PLASTICITY AND FRACTURE IN GLASSES AND CRYSTALS

22 October 2018 ENS-Paris

Stefano Zapperi Department of Physics University of Milan

CENTER FOR COMPLEXITY & BIOSYSTEMS

University of Milan

WWW.COMPLEXITY.UNIMI.IT WWW.SMMLAB.IT

CRACKING GLASS

CENTER FOR COMPLEXITY & BIOSYSTEM:

BRITTLE DUCTILE TRANSITION

ENTER FOR OMPLEXITY BIOSYSTEMS

SIZE-DEPENDENT BRITTLE DUCTILE TRANSITION

FLUID-LIKE SURFACE LAYER

Nanotubes

Matthew C. Wingert,[†] Soonshin Kwon,[†] Shengqiang Cai,^{*,†} and Renkun Chen^{*,†}

NANO LETTERS

2016

MOLECULAR DYNAMICS SiO₂ glass deformation

Bonfanti et al.

D= 12.5 nm

EDGE EFFECTS

OPEN AND CLOSED BC

CENTER FOR COMPLEXITY & BIOSYSTEMS University of Milan

THERMAL EFFECTS

DAMAGE ACCUMULATION

DAMAGE ACCUMULATION

AVALANCHES AND STRESS DROPS

DISORDER AND DAMAGE IN FRACTURE

- External current is applied through the bus bars to a a resistor network
- Local current are obtained solving Kirchhoff equations

$$\sum_{i} \sigma_{ij} (V_i - V_j) = 0$$

 Fuses have unit conductivity and disordered thresholds.

Ashivni Shekhawat,¹ Stefano Zapperi,^{2,3} and James P. Sethna¹ PRL 110, 185505 (2013)

PERCOLATION SCALING

In the limit β =0 the model fails as a percolation process

Clusters:

$$P_{c}(s|\beta, L) = s^{-\tau_{c}} \mathcal{F}_{c}(\beta L^{1/\nu_{f}}, sL^{-1/\sigma_{c}\nu_{f}}, uL^{-\Delta_{f}/\nu_{f}}), \qquad \tau_{c} = 187/91 = 2.0549,$$

$$\langle s_{c}^{n} \rangle = L^{(n+1-\tau_{c})/\sigma_{c}\nu_{f}} (\mathcal{J}_{n}^{c}(\beta L^{1/\nu_{f}}) + L^{-\Delta_{f}/\nu_{f}} \mathcal{K}_{n}^{c}(\beta L^{1/\nu_{f}})), \qquad \sigma_{c}\nu_{f} = 48/91 = 0.5275,$$

$$\Delta_{f}/\nu_{f} = 72/48 = 1.5$$

Avalanches:

$$P_{a}(s|\boldsymbol{\beta}, L) = s^{-\tau_{a}} \mathcal{F}_{a}(\boldsymbol{\beta}L^{1/\nu_{f}}, sL^{-1/\sigma_{a}\nu_{f}}, uL^{-\Delta_{f}/\nu_{f}}),$$

$$\langle s_{a}^{n} \rangle = L^{(n+1-\tau_{a})/\sigma_{a}\nu_{f}}(\mathcal{J}_{n}^{a}(\boldsymbol{\beta}L^{1/\nu_{f}})),$$

$$+ L^{-\Delta_{f}/\nu_{f}} \mathcal{K}_{n}^{a}(\boldsymbol{\beta}L^{1/\nu_{f}})),$$

PRL 110, 185505 (2013)

PERCOLATION SCALING

(a) Avalanche size distribution (b) Cluster size distribution

PRL 110, 185505 (2013)

FINITE-SIZE CRITICALITY

PRL 110, 185505 (2013)

AMORPHOUS PLASTICITY

Shear band image from: Sun et al. Appl. Phys. Lett. 98, 201902 (2011)

ENTER FOR MPLEXITY BIOSYSTEMS

AVALANCHES IN METALLIC GLASSES

James Antonaglia, Wendelin J. Wright, Xiaojun Gu, Rachel R. Byer, Todd C. Hufnagel, Michael LeBlanc, Jonathan T. Uhl, and Karin A. DahmenPhys. Rev. Lett. 112, 155501 – 2014

AVALANCHES IN COLLOIDAL GLASSES

Non affine deformations (Chikkadi PRL 2011)

Free energy drops during aging (Zagar PRL 2014)

Images thanks to: Peter Schall

Mesoscale tensorial model for amorphous plasticity in 2D and 3D

Eshelby inclusions

 $\Sigma_{ij}(\vec{r}) = \int \sigma_{ij}(\vec{r}') G_{\xi}(\vec{r} - \vec{r}') d^3r'$

Barriers for slip

Z. Budrikis, D. Fernandez-Castellanos, S. Sandfeld, M. Zaiser, SZ

Shear bands depend on loading

C. Su and L. Anand, Acta Materialia 54, 179 (2006).

Universal (non MF!) avalanches

Scaling functions

MARGINAL STABILITY AND EXCITATION SPECTRA

 $P(X) \propto X^{\theta}$

 $X \to 0$

в

Müller M, Wyart M. 2015. Annu. Rev. Condens. Matter Phys. 6:177-200

Excitation spectrum

Clusters of activity

Experiments: Colloidal glasses

A Ghosh, Z Budrikis, V Chikkadi, A Sellerio. SZ, P. Schall PRL 2017

Clusters of activity

University of Milar

A Ghosh, Z Budrikis, V Chikkadi, A Sellerio. SZ, P. Schall PRL 2017

Percolation Scaling

A Ghosh, Z Budrikis, V Chikkadi, A Sellerio. SZ, P. Schall PRL 2017

MICRON SCALE PLASTICITY

B CENTER FOR SCHOLEXIT

DISLOCATION DYNAMICS 2D 3D

Intermittent dislocation flow in viscoplastic deformation

M.-Carmen Miguel*†, Alessandro Vespignani*, Stefano Zapperi‡, Jérôme Weiss§ & Jean-Robert Grasso \parallel

nature

Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale

Ferenc F. Csikor,^{1,2} Christian Motz,³ Daniel Weygand,³ Michael Zaiser,² Stefano Zapperi^{4,5*}

2D DISLOCATION DYNAMICS

$$\sigma_{ij} = \frac{b\mu x_{ij}}{2\pi(1-\nu)} \frac{(x_{ij}^2 - z_{ij}^2)}{(x_{ij}^2 + z_{ij}^2)^2}$$

MODEL VARIANTS:

1) Continuum time model

$$v_i = b_i (\sum_j \sigma_{ij} - \sigma_e)$$

- 2) Cellular automaton: extremal update
- 3) Cellular automaton: random update

$$v_i = \operatorname{sign}(b_i(\sum_j \sigma_{ij} - \sigma_e))$$

University of Milar

Avalanches in 2D Dislocation Systems: Plastic Yielding Is Not Depinning

Péter Dusán Ispánovity,^{1,*} Lasse Laurson,² Michael Zaiser,³ István Groma,¹ Stefano Zapperi,⁴ and Mikko J. Alava²

EXTRACTING SPECTRA FROM DISLOCATION DYNAMICS (2D)

2D EXCITATION SPECTRA

Excitation Spectra in Crystal Plasticity

Markus Oyaska,¹ Arttu Lehtinen,¹ Mikko J. Alava,¹ Lasse Laurson,¹ and Stefano Zapperi^{1,2,3}

3D AVALANCHES

Lehtinen, A., Costăntini, G., Alava, M. J., Zapperi, S., & Laurson, L. (2016). Glassy features of crystal plasticity. PHYSICAL REVIEW B, 94(6), 1-5. [064101]. DOI: 10.1103/PhysRevB.94.064101

STRESS INCREMENTS

EXTRACTING SPECTRA FROM DISLOCATION DYNAMICS (3D)

3D EXCITATION SPECTRA

Excitation Spectra in Crystal Plasticity

Markus Ovaska,¹ Arttu Lehtinen,¹ Mikko J. Alava,¹ Lasse Laurson,¹ and Stefano Zapperi^{1,2,3}

SUMMARY

Thanks

