Since the 80’s, laser cooling has enabled the production of sub-milliKelvin dilute atomic gases - which can be further cooled to the nanoKelvin regime.

Ce cours vise à décrire l'interaction entre la matière quantique dans sa forme la plus simple, un atome, et un champ électromagnétique. Une approche semi-classique, où le champ est classique, est d'abord considérée, en incluant la relaxation de l'atome. Nous procédons ensuite à la quantification du champ électromagnétique et décrivons sa relaxation, avant que son interaction avec un atome ne soit étudiée dans un modèle quantique complet.

 

The main goal of this course is to provide an advanced view of the optical response of quantum materials. 

Recent years have seen enormous experimental progress in preparing, controlling and probing quantum systems in various regimes far from thermal equilibrium. Examples include systems as ultra-cold atomic quantum gases under time-dependent perturbations, driven non-linear cavity QED systems or strongly correlated electrons in solid-state materials under ultra-fast optical excitations.

The goal of this course is to introduce somewhat "advanced" topics in quantum matter, tackle truly quantum-entangled, strongly interacting, phases of matter and materials, and present how quantum matter is a particularly rich field, with many open theoretical problems.