• 45 results

The goal of this course is to introduce somewhat "advanced" topics in quantum matter, tackle truly quantum-entangled, strongly interacting, phases of matter and materials, and present how quantum matter is a particularly rich field, with many open theoretical problems.

Recent years have seen enormous experimental progress in preparing, controlling and probing quantum systems in various regimes far from thermal equilibrium. Examples include systems as ultra-cold atomic quantum gases under time-dependent perturbations, driven non-linear cavity QED systems or strongly correlated electrons in solid-state materials under ultra-fast optical excitations.

The main goal of this course is to provide an advanced view of the optical response of quantum materials. 

Computational physics plays a central role in all fields of physics, from classical statistical physics, soft matter problems, and hard-condensed matter. Our goal is to cover the very basic concepts underlying computer simulations in classical and quantum problems, and connect these ideas to relevant contemporary research problems in various fields of physics. In the TD’s you will also learn how to set, perform and analyse simple computer simulations by yourself. We will use Python, but no previous knowledge of this programming language is needed.

The aim of this lecture is to provide a description of quantum transport in disordered systems, with an emphasis on important phenomena like weak localization, Anderson localization and the Anderson metal-insulator transition. During the lecture, a number of important theoretical tools needed to describe quantum particle scattering in the presence of spatial disorder will be introduced in a pedagogical fashion, such as the Green's function technique, diagrammatic approaches to weak localization and transfer matrices. The lectures will be also illustrated by experimental examples and tutorials, especially taken from the physics of quantum gases and  condensed matter.