• This lecture aims at the description of the interaction between quantum matter in its simplest form, an atom, and an electromagnetic field. A semi-classical approach, where the field is classical, is first considered, including relaxation of the atom. We then study the quantization of the electromagnetic field and its relaxation, before its interaction with an atom is described in a full quantum model.

The main goal of this course is to provide an advanced view of the optical response of quantum materials. 

Recent years have seen enormous experimental progress in preparing, controlling and probing quantum systems in various regimes far from thermal equilibrium. Examples include systems as ultra-cold atomic quantum gases under time-dependent perturbations, driven non-linear cavity QED systems or strongly correlated electrons in solid-state materials under ultra-fast optical excitations.

The goal of this course is to introduce somewhat "advanced" topics in quantum matter, tackle truly quantum-entangled, strongly interacting, phases of matter and materials, and present how quantum matter is a particularly rich field, with many open theoretical problems.