MAIN
SCIENTIFIC CONTRIBUTIONS
of
Claude COHEN-TANNOUDJI
Optical pumping
- Derivation of the master equation describing the
evolution of the atomic density matrix during the optical pumping
cycle and considering for the first time the role of the
off-diagonal elements of the density matrix (4,5).
- Prediction from such a theory of new physical effects
(Light-shifts, Conservation of coherence during the optical
cycle...) and experimental demonstration of these effects (1,2,3,5,11).
Light shifts
- First prediction that atomic energy levels are
shifted by a quasiresonant light
irradiation (4,5).
- First experimental demonstration of the existence of
light shifts (1).
- Removal of the Zeeman degeneracy in zero magnetic
field by light shifts and demonstration of the equivalence between
light shifts and fictitious magnetic and electric fields (14,16,25).
Development of new optical detection methods
- General theory of optical detection signals (5,15).
- Demonstration of a new sensitive method using
anomalous dispersion and transverse Faraday rotation (6).
- Application to nuclear relaxation studies (7,9)
Ultra sensitive magnetometers using level crossing
resonances
- Prediction and demonstration of the existence of very
narrow level crossing resonances in atomic ground states (8).
- Detection of very weak magnetic fields, on the order
of 3.10-
10 Gauss,
by these resonances (19,24)
and application to the detection of the static magnetic field
produced at a macroscopic distance by a gaseous sample of
polarized nuclei (20).
Development of the dressed-atom approach
- Quantizing the RF field used in magnetic resonance
experiments allows one to consider the atom coupled to RF photons
as a whole system described by a time independent hamiltonian,
with true energy levels (dressed levels). Such an approach
provides a simple interpretation of various physical effects
(magnetic resonance, multiphoton
transitions, parametric resonances, coherence resonances,
frequency modulation...) in terms of level crossings and level anticrossings appearing in the dressed
atom energy diagram (10,13,17).
- Prediction and experimental observation of several
new physical effects suggested by such a nonperturbative
and global approach, in particular the fact that atomic magnetic
moments can be modified and even cancelled by a non resonant RF
irradiation (12,17,21,22,23).
Optical pumping with lasers
- Theory of optical pumping with monochromatic coherent
light sources (27).
- Theory of the Hanle
effect with monochromatic laser light (26).
Description of the effect of phase fluctuations of the laser light
on the fluorescence spectrum (29).
- In connection with this work, development of a simple
model for describing a discrete state coupled to a continuum with
a finite width. Demonstration by simple graphic constructions of
the possibility of a continuous transition between two extreme
regimes, the Weisskopf-Wigner
exponential decay and the Rabi oscillation (30).
Resonance fluorescence in intense resonant laser
beams
- Extension of the dressed atom approach to the optical
domain and description of the effect of spontaneous emission (27,31).
- Simple interpretation of the resonance fluorescence
triplet in terms of spontaneous transitions between dressed states
and extension to multilevel atoms (31,32).
- Theoretical treatment of spontaneous Raman effect in
intense laser fields (33).
- Dressed atom description of collisional
redistribution (34).
Doppler free spectroscopy
- Prediction and demonstration of a new method of laser
spectroscopy using velocity dependent light shifts for
compensating the Doppler effect (38,40).
- Demonstration of the possibility of observing optical
Ramsey fringes with Doppler free two photon transitions (36).
Photon antibunching -
Photon correlations - Quantum jumps
- Prediction of photon antibunching
in single atom resonance fluorescence. Interpretation of the
effect in terms of quantum jumps (27,39).
- Interpretation of photon correlations in terms of a radiative cascade of the dressed atom.
Prediction by this approach of time correlations between the
photons emitted in the two sidebands of the resonance fluorescence
triplet (39,54) and experimental demonstration of this effect (41).
- Simple theoretical treatment of the intermittent
fluorescence observable on a single trapped ion. Detection of
quantum jumps by Dehmelt’s shelving
method (51,54).
- Interpretation,in terms
of quantum jumps, of the physical mechanisms responsible for
amplification without inversion (63).
Simple physical pictures for radiative
processes
- Derivation of an effective hamiltonian
describing the effect of a high frequency irradiation on the slow
motion of a weakly bound electron. Prediction of an energy shift
of the Rydberg states (28,35).
- By comparison with radiative
corrections, identification of the respective contributions of
vacuum fluctuations and radiation reaction to these corrections (37,42).
- Interpretation of the positive sign of the spin
anomaly g-2 as being due to the fact that the cyclotron motion of
the electron charge is slowed down by radiation reaction more
efficiently than the Larmor
precession of the spin magnetic moment (37,43).
- General description of dissipation and fluctuations
in radiative processes using an
Heisenberg equations approach and statistical functions such as
symmetric correlation functions and linear response functions (42, 43,48).
Radiative forces
- Laser cooling and trapping
- Unified treatment for the deflection of an atomic
beam by a quasiresonant laser
standing wave, showing the continuous transition between the
diffractive regime for short interaction times and the diffusive
regime for long interaction times (47).
Prediction of a new rainbow effect in the deflection profile (44).
- Derivation of a Fokker-Planck equation describing
atomic motion in laser light where, not only the diffusion
coefficient, but also the friction coefficient are expressed in
terms of correlation functions of the radiative
force operator (49).
- Proposal of stable optical traps for neutral atoms,
with alternating cooling and trapping phases (45).
All laser traps achieved so far use such a scheme.
- Proposal of a new
+
-
-
laser
configuration for laser cooling and trapping (46).
- Dressed atom interpretation of the mean value and of
the fluctuations of dipole forces in terms of dressed state energy
gradients and spontaneous transitions between these states (50).
- Proposal and experimental demonstration of a new type
of laser cooling using dipole forces (50,52).
This new scheme is called now ”Sisyphus cooling” because the atom
is always climbing potential hills in the dressed atom energy
diagram. Extension of this scheme to trapped ions (64).
- Experimental demonstration of the possibility of channeling atoms in the nodes or in the
antinodes of a laser standing wave (53).
- First interpretation of the new cooling mechanisms
allowing one to beat the Doppler limit of laser cooling in terms
of optical pumping, light shifts and polarization gradients (56,58,59,60). Introdution of a new type of Sisyphus
cooling due to correlations between the spatial modulations of
light shifts and the spatial modulations of optical pumping rates.
Applying this new cooling scheme to Cesium
atoms, the Paris group has obtained very low kinetic 3-D
temperatures (2 microkelvin).
- Proposal and demonstration of a new cooling scheme
using velocity selective coherent population trapping and allowing
one to beat the limit associated with the recoil kinetic energy of
an atom absorbing or emitting a single photon. Observation by this
method of a subrecoil transverse
temperature of 2 microkelvin on a
beam of metastable Helium atoms (55,57,58,59).
Starting from Helium atoms trapped in a magneto-optical trap, it
has been possible recently to increase the interaction time by one
order of magnitude and to measure, at one, two and three
dimensions, temperatures of the order of 200 nanokelvin,
about 20 times smaller than the recoil limit (68,69,71). Coherent manipulation
of atomic wave packets by adiabatic transfer (73).
- Mechanical detection of the Hanle
effect (61).
- Analogy between photon scattering and a quantum
measurement process destroying atomic spatial coherences.
Monte-Carlo simulation of the quantum evolution (62).
- Demonstration of the existence of anomalous diffusion
processes in subrecoil laser cooling.
New statistical analysis of this cooling mechanism in terms of “Lévy flights”,providing
precise analytical predictions in the long time limit, where the
standards methods of quantum optics become inappropriate (70,
74). Application of such an approach to subrecoil
Raman cooling and use of simpler sequences of pulses leading to 1D
temperatures lower than 3nK for Cs atoms (72).
- Development of a new method using the atomic spatial
correlation function for measuring the momentum distribution of
cooled atoms (75). Experimental evidence for non
ergodic effects in subrecoil
laser cooling (76).
- First experimental demonstration of quantization of
atomic motion in an optical potential associated with light
shifts. Evidence for a long range spatial antiferromagnetic
order of atoms in an optical molasses (65). This
has been the starting point for the realization of “optical
lattices” for neutral atoms, where atoms are trapped in a
three-dimensional periodic array of potential wells.
- Proposal of a gravitational cavity for neutral atoms
and theoretical investigation of its quantum modes (66).
Experimental observation of several bounces of Cesium
atoms in such a cavity (67).
Bose-Einstein
condensation
- One of the most important applications of ultracold
atoms is the possibility that they offer to observe quantum
degeneracy effects in dilute bosonic or fermionic gases.
Bose-Einstein condensation is one of these spectacular effects
where a macroscopic mumber of bosonic atoms gather in the same
quantum state, forming a mascroscopic matter wave. The coherence
properties of theses matter waves can be described in termes of
correlations functions similar to those used in quantum optics (77).
- Realization,
simultaneaously with another group in Orsay, of the first
condensate where atoms are condensed, not in the electronic ground
state, but in a long lived metastable state with a high internal
energy. Bose-Einstein condensation of 4He atom in the
23S1 metastable state (78).
- Production
by one-photon photoassociation of giant dimers of ultracold
metastable helium atoms. The 2 atoms are bound in a purely long
range potential, where not only the attractive part, but also the
repulsive part, are due to resonant dipole-dipole interactions.
Experimental (79) and theoretical (80)
study of these giant dimers (85).
- The
Scaterring length is a very important parameter for describing
elastic collisions between ultracold atoms and for understanding
the static and dynamic properties of gaseous Bose-Einstein
condensates. The scattering length describing collisions beween
metastable helium atoms has been determined very accurately by two
different methods: study of the light shifts of one-photon
photoassociation spectra (81, 83)
; determination, by two photon photoassociation spectra of the
binding energy of the least bound state of 2 metastable helium
atoms in their interaction potential (82).
Observation of atom-molecule "dark resonances"(82)
and Fano profiles in photoassociation spectra (84).
Atomic
interferometers and tests of the gravitational red-shift
- In recent publications, the signal given by gravimeters using matter waves
is reinterpreted as a test, much more precise than the test
obtained with atomic clocks, of the gravitational red-shift
predicted by general relativity. Presentation of arguments
disproving this interpretation (86, 87,
88).
MAIN PUBLICATIONS
of Claude
COHEN-TANNOUDJI
- COHEN-TANNOUDJI C.,
C.R. Acad. Sci. 252, 394 (1961) :
“Observation d’un déplacement de raie de résonance magnétique causé
par l’excitation optique”.
- COHEN-TANNOUDJI C., C.R.
Acad. Sci. 253, 2662 (1961) : “Conservation
partielle de la cohérence au cours du cycle de pompage optique”.
- COHEN-TANNOUDJI C., C.R.
Acad. Sci. 253, 2899 (1961) : “Observation
d’un déplacement de raie de résonance magnétique causé par des
transitions réelles de résonance optique”.
- BARRAT J.P., COHEN-TANNOUDJI C., J.
Phys. Rad. 22, 329 (1961) : “Etude du
pompage optique dans le formalisme de la matrice densité” and J.
Phys. Rad., 22 (1961) p.443: “Elargissement et déplacement des raies
de résonance magnétique causés par une excitation optique”.
- COHEN-TANNOUDJI C., Ann. Phys.
Paris 7 (1962) p.423 and 469 : Théorie
quantique du cycle de pompage optique. Vérification expérimentale
des nouveaux effets prévus. (Thèse d’Etat, Paris).
- MANUEL J., COHEN-TANNOUDJI C. ,C.R.
Acad. Sci. 257, 413 (1963) : “Détection
optique de la résonance magnétique par modulation de l’effet Faraday
paramagnétique transversal à la fréquence de Larmor”.
- COHEN-TANNOUDJI C., J.
Phys. Rad. 24, 653 (1963) : “Relaxation
quadrupolaire de l’isotope Hg 201 sur des parois de quartz”.
- LEHMANN J.C., COHEN-TANNOUDJI C., C.R.
Acad. Sci. 258, 4463 (1964) : “Pompage
optique en champ magnétique faible”.
- COHEN-TANNOUDJI C., BROSSEL J., C.R.
Acad. Sci. 258, 6119 (1964) : “Relaxation
nucléaire de Hg 199 sur des parois de silice fondue. Effet d’une
irradiation ultraviolette”.
- POLONSKY N., COHEN-TANNOUDJI C., J.
Physique 26, 409 (1965) : “Interprétation
quantique de la modulation de fréquence”.
- COHEN-TANNOUDJI C., KASTLER A.:
“Optical Pumping”,in “Progress
in Optics”, Vol. V, p.1 1966, ed.
by Wolf E. (North-Holland). .
- COHEN-TANNOUDJI C., HAROCHE S., C.R.
Acad. Sci. 262, 268 (1966) : “Modification
et annulation du facteur de Landé d’un atome par couplage avec un
champ de radiofréquence”.
- COHEN-TANNOUDJI C., HAROCHE S., C.R.
Acad. Sci. 262, 37 (1966) : “Interprétation
de diverses résonances magnétiques en termes de croisements et
anti-croisements de niveaux d’énergie du système global
atome-photons de radiofréquence”
- DUPONT-ROC J., POLONSKY N.,
COHEN-TANNOUDJI C., KASTLER A., C.R.
Acad. Sci. 264, 1811 (1967) : “Observation
sur des niveaux atomiques de déplacements, d’origine optique,
supérieurs à leur largeur”.
- COHEN-TANNOUDJI C., LALOË F., J.
Physique 28, 505 (1967) and
J. Physique 28, 722 (1967) : “Modification
de la matrice polarisation d’un faisceau lumineux lors de la
traversée d’une vapeur atomique soumise au pompage optique”.
- DUPONT-ROC J., POLONSKY N.,
COHEN-TANNOUDJI C., KASTLER A., Phys.
Letters A 25, 87 (1967) : “Lifting of a
Zeeman degeneracy by interaction with a light beam”.
- COHEN-TANNOUDJI C.“Optical
pumping and interactions of atoms with the electromagnetic field”
, in ”“Cargese lectures in physics”, Vol.2, ed. by Levy M. (Gordon
and Breach, New-York, 1968), p.347.
- HAROCHE S., COHEN-TANNOUDJI C.,J.
Physique 30, 125 (1969) : “Interprétation
quantique des diverses résonances observées lors de la diffusion de
photons optiques et de radiofréquence par un atome”.
- DUPONT-ROC J., HAROCHE S.,
COHEN-TANNOUDJI C.,
Phys. Letters A 28, 638 (1969) : “Detection
of very weak magnetic fields (10- 9 gauss) by Rb 87 zero-field level
crossing resonances”.
- COHEN-TANNOUDJI C., DUPONT-ROC J.,
HAROCHE S., LALOË E F., Phys.
Rev. Lett. 22, 758 (1969) : “Detection of
the static magnetic field produced by the oriented nuclei of
optically pumped He 3 gas”.
- LANDRE C., COHEN-TANNOUDJI C.,
DUPONT-ROC J., HAROCHE S., J.
Physique 31, 971 (1970) : “Anisotropie des
propriétés magnétiques d’un atome ”habillé” par des photons de
radiofréquence”.
- COHEN-TANNOUDJI C., HAROCHE S.,
AUDOIN C., SCHERMANN J.P., Phys.
Rev. Lett. 24, 861 (1970) : “Modified Zeeman
hyperfine spectra observed in H 1 and Rb 87 ground states
interacting with a nonresonant RF field”.
- HAROCHE S., COHEN-TANNOUDJI C., Phys. Rev. Lett. 24,
974 (1970) : “Resonant transfer of coherence in nonzero
magnetic field between atomic levels of different g-factors”.
- COHEN-TANNOUDJI C., DUPONT-ROC J.,
HAROCHE S., LALOË F. ,Rev.
de Phys. Appl. 5, 102 (1970) : “Diverses
résonances de croisement de niveaux sur des atomes pompées
optiquement en champ nul. Application à la mesure des champs
faibles”.
- COHEN-TANNOUDJI C., DUPONT-ROC J.,
Phys. Rev. A 5,
968 (1972) : “Experimental study of Zeeman light shifts in
weak magnetic fields”.
- AVAN P., COHEN-TANNOUDJI C., J.
Phys. Lettres (Paris) 36, L-85 (1975) :
“Hanle effect for monochromatic excitation. Non perturbative
calculation for a J=0 to J=1 transition”.
- COHEN-TANNOUDJI C.:
“Atoms in strong resonant fields”, in “Frontiers in laser
spectroscopy”, Les Houches, Session XXVII, July 1975, ed. by Balian
R., Haroche S. and Liberman S. (North-Holland, 1977), p. 1.
- AVAN P., COHEN-TANNOUDJI C.,
DUPONT-ROC J., FABRE C., J.
Physique 37, 993 (1976) : “Effect of high
frequency irradiation on the dynamical properties of weakly bound
electrons”.
- AVAN P., COHEN-TANNOUDJI C., J.
Phys. B 10, 155 (1977) : “Two-level atom
saturated by a fluctuating resonant laser beam. Calculation of the
fluorescence spectrum”.
- COHEN-TANNOUDJI C., AVAN P.:“Discrete
state coupled to a continuum. Continuous transition between the
Weisskopf-Wigner exponential decay and the Rabi oscillation”,
in “Etats atomiques et moléculaires couplés à un continuum”,
Editions du C.N.R.S. ( Paris, 1977), p.93.
- COHEN-TANNOUDJI C., REYNAUD S.: “Dressed-atom
approach to resonance fluorescence”, in “Multiphoton
processes”, ed. by Eberly J. and Lambropoulos P.(Wiley, New-York,
1978), p.103.
- COHEN-TANNOUDJI C., REYNAUD S., J. Phys. B 10,
345 (1977) : “Dressed atom description of resonance
fluorescence and absorption spectra of a multi-level atom in an
intense laser beam”.
- COHEN-TANNOUDJI C., REYNAUD S., J. Phys. B 10,
365 (1977) : “Modification of resonance Raman scattering in
very intense laser fields”.
- REYNAUD S., COHEN-TANNOUDJI C., J.
Physique 43, 1021 (1982) : “Dressed atom
approach to collisional redistribution”.
- COHEN-TANNOUDJI C., Metrologia
(Springer Verlag) 13, 161 (1977) : “Effect of a non-resonant
irradiation on atomic energy levels. Application to light shifts in
two-photon spectroscopy and to perturbation of Rydberg states”.
- SALOUR M., COHEN-TANNOUDJI C., Phys. Rev. Lett. 38,
757 (1977) : “Observation of Ramsey’s interference fringes in
the profile of Doppler free two-photon resonances”.
- DUPONT-ROC J., FABRE C.,
COHEN-TANNOUDJI C., J.
Phys. B 11, 563 (1978) : “Physical
interpretation for radiative corrections in the non-relativistic
limit”.
- COHEN-TANNOUDJI C., HOFFBECK F.,
REYNAUD S., Opt.
Commun. 27, 71 (1978) : “Compensating Doppler
broadening with light-shifts”.
- COHEN-TANNOUDJI C., REYNAUD S.,Phil.
Trans. Roy. Soc. London A 293, 223 (1979):
“Atoms in strong light-fields: photon antibunching in single atom
resonance fluorescence”.
- REYNAUD S., HIMBERT M., DUPONT-ROC
J., STROKE H., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 42, 756 (1979) : “Experimental
evidence for compensation of Doppler broadening by light shifts”.
- ASPECT A., ROGER G., REYNAUD S.,
DALIBARD J., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 45, 617 (1980) : “Time
correlations between the two sidebands of the resonance fluorescence
triplet”.
- DALIBARD J., DUPONT-ROC J.,
COHEN-TANNOUDJI C., J.
Physique 43, 1617 (1982) : “Vacuum
fluctuations and radiation reaction: identification of their
respective contributions”.
- COHEN-TANNOUDJI C.: “Introduction
to Quantum Electrodynamics” , in “New trends in atomic
physics”, Les Houches, Session XXXVIII, July 1982, ed. by Grynberg
G. and Stora R., (Elsevier, 1984), p.1.
- TANGUY C., REYNAUD S., MATSUOKA
M., COHEN-TANNOUDJI C., Opt.
Commun. 44, 249 (1983) : “Deflection profiles
of a monoenergetic atomic beam crossing a standing light wave”.
- DALIBARD J., REYNAUD S.,
COHEN-TANNOUDJI C., Opt.
Commun. 47, 395 (1983) : “Proposals of
stable optical traps for neutral atoms”.
- DALIBARD J., REYNAUD S.,
COHEN-TANNOUDJI C., J.
Phys. B 17, 4577 (1984) : “Potentialities of
a new laser configuration for radiative cooling and trapping”.
- TANGUY C., REYNAUD S.,
COHEN-TANNOUDJI C., J.
Phys. B 17, 4623 (1984) : “Deflection of an
atomic beam by a laser wave: transition between diffractive and
diffusive regimes”.
- DALIBARD J., DUPONT-ROC J.,
COHEN-TANNOUDJI C., J.
Physique 45, 637 (1984) : “Dynamics of a
small system coupled to a reservoir: reservoir fluctuations and
self-reaction”.
- DALIBARD J., COHEN-TANNOUDJI C., J. Phys. B 18,
1661 (1985) : “Atomic motion in laser light: connection
between semi-classical and quantum descriptions”.
- DALIBARD J., COHEN-TANNOUDJI C., J.O.S.A.
B 2, 1707 (1985) : “Dressed atom approach to
atomic motion in laser light: the dipole force revisited”.
- COHEN-TANNOUDJI C., DALIBARD J., Europhys. Lett.
1, 441 (1986) : “Single atom laser
spectroscopy. Looking for dark periods in fluorescence light”.
- ASPECT A., DALIBARD J., HEIDMANN
A., SALOMON C., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 57, 1688 (1986) : “Cooling atoms
with stimulated emission”.
- SALOMON C., DALIBARD J., ASPECT
A., METCALF H., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 59, 1659 (1987) : “Channeling
atoms in a laser standing wave”.
- REYNAUD S., DALIBARD J.,
COHEN-TANNOUDJI C.,IEEE
J. Quant. Electron. 24, 1395 (1988) :
“Photon statistics and quantum jumps: the picture of the dressed
atom radiative cascade”.
- ASPECT A., ARIMONDO E., KAISER R.,
VANSTEENKISTE N., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 61, 826 (1988) : “Laser cooling
below the one-photon recoil energy by velocity-selective coherent
population trapping”.
- DALIBARD J., COHEN-TANNOUDJI C., J.O.S.A.
B 6, 2023 (1989) : “Laser cooling below the
Doppler limit by polarization gradients: simple theoretical models”.
- ASPECT A., ARIMONDO E., KAISER R.,
VANSTEENKISTE N., COHEN-TANNOUDJI C., J.O.S.A.
B 6, 2112 (1989) : “Laser cooling below the
one photon recoil energy by velocity selective coherent population
trapping: theoretical analysis”.
- COHEN-TANNOUDJI C., PHILLIPS W., Physics
Today 43, 33 (1990) part 1 , part
2 , part
3 : “New mechanisms for laser cooling”.
- COHEN-TANNOUDJI C.:“Atomic
Motion in Laser Light” , in “Fundamental systems in Quantum
optics”, Les Houches, Session LIII, July 1990, ed. by Dalibard J.
and Raimond J.M., (Elsevier, 1992).
- DALIBARD J., CASTIN
Y.,COHEN-TANNOUDJI C.: “The
limits of Sisyphus cooling” , in “Light induced kinetic
effects in atoms, ions and molecules”, ed. by Moi L., Gozzini S.,
Gabbanini C., Arimondo E. and Strumia F. (ETS Editrice Pisa, 1991),
p.5.
- KAISER R., VANSTEENKISTE N.,
ASPECT A., ARIMONDO E., COHEN-TANNOUDJI C., Z.
Phys. D 18, 17 (1991): “Mechanical Hanle
effect”.
- COHEN-TANNOUDJI C., BARDOU F.,
ASPECT A.:
“Review on fundamental processes in laser cooling”, in
“Proceedings of TENICOLS 91”, ed. by Ducloy M., Giacobino E. and
Camy G. (World Scientific, 1991).
- COHEN-TANNOUDJI C., ZAMBON B.,
ARIMONDO A., J.O.S.A.
B10, 2107 (1993): “Quantum jump approach to
dissipative processes. Application to amplification without
inversion”.
- WINELAND D., DALIBARD J.,
COHEN-TANNOUDJI C. J.O.S.A.
B 9, 32 (1992) : “Sisyphus cooling of a
bound atom”.
- VERKERK P., LOUNIS B., SALOMON
C., COHEN-TANNOUDJI C., COURTOIS J.-Y., GRYNBERG G., Phys.
Rev. Lett. 68, 3861 (1992) : “Dynamics and
spatial order of cold cesium atoms in a periodic optical potential”.
- WALLIS H., DALIBARD J.,
COHEN-TANNOUDJI C., Appl.
Phys. B 54, 407 (1992) : “Trapping atoms in
a gravitational cavity”.
- AMINOFF C., STEANE A.M., BOUYER
P., DESBIOLLES P., DALIBARD J., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 71, 3083 (1993) : “Cesium atoms
bouncing in a stable gravitational cavity”.
- BARDOU F., SAUBAMEA B., LAWALL J.,
SHIMIZU K., EMILE O., WEST-BROOK C., ASPECT A., COHEN-TANNOUDJI C.,
C.
R. Acad. Sci. Paris 318, 877-885 (1994) :
“Subrecoil laser cooling with precooled atoms”.
- LAWALL J., BARDOU F., SAUBAMEA B.,
SHIMIZU K., LEDUC M., ASPECT A., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 73, 1915 (1994) :“Two-dimensional
subrecoil laser cooling”.
- BARDOU F., BOUCHAUD J.P., EMILE
O., ASPECT A., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 72, 203 (1994) :“Subrecoil laser
cooling and Lévy flights”.
- LAWALL J., KULIN S., SAUBAMEA B.,
BIGELOW N., LEDUC M., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 75, 4194 (1995) :
“Three-dimensional laser cooling of Helium beyond the single-photon
recoil limit”.
- REICHEL J., BARDOU F., BEN DAHAN
M., PEIK E., RAND S., SALOMON C., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 75, 4575 (1995) : “Raman cooling
of cesium below 3nK : new approach inspired by Lévy flight
statistics”.
- KULIN S., SAUBAMEA B., PEIK E.,
LAWALL J., HIJMANS T. W., LEDUC M., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 78, 4185 (1997 : “Coherent
manipulation of Atomic Wave Packets by Adiabatic Transfer”.
- BARDOU F., BOUCHAUD J.P., ASPECT
A., COHEN-TANNOUDJI C. : “Laser cooling and Levy statistics ;
how rare events bring atoms to rest”, in Cambridge University Press,
Cambridge 2001.
- SAUBAMEA B., HIJMANS T. W., KULIN
S., RASEL E., PEIK E., LEDUC M., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 79, 3146 (1997) : “Direct
measurement of the spatial correlation of ultracold atoms”.
- SAUBAMEA B., LEDUC M.,
COHEN-TANNOUDJI C., Phys.
Rev. Lett. 83, 3796 (1999) : “Experimental
investigation of nonergodic effects in subrecoil laser cooling”.
- COHEN-TANNOUDJI C., ROBILLIARD
C., C.R.
Acad. Sci., t.2, série IV, p. 445-477 (2001)
: “Wave functions, relative phase and interference for atomic
Bose-Einstein condensates”.
- PEREIRA DOS SANTOS F., RASEL E.,
UNNIKRISHNAN C. S.,. LEDUC M, COHEN-TANNOUDJI C., Phys.
Rev. Lett. 86, 3459 (2001) : “Bose-Einstein
Condensation of Metastable Hélium”.
- LÉONARD J., WALHOUT M., MOSK
A.P., PERALES F., MULLER T., LEDUC M., COHEN-TANNOUDJI C., Phys.
Rev. Lett. 91, 073203 (2003) : “Giant helium
dimmers produced by photoassociation of ultracold metastable atoms”.
- LÉONARD J., MOSK A. P., WALHOUT
M., VAN DER STRATEN P., LEDUC M., and COHEN-TANNOUDJI C., Phys.
Rev. A 69, 032702 (2004) : “Analysis of
photoassociation spectra for giant helium dimmers”.
- KIM J., MOAL S., PORTIER M.,
DUGÉ J., LEDUC M. et COHEN-TANNOUDJI C., Europhysics
Letters 72 (4) 548 (2005) : “ Frequency
shifts of photoassociative spectra of ultracold metastable helium
atoms: A new measurement of the s-wave scattering length”.
- MOAL S., PORTIER M., KIM J.,
DUGUÉ J., RAPOL U.D., LEDUC M. and COHEN-TANNOUDJI C., Phys.
Rev. Lett. 96, 023203 (2006) : “ Accurate
determination of the scattering length of metastable Helium atoms
using dark resonances between atoms and exotic molecules”.
- PORTIER M., MOAL S., KIM J., LEDUC M.,
COHEN-TANNOUDJI C. and DULIEU O., J.Phys
B 39, 19 (2006) :
"Analysis of light-induced frequency shifts in the photoassociation
of ultracold metastable helium atoms".
- PORTIER M., LEDUC M., COHEN-TANNOUDJI C., Faraday
Discuss., 142, 415-428
(2009) : "Fano profile in two-photon photoassociation
spectra".
- LEDUC M., COHEN-TANNOUDJI C., Laser
Physics, 9, 1-10 (2009) :
"Ultracold Metastable Helium. From Atoms to Exotic Molecules".
- WOLF P., BLANCHET L., BORDE C.J., REYNAUD S.,
SALOMON C., COHEN-TANNOUDJI C., Nature,
Volume 467, Issue 7311, pp. E1-E1 (2010) : "Atom gravimeters
and gravitational redshift".
- WOLF P., BLANCHET L., BORDE C.J., REYNAUD S.,
SALOMON C., COHEN-TANNOUDJI C., IOP, Classical
and Quantum Gravity, Volume 28, Issue 14, 145017 (2011) :
"Does an atom interferometer test the gravitational redshift at the
Compton frequency?".
- WOLF P., BLANCHET L., BORDE C.J., REYNAUD S.,
SALOMON C., COHEN-TANNOUDJI C., Classical
and Quantum Gravity, Volume 29, 048002 (2012) :"Reply to the
comment on "Does an atom interferometer test the gravitational
redshift at the Compton Frequency?""