

A. Barbot, R. Garcia Garcia, M. Lerbinger, B. Tyukodi, S. Patinet, S. Roux and D. Vandembroucq **PMMH, ESPCI** Paris PSL, CNRS, Sorbonne Université, France

M.L. Falk, A. Lemaître and C.E. Maloney

Yielding vs Depinning in Disordered Systems Paris, October 22-24, 2018

SIMONS FOUNDATION

Compression of metallic glass

- High yield strength but brittle
- Localization and shear-banding behavior
- Dependence on thermal and mechanical history

J. Zhang et al, Scripta Mater. 61, 1145 (2009)

Compression of silica glass

G. Kermouche et al. Acta Mater. 114, 146 (2016)

Compression of granular matter

Glass making: quench from liquid

P. G. Debenedetti and F. H. Stillinger Nature 410, 259 (2001)

Plastic behavior depends on thermal history

Shear banding depends on thermal history

Fast quench

Slow quench

Shear banding depends on thermal history

Fast quench

Slow quench

But structure of glass almost identical to that of the liquid i.e. no clear dependence on glass preparation !

Multi-scale modeling methods

D. Rodney, A. Tanguy and D. Vandembroucq, Modelling Simul. Mater. Sci. Eng. 19 083001 (2011).

Atomistic simulation of a 2D model glass

System:

- Two-dimensional binary glass
- 10⁴ atoms, ρ =1,024, PBC
- Lennard-Jones potentials (+smoothing function)

Falk, M. L. et al. *Phys. Rev. E* **57**, 7192 (1998). Shi, Y. et al., *Phys. Rev. Lett.* **98**, 185505 (2007).

Simulation methods:

- Synthesis of the glass: NVT quench from liquid
- Loading: Athermal Quasi-Static shear

 $V(r) = 4\varepsilon \left| \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right| r < r_{c}$

Lattice models of amorphous plasticity

- Aim: build at mesoscopic scale a minimal model that reproduces the salient features of amorphous plasticity
- Two main ingredients:
 - Local threshold dynamics plastic events
 - Eshelby quadrupolar elastic interaction
- Various implementations: Boston, Erlangen, Grenoble, Helsinki, Lausanne, Milano, Paris...

Mesoscopic models of amorphous plasticity

 $\cos 4\theta$

 $G(\vec{r})$

2D, scalar. Inclusions on lattice sites.

Local slips of inclusions (threshold-related):

Plastic strain associated to each inclusion:

$$\sigma_{ij} > \sigma_{ij}^{th}$$
 disorder
 $\epsilon^p_{ij} \to \epsilon^p_{ij} + \delta \epsilon^p$
 $\sigma_{ij} \to \sigma_{ij} + G * \delta \epsilon^p$

Elastic interaction between inclusions: via the elastic kernel

elasticity

Yielding vs Depinning

Plastic strain field as an elastic manifold moving in a *random medium*

Lin et al, PNAS (2014)

Yielding vs Depinning

$$G(\vec{r}) \propto \frac{\cos 4\theta}{r^2}$$

Eshelby inclusion : anisotropic stress interaction

Yielding vs Depinning

- Depinning: Any fluctuation of the line/manifold induces a restoring force
- Plasticity: Any unit shear-band in a maximum shear stress direction induces <u>no elastic stress</u>

How disordered are disordered materials ?

A. Nicolas et al, Rev. Mod. Phys (2018)

How disordered are disordered materials ?

A tentative classification

- Heterogeneous materials :
 - Mechanical properties = invariant along the ε_{nl} / z direction
 - Quenched disorder : $\sigma_{Y}[x,y,\varepsilon_{pl}(x,y)] = \sigma_{Y}(x,y,0)$
 - Composites ? Polycrystals ? Earthquakes ?
 - => Localization on extremal/minimal path (Chen, Bak & Obukhov PRA 91)

• Disordered materials :

- Mechanical properties = weakly dependent on the ϵ_{pl} / z direction
- Stationary disorder : $P(\sigma_{Y}[\epsilon_{pl}]) = P(\sigma_{Y}[\epsilon_{pl}=0])$
- ???
- => Avalanches (most lattice models of yielding)

• Glassy materials :

- Mechanical properties = strongly dependent on the ε_{nl} / z direction
- Thermal/Mechanical aging and rejuvenation
- Non-stationary disorder : $P(\sigma_{Y}[\epsilon_{pl}]) \neq P(\sigma_{Y}[\epsilon_{pl}=0])$
- BMG & oxide glasses, pastes, complex fluids...

=> Homogeneous deformation (mech. Aging/hardening) or Shear-Banding (rejuvenation/softening) (Dahmen, Uhl, Ben-Zion PRL 09)

Shear-banding and Rejuvenation in a lattice model of plastic yielding

Mimicking aging with changing initial conditions

- Initial state characterized by a biased distribution of barriers $\delta \sigma^i_V \in rand[\delta, 1 + \delta]$
- Under shear $\delta \sigma_Y^i$ still renewed in rand[0, 1];

Aged structure = higher energy barriers ?

Don't change anything but the initial condition

D. Vandembroucq & S. Roux, Phys Rev. B (2011)

Age-dependent stress-strain curves

δ = 0.3

Plastic strain ϵ_{pl}

δ = 0.9

δ = 0.3

δ = 0.9

- The higher $\delta,$ i.e. the older/the more slowly quenched the glass,
 - The higher the stress peak,
 - The thinner the shear-band
 - The slower the broadening of the band
- Connection with other observables ?
 - Plastic thresholds : σ_{v}
 - Internal stress : σ
 - Local plastic criterion : σ_{y} σ

Internal stress σ

σ_γ - σ

σ_γ - σ

δ = 0.7

δ = 0.7

σ_γ - σ

δ = 0.5

δ = 0.7

 $\delta = 0.5$

δ = 0.7

Avalanche behavior and/or Shear-banding can be obtained in lattice models via the simple distinction between :

- Initial distribution of plastic thresholds (aging, quench)
- Renewal distribution of plastic thresholds (stationary glass)

Link with atomistic simulations ?

A local probe of plasticity in model amorphous materials

Microscopic mechanisms of plasticity

Crystals

Amorphous Solids

Dislocation

Localized rearrangement

V. Volterra, Ann. Ec. Norm. Sup., **24**, 401 (1907)

A. Tanguy, F. Leonforte and J.-L. Barrat, Eur. Phys. J. E, 20, 355 (2006)

"Flow defects" at atomic scale

Crystals

Amorphous Solids

Dislocation

Shear Transformation Zone (STZ)

V. Volterra, Ann. Ec. Norm. Sup., 24, 401 (1907)

M. L. Falk and J. S. Langer, Phys. Rev. E, 57, 7192 (1998)

Plastic events under simple shear

Plastic events under simple shear

Plastic events under simple shear

Idea: • Probe the local plastic rearrangement with a local loading

• Extension of the P. Sollich's "Virtual strain method"

P. Sollich, MultiScale Modelling of Amorphous Materials workshop, Dublin, Ireland (2011).

Idea: • Probe the local plastic rearrangement with a local loading

• Extension of the P. Sollich's "Virtual strain method"

P. Sollich, MultiScale Modelling of Amorphous Materials workshop, Dublin, Ireland (2011).

Idea: • Probe the local plastic rearrangement with a local loading

• Extension of the P. Sollich's "Virtual strain method"

P. Sollich, MultiScale Modelling of Amorphous Materials workshop, Dublin, Ireland (2011).

Local yield stress definition

α	

- Local shear stress at the onset of the instability: $au^{ ext{inst}}(lpha)$
- Shear stress threshold along α :

$$\tau^{c}(\alpha) = \tau^{\text{inst}}(\alpha) - \tau^{0}(\alpha)$$

where $\tau^0(\alpha)$ the initial stress within the as-quenched glass.

Local yield stress definition

- Local shear stress at the onset of the instability: $au^{ ext{inst}}(lpha)$
- Shear stress threshold along $\alpha :$

$$\tau^{c}(\alpha) = \tau^{\text{inst}}(\alpha) - \tau^{0}(\alpha)$$

where $\tau^0(\alpha)$ the initial stress within the as-quenched glass.

Local yield stress definition

 $\tau_{y,i}(\alpha_l) = \min_{\alpha} \frac{\tau_i^c(\alpha)}{\cos[2(\alpha - \alpha_I)]}$

- Local shear stress at the onset of the instability: $au^{ ext{inst}}(lpha)$
- Shear stress threshold along $\alpha :$

$$\tau^{c}(\alpha) = \tau^{\text{inst}}(\alpha) - \tau^{0}(\alpha)$$

where $\tau^0(\alpha)$ the initial stress within the as-quenched glass.

 Assuming a homogeneous elasticity, the local yield stress is defined as the minimum stress projected in the direction of remote loading α_i:

with
$$|\alpha - \alpha_l| < 45^\circ$$

Results: yield stress maps

Color map: Local yield stress Sym

Symbols: rearrangement locations

Excellent correlation between the locations of plastic rearrangements and the low yield stresses.

Results: Quench rate effect

Fast quench

Slow quench

A slow quench rate increases the stability of the glass at the local scale

S. Patinet et al PRL 2016, A. Barbot et al. PRB 2018

Results: Quench rate effect

Local instability associated to a stress drop/local plastic strain :

Exponential statistics of local plastic strains

S. Patinet et al PRL 2016, A. Barbot et al. PRB 2018

A first attempt of coarse-graining from micro to meso scale

Lattice models of amorphous plasticity

- Aim: build at mesoscopic scale a minimal model that reproduces the salient features of amorphous plasticity
- Two main ingredients:
 - Local threshold dynamics plastic events
 - Eshelby quadrupolar elastic interaction
- Various implementations: Boston, Erlangen, Grenoble, Helsinki, Lausanne, Milano, Paris...

Mesoscopic models of amorphous plasticity

 $\cos 4\theta$

 $G(\vec{r})$

2D, scalar. Inclusions on lattice sites.

Local slips of inclusions (threshold-related):

Plastic strain associated to each inclusion:

$$\sigma_{ij} > \sigma_{ij}^{th}$$
 disorder
 $\epsilon^p_{ij} \to \epsilon^p_{ij} + \delta \epsilon^p$
 $\sigma_{ij} \to \sigma_{ij} + G * \delta \epsilon^p$

Elastic interaction between inclusions: via the elastic kernel

elasticity

Shear banding depends on thermal history

Fast quench

Slow quench

Coarse-graining strategy

Naive version: glass as a disordered material

- Use mechanical properties of as-quenched glasses:
 - Elastic moduli
 - Stationary distributions of local yield stress :

Fast quench : $p_i(\sigma_y) = p_r(\sigma_y) = p_{fast}^{at}(\sigma_y)$; Slow quench : $p_i(\sigma_y) = p_r(\sigma_y) = p_{slow}^{at}(\sigma_y)$

- Exponential distribution of plastic increments
- Use amplitude of local plastic increments as a tuning parameter to reproduce stress/strain curves
- Test on other observables (localization, etc)

Vitreous version: glass as a mechanically aging/rejuvenating material

• Same as above but **rejuvenation**:

New plastic thresholds (after rearrangements) taken from fast-quench distribution (almost invariant upon def) : Slow quench : $p_i(\sigma_y) = p_{slow}^{at}(\sigma_y)$; $p_r(\sigma_y) = p_{fast}^{at}(\sigma_y)$

Fast quench glass : MD vs Meso

Slow quench glass : MD vs Meso

Shear-banding: MD vs Meso

ε_p = 0.05

Shear-banding: MD vs Meso

ε_p = 0.12

Shear-banding: MD vs Meso

ε_p = 0.20
Shear-banding: MD vs Meso

ε_p = 0.12

Shear-band mean profiles

MD

Meso with stationary distribution of thresholds

Shear-band mean profiles

MD

Meso with rejuvenation

Yield Stress mean profiles

MD

Meso with stationary distribution of thresholds

Yield Stress mean profiles

MD

Meso with rejuvenation

Conclusions

- Local yield stress : A new structural/mechanical probe to study the glassy state and its plastic deformation
- Amorphous plasticity as a mechanical rejuvenation process
- Mesoscopic models with rejuvenation give semiquantitative agreement with atomistic results

DV and S. Roux, Phys. Rev. B **84,** 134210 (2011) Patinet et al, Phys. Rev. Lett. **117**, 045501 (2016) Barbot et al, Phys. Rev. E **97**, 033001 (2018) Barbot et al, *in preparation,* Tyukodi et al, *in preparation*