discontinuous manner.

Outside the shear band and below yielding, movement finite but very small.

Characteristics of the shear band - Diffusivity

The diffusion of total system, most mobile particles(1σ), the shear band (3σ) and least mobile particles (3σ ') estimated.

Sub-diffusive behaviour outisde the shear band.

Characteristics of the shear band - Diffusivity

Above the yielding transition, the finite diffusion is an outcome of the

The **diffusion coefficient** of the mobile particles changes in **discontinues manner** at the critical amplitude.

Finite Temperature and Shear Rates

What happens if we go beyond the AQS limit?

We perform shear deformation at finite strain rates and temperatures.

The system is sheared (*via* SLLOD) at range of temperatures 0.01, 0.1, at strain rate 10⁻⁵ and varying amplitudes (γ_o). $\gamma(t) = \gamma_o sin(\omega T)$

The picture does not change.

Finite Temperature and Shear Rates

At a higher temperature, shear banding still present, but more fluctuations.

Lower yield strain amplitude.

Entropic characterization of the yielding

Entropic characterization of the yielding

- S₂ tracks the energy of the inherent structures.
- Close to relation found in T dependence for the liquid, but not the same.

Annealing Effects are Important

Many past studies argue for a role of annealing (variously, relaxation, aging etc..) in the phenomenon of shear banding:

Pulled front/STZ: Alix-Williams and Falk 2018 SGR model: Fielding et al 2016 Elasto-plastic model: Martens et al, 2010 Analytic theory for avalanches: Dahmen et al 2009

In many cases what is discussed is shear banding in flow.

Transient vs permanent shear bands.

Incorporation of annealing effects in cyclic deformation (e.g. SGR model) leads to shear banding in the sense that is discussed here.

Annealing Effects under uniform shear

Do annealing effects play a role in yielding under uniform shear?

For poorly annealed glasses, they clearly do. Energy decreases as the system is sheared.

Even when it doesn't obviously, one must consider energy when the system is unloaded.

Annealing Effects under uniform shear

A harmonic extrapolation back to zero strain reveals that a uniformly sheared glass anneals as a function of strain.

Preliminary analysis.

Ref: Dubey et al 2016

Summary

The yielding transition appears as a sharp transition associated with an abrupt divergence of the sizes of avalanches, at the yielding transition, for cyclic deformation.

At variance with descriptions predicting divergences upon approach to the transition.

Strong and significant annealing effects before and after the yielding transition.

Annealing under cyclic deformation an interesting phenomenon to understand better.

The role of annealing not prominently treated in approaches to understanding yielding, but various threads in the literature which acknowledge its role.

Observation of shear banding above the yielding point. How do we understand them? Role of annealing. Connection to shear banding in flow.

Description of yielding as a mechanical instability. Integrating with other aspects of glass physics?